File size: 2,657 Bytes
6fb4c9f
 
 
 
 
 
 
 
 
516f706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb4c9f
 
516f706
6fb4c9f
 
 
 
 
 
 
 
5a8cc2a
6fb4c9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: bert_uncased_L-12_H-128_A-2-mlm-multi-emails-hq-r2
  results: []
widget:
  - text: Can you please send me the [MASK] by the end of the day?
    example_title: end of day
  - text: >-
      I hope this email finds you well. I wanted to follow up on our [MASK]
      yesterday.
    example_title: follow-up
  - text: The meeting has been rescheduled to [MASK].
    example_title: reschedule
  - text: Please let me know if you need any further [MASK] regarding the project.
    example_title: further help
  - text: >-
      I appreciate your prompt response to my previous email. Can you provide an
      update on the [MASK] by tomorrow?
    example_title: provide update
  - text: Paris is the [MASK] of France.
    example_title: paris (default)
  - text: The goal of life is [MASK].
    example_title: goal of life (default)
---

# bert_uncased_L-12_H-128_A-2-mlm-multi-emails-hq

This model is a fine-tuned version of [google/bert_uncased_L-12_H-128_A-2](https://huggingface.co/google/bert_uncased_L-12_H-128_A-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4235
- Accuracy: 0.5780

## Model description

This is a **40 MB version of BERT** that does surprisingly well!

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 8.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.9421        | 0.99  | 141  | 2.7769          | 0.5330   |
| 2.772         | 1.99  | 282  | 2.6669          | 0.5487   |
| 2.6997        | 2.99  | 423  | 2.5486          | 0.5621   |
| 2.6281        | 3.99  | 564  | 2.4865          | 0.5704   |
| 2.5626        | 4.99  | 705  | 2.4385          | 0.5766   |
| 2.5504        | 5.99  | 846  | 2.4421          | 0.5772   |
| 2.5434        | 6.99  | 987  | 2.4094          | 0.5818   |
| 2.5174        | 7.99  | 1128 | 2.4235          | 0.5780   |


### Framework versions

- Transformers 4.27.0.dev0
- Pytorch 2.0.0.dev20230129+cu118
- Datasets 2.8.0
- Tokenizers 0.13.1