Sentence Similarity
sentence-transformers
Safetensors
Japanese
luke
feature-extraction
yano0 commited on
Commit
b59d5ad
·
verified ·
1 Parent(s): 3fe4afe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -83
README.md CHANGED
@@ -26,51 +26,25 @@ datasets:
26
  base_model: pkshatech/GLuCoSE-base-ja
27
  license: apache-2.0
28
  ---
 
29
 
30
- # SentenceTransformer
31
 
32
- This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
33
 
34
- ## Model Details
35
- The model is based on [GLuCoSE](https://huggingface.co/pkshatech/GLuCoSE-base-ja) and additionally fine-tuned.
36
- Fine-tuning consists of the following steps.
37
 
38
- **Step 1: Ensemble distillation**
39
-
40
- - The embedded representation was distilled using [E5-mistral](https://huggingface.co/intfloat/e5-mistral-7b-instruct), [gte-Qwen2](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct), and [mE5-large](https://huggingface.co/intfloat/multilingual-e5-large) as teacher models.
41
-
42
- **Step 2: Contrastive learning**
43
-
44
- - Triples were created from [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88), [MNLI](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7), [PAWS-X](https://huggingface.co/datasets/paws-x), [JSeM](https://github.com/DaisukeBekki/JSeM) and [Mr.TyDi](https://huggingface.co/datasets/castorini/mr-tydi) and used for training.
45
- - This training aimed to improve the overall performance as a sentence embedding model.
46
 
47
- **Step 3: Search-specific contrastive learning**
48
-
49
- - In order to make the model more robust to the retrieval task, additional two-stage training with QA and question-answer data was conducted.
50
- - In the first stage, the synthetic dataset [auto-wiki-qa](https://huggingface.co/datasets/cl-nagoya/auto-wiki-qa) was used for training,
51
- while in the second stage, [Japanese Wikipedia Human Retrieval](https://huggingface.co/datasets/hpprc/emb)
52
- , [Mr.TyDi](https://huggingface.co/datasets/hpprc/emb),
53
- [MIRACL](https://huggingface.co/datasets/hpprc/emb),
54
- [JQaRA](https://huggingface.co/datasets/hotchpotch/JQaRA),
55
- [MQA](https://huggingface.co/datasets/hpprc/mqa-ja),
56
- [Quiz Works](https://huggingface.co/datasets/hpprc/emb) and
57
- [Quiz No Mori](https://huggingface.co/datasets/hpprc/emb) were used.
58
- ### Model Description
59
- - **Model Type:** Sentence Transformer
60
- <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
61
  - **Maximum Sequence Length:** 512 tokens
62
  - **Output Dimensionality:** 768 tokens
63
  - **Similarity Function:** Cosine Similarity
64
- <!-- - **Training Dataset:** Unknown -->
65
- <!-- - **Language:** Unknown -->
66
- <!-- - **License:** Unknown -->
67
-
68
 
69
  ## Usage
70
 
71
  ### Direct Usage (Sentence Transformers)
72
 
73
- You can perform inference using SentenceTransformers with the following code:
74
 
75
  ```python
76
  from sentence_transformers import SentenceTransformer
@@ -98,6 +72,7 @@ print(similarities)
98
  # [0.6050, 1.0000, 0.5018, 0.6815],
99
  # [0.4341, 0.5018, 1.0000, 0.7534],
100
  # [0.5537, 0.6815, 0.7534, 1.0000]]
 
101
  ```
102
 
103
  ### Direct Usage (Transformers)
@@ -142,10 +117,30 @@ print(similarities)
142
  # [0.6050, 1.0000, 0.5018, 0.6815],
143
  # [0.4341, 0.5018, 1.0000, 0.7534],
144
  # [0.5537, 0.6815, 0.7534, 1.0000]]
 
