piyushkashyap123 commited on
Commit
2fb7db0
·
verified ·
1 Parent(s): cf738c3

End of training

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,891 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:150
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ widget:
11
+ - source_sentence: What services does Techchefz Digital offer for AI adoption?
12
+ sentences:
13
+ - 'We are a New breed of innovative digital transformation agency, redefining storytelling
14
+ for an always-on world.
15
+
16
+ With roots dating back to 2017, we started as a pocket size team of enthusiasts
17
+ with a goal of helping traditional businesses transform and create dynamic, digital
18
+ cultures through disruptive strategies and agile deployment of innovative solutions.'
19
+ - "At Techchefz Digital, we specialize in guiding companies through the complexities\
20
+ \ of adopting and integrating Artificial Intelligence and Machine Learning technologies.\
21
+ \ Our consultancy services are designed to enhance your operational efficiency\
22
+ \ and decision-making capabilities across all sectors. With a global network of\
23
+ \ AI/ML experts and a commitment to excellence, we are your partners in transforming\
24
+ \ innovative possibilities into real-world achievements. \
25
+ \ \
26
+ \ \n DATA INTELLIGENCE PLATFORMS we\
27
+ \ specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\""
28
+ - 'How can we get started with your DevOps solutions?
29
+
30
+ Getting started is easy. Contact us through our website. We''ll schedule a consultation
31
+ to discuss your needs, evaluate your current infrastructure, and propose a customized
32
+ DevOps solution designed to achieve your goals.'
33
+ - source_sentence: Do you provide support 24/7?
34
+ sentences:
35
+ - 'How do we do Custom Development ?
36
+
37
+ We follow below process to develop custom web or mobile Application on Agile Methodology,
38
+ breaking requirements in pieces and developing and shipping them with considering
39
+ utmost quality:
40
+
41
+ Requirements Analysis
42
+
43
+ We begin by understanding the client's needs and objectives for the website.
44
+ Identify key features, functionality, and any specific design preferences.
45
+
46
+
47
+ Project Planning
48
+
49
+ Then create a detailed project plan outlining the scope, timeline, and milestones.
50
+ Define the technology stack and development tools suitable for the project.
51
+
52
+
53
+ User Experience Design
54
+
55
+ Then comes the stage of Developing wireframes or prototypes to visualize the website's
56
+ structure and layout. We create a custom design that aligns with the brand identity
57
+ and user experience goals.
58
+
59
+
60
+ Development
61
+
62
+ After getting Sign-off on Design from Client, we break the requirements into Sprints
63
+ on Agile Methodology, and start developing them.'
64
+ - 'This is our Portfolio
65
+
66
+ Introducing the world of Housing Finance& Banking Firm.
67
+
68
+ Corporate Website with 10 regional languages in India with analytics and user
69
+ personalization and Dashboard for Regional Managers