pk3388 commited on
Commit
01e2ba7
·
verified ·
1 Parent(s): 3de4298

Model save

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-tiny-patch4-window8-256
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: swinv2-tiny-patch4-window8-256
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.83
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # swinv2-tiny-patch4-window8-256
32
+
33
+ This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.7288
36
+ - Accuracy: 0.83
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.0002
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 32
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 8
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 1.6146 | 1.0 | 50 | 1.4437 | 0.49 |
71
+ | 1.2101 | 2.0 | 100 | 1.0506 | 0.665 |
72
+ | 0.8151 | 3.0 | 150 | 0.8444 | 0.745 |
73
+ | 0.4959 | 4.0 | 200 | 0.7774 | 0.805 |
74
+ | 0.4246 | 5.0 | 250 | 0.7304 | 0.825 |
75
+ | 0.3254 | 6.0 | 300 | 0.7692 | 0.805 |
76
+ | 0.2017 | 7.0 | 350 | 0.7213 | 0.815 |
77
+ | 0.2081 | 8.0 | 400 | 0.7288 | 0.83 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.40.1
83
+ - Pytorch 2.2.1+cu121
84
+ - Datasets 2.19.0
85
+ - Tokenizers 0.19.1