145
  ```
146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
 
148
  <!--
 
149
  ### Downstream Usage (Sentence Transformers)
150
 
151
  You can finetune this model on your own dataset.
@@ -156,19 +151,21 @@ You can finetune this model on your own dataset.
156
  -->
157
 
158
  <!--
 
159
  ### Out-of-Scope Use
160
 
161
  *List how the model may foreseeably be misused and address what users ought not to do with the model.*
162
  -->
163
 
164
-
165
  <!--
 
166
  ## Bias, Risks and Limitations
167
 
168
  *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
169
  -->
170
 
171
  <!--
 
172
  ### Recommendations
173
 
174
  *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
@@ -176,68 +173,48 @@ You can finetune this model on your own dataset.
176
 
177
  ## Benchmarks
178
 
179
- ### Retieval
 
180
  Evaluated with [MIRACL-ja](https://huggingface.co/datasets/miracl/miracl), [JQARA](https://huggingface.co/datasets/hotchpotch/JQaRA) , [JaCWIR](https://huggingface.co/datasets/hotchpotch/JaCWIR) and [MLDR-ja](https://huggingface.co/datasets/Shitao/MLDR).
181
 
182
  | Model | Size | MIRACL<br>Recall@5 | JQaRA<br>nDCG@10 | JaCWIR<br>MAP@10 | MLDR<br>nDCG@10 |
183
- |:--|:--|:--|:--|:--|:----|
184
- |OpenAI/text-embedding-3-small|-|processing...|38.8|81.6|processing...|
185
- |OpenAI/text-embedding-3-large|-|processing...|processing...|processing...|processing...|
186
- ||||||||||
187
- |[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 0.6B | 89.2 | 55.4 | **87.6** | 29.8 |
188
- |[cl-nagoya/ruri-large](https://huggingface.co/cl-nagoya/ruri-large) | 0.3B | 78.7 | 62.4 | 85.0 | **37.5** |
189
- ||||||||||
190
- |[intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 0.3B | 84.2| 47.2 | **85.3** | 25.4 |
191
- |[cl-nagoya/ruri-base](https://huggingface.co/cl-nagoya/ruri-base) | 0.1B | 74.3 | 58.1 | 84.6 | **35.3** |
192
- |[pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja) | 0.1B | 53.3 | 30.8 | 68.6 | 25.2 |
193
- |**GLuCoSE v2**| 0.1B | **85.5** | **60.6** | **85.3** | 33.8 |
194
-
195
- Note: Results for OpenAI small embeddings in JQARA and JaCWIR are quoted from the [JQARA](https://huggingface.co/datasets/hotchpotch/JQaRA) and [JaCWIR](https://huggingface.co/datasets/hotchpotch/JCWIR).
196
-
197
 
198
  ### JMTEB
 
199
  Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB).
200
 
201
- |Model|Size|Avg.|Retrieval|STS|Classification|Reranking|Clustering|PairClassification|
202
- |:--|:--|:--|:--|:--|:--|:--|:--|:--|
203
- |OpenAI/text-embedding-3-small|-|70.86|66.39|79.46|73.06|92.92|51.06|62.27|
204
- |OpenAI/text-embedding-3-large|-|73.97|74.48|82.52|77.58|93.58|53.32|62.35|
205
- ||||||||||
206
- |[intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)|0.6B|71.65|70.98|79.70|72.89|92.96|51.24|62.15|
207
- |[cl-nagoya/ruri-large](https://huggingface.co/cl-nagoya/ruri-large)|0.3B|73.45|73.02|83.13|77.43|92.99|51.82|62.29|
208
- ||||||||||
209
- |[intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base)|0.3B|70.12|68.21|79.84|69.30|**92.85**|48.26|62.26|
210
- |[cl-nagoya/ruri-base](https://huggingface.co/cl-nagoya/ruri-base) |0.1B|**72.95**|69.82|82.87|75.58|92.91|**54.16**|62.38|
211
- |[pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja)|0.1B|70.44|59.02|78.71|**76.82**|91.90|49.78|**66.39**|
212
- |**GLuCoSE v2**|0.1B|72.39|**73.36**|**82.96**|74.21|93.01|48.65|62.37|
213
 
214
  Note: Results for OpenAI embeddings and multilingual-e5 models are quoted from the [JMTEB leaderboard](https://github.com/sbintuitions/JMTEB/blob/main/leaderboard.md). Results for ruri are quoted from the [cl-nagoya/ruri-base model card](https://huggingface.co/cl-nagoya/ruri-base/blob/main/README.md).
215
 
216
- 9/11 correction: Some values were initially micro-averaged; I've now standardized all metrics to macro-averaging for consistency.
217
-
218
  ## Authors
 
219
  Chihiro Yano, Mocho Go, Hideyuki Tachibana, Hiroto Takegawa, Yotaro Watanabe
220
 
221
  ## License
222
- This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).
223
-
224
- <!--
225
- ## Citation
226
-
227
- ### BibTeX
228
- ## Glossary
229
-
230
- *Clearly define terms in order to be accessible across audiences.*
231
- -->
232
-
233
- <!--
234
- ## Model Card Authors
235
-
236
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
237
- -->
238
-
239
- <!--
240
- ## Model Card Contact
241
 
242
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
243
- -->
 
26
  base_model: pkshatech/GLuCoSE-base-ja
27
  license: apache-2.0
28
  ---
29
+ # GLuCoSE v2
30
 
31
+ This model is a general Japanese text embedding model, excelling in retrieval tasks. It can run on CPU and is designed to measure semantic similarity between sentences, as well as to function as a retrieval system for searching passages based on queries.
32
 
33
+ During inference, the prefix "query: " or "passage: " is required. Please check the Usage section for details.
34
 
35
+ ## Model Description
 
 
36
 
37
+ The model is based on [GLuCoSE](https://huggingface.co/pkshatech/GLuCoSE-base-ja) and fine-tuned through distillation using several large-scale embedding models and multi-stage contrastive learning.
 
 
 
 
 
 
 
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  - **Maximum Sequence Length:** 512 tokens
40
  - **Output Dimensionality:** 768 tokens
41
  - **Similarity Function:** Cosine Similarity
 
 
 
 
42
 
43
  ## Usage
44
 
45
  ### Direct Usage (Sentence Transformers)
46
 
47
+ You can perform inference using SentenceTransformer with the following code:
48
 
49
  ```python
50
  from sentence_transformers import SentenceTransformer
 
72
  # [0.6050, 1.0000, 0.5018, 0.6815],
73
  # [0.4341, 0.5018, 1.0000, 0.7534],
74
  # [0.5537, 0.6815, 0.7534, 1.0000]]
75
+
76
  ```
77
 
78
  ### Direct Usage (Transformers)
 
117
  # [0.6050, 1.0000, 0.5018, 0.6815],
118
  # [0.4341, 0.5018, 1.0000, 0.7534],
119
  # [0.5537, 0.6815, 0.7534, 1.0000]]
120
+
121
  ```
122
 
123
+ ## Training Details
124
+
125
+ The fine-tuning of GLuCoSE v2 is carried out through the following steps:
126
+
127
+ **Step 1: Ensemble distillation**
128
+
129
+ - The embedded representation was distilled using [E5-mistral](https://huggingface.co/intfloat/e5-mistral-7b-instruct), [gte-Qwen2](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct), and [mE5-large](https://huggingface.co/intfloat/multilingual-e5-large) as teacher models.
130
+
131
+ **Step 2: Contrastive learning**
132
+
133
+ - Triplets were created from [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88), [MNLI](https://huggingface.co/datasets/MoritzLaurer/multilingual-NLI-26lang-2mil7), [PAWS-X](https://huggingface.co/datasets/paws-x), [JSeM](https://github.com/DaisukeBekki/JSeM) and [Mr.TyDi](https://huggingface.co/datasets/castorini/mr-tydi) and used for training.
134
+ - This training aimed to improve the overall performance as a sentence embedding model.
135
+
136
+ **Step 3: Search-specific contrastive learning**
137
+
138
+ - In order to make the model more robust to the retrieval task, additional two-stage training with QA and retrieval task was conducted.
139
+ - In the first stage, the synthetic dataset [auto-wiki-qa](https://huggingface.co/datasets/cl-nagoya/auto-wiki-qa) was used for training,
140
+ while in the second stage, [JQaRA](https://huggingface.co/datasets/hotchpotch/JQaRA), [MQA](https://huggingface.co/datasets/hpprc/mqa-ja), [Japanese Wikipedia Human Retrieval, Mr.TyDi,MIRACL, Quiz Works and Quiz No Mor](https://huggingface.co/datasets/hpprc/emb)i were used.
141
 
142
  <!--
143
+
144
  ### Downstream Usage (Sentence Transformers)
145
 
146
  You can finetune this model on your own dataset.
 
151
  -->
152
 
153
  <!--
154
+
155
  ### Out-of-Scope Use
156
 
157
  *List how the model may foreseeably be misused and address what users ought not to do with the model.*
158
  -->
159
 
 
160
  <!--
161
+
162
  ## Bias, Risks and Limitations
163
 
164
  *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
165
  -->
166
 
167
  <!--
168
+
169
  ### Recommendations
170
 
171
  *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
 
173
 
174
  ## Benchmarks
175
 
176
+ ### Retrieval
177
+
178
  Evaluated with [MIRACL-ja](https://huggingface.co/datasets/miracl/miracl), [JQARA](https://huggingface.co/datasets/hotchpotch/JQaRA) , [JaCWIR](https://huggingface.co/datasets/hotchpotch/JaCWIR) and [MLDR-ja](https://huggingface.co/datasets/Shitao/MLDR).
179
 
180
  | Model | Size | MIRACL<br>Recall@5 | JQaRA<br>nDCG@10 | JaCWIR<br>MAP@10 | MLDR<br>nDCG@10 |
181
+ | :---: | :---: | :---: | :---: | :---: | :---: |
182
+ | OpenAI/text-embedding-3-small | - | processing... | 38.8 | 81.6 | processing... |
183
+ | OpenAI/text-embedding-3-large | - | processing... | processing... | processing... | processing... |
184
+ | | | | | | |
185
+ | [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 0.6B | 89.2 | 55.4 | **87.6** | 29.8 |
186
+ | [cl-nagoya/ruri-large](https://huggingface.co/cl-nagoya/ruri-large) | 0.3B | 78.7 | 62.4 | 85.0 | **37.5** |
187
+ | | | | | | |
188
+ | [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 0.3B | 84.2 | 47.2 | **85.3** | 25.4 |
189
+ | [cl-nagoya/ruri-base](https://huggingface.co/cl-nagoya/ruri-base) | 0.1B | 74.3 | 58.1 | 84.6 | **35.3** |
190
+ | [pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja) | 0.1B | 53.3 | 30.8 | 68.6 | 25.2 |
191
+ | **GLuCoSE v2** | 0.1B | **85.5** | **60.6** | **85.3** | 33.8 |
192
+
193
+ Note: Results for OpenAI small embeddings in JQARA and JaCWIR are quoted from the [JQARA](https://huggingface.co/datasets/hotchpotch/JQaRA) and [JaCWIR](https://huggingface.co/datasets/hotchpotch/JaCWIR).
 
194
 
195
  ### JMTEB
196
+
197
  Evaluated with [JMTEB](https://github.com/sbintuitions/JMTEB).
198
 
199
+ | Model | Size | Avg. | Retrieval | STS | Classification | Reranking | Clustering | PairClassification |
200
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
201
+ | OpenAI/text-embedding-3-small | - | 69.18 | 66.39 | 79.46 | 73.06 | 92.92 | 51.06 | 62.27 |
202
+ | OpenAI/text-embedding-3-large | - | 74.05 | 74.48 | 82.52 | 77.58 | 93.58 | 53.32 | 62.35 |
203
+ | | | | | | | | | |
204
+ | [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 0.6B | 70.90 | 70.98 | 79.70 | 72.89 | 92.96 | 51.24 | 62.15 |
205
+ | [cl-nagoya/ruri-large](https://huggingface.co/cl-nagoya/ruri-large) | 0.3B | 73.31 | 73.02 | 83.13 | 77.43 | 92.99 | 51.82 | 62.29 |
206
+ | | | | | | | | | |
207
+ | [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 0.3B | 68.61 | 68.21 | 79.84 | 69.30 | **92.85** | 48.26 | 62.26 |
208
+ | [cl-nagoya/ruri-base](https://huggingface.co/cl-nagoya/ruri-base) | 0.1B | 71.91 | 69.82 | 82.87 | 75.58 | 92.91 | **54.16** | 62.38 |
209
+ | [pkshatech/GLuCoSE-base-ja](https://huggingface.co/pkshatech/GLuCoSE-base-ja) | 0.1B | 67.29 | 59.02 | 78.71 | **76.82** | 91.90 | 49.78 | **66.39** |
210
+ | **GLuCoSE v2** | 0.1B | **72.23** | **73.36** | **82.96** | 74.21 | 93.01 | 48.65 | 62.37 |
211
 
212
  Note: Results for OpenAI embeddings and multilingual-e5 models are quoted from the [JMTEB leaderboard](https://github.com/sbintuitions/JMTEB/blob/main/leaderboard.md). Results for ruri are quoted from the [cl-nagoya/ruri-base model card](https://huggingface.co/cl-nagoya/ruri-base/blob/main/README.md).
213
 
 
 
214
  ## Authors
215
+
216
  Chihiro Yano, Mocho Go, Hideyuki Tachibana, Hiroto Takegawa, Yotaro Watanabe
217
 
218
  ## License
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219
 
220
+ This model is published under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0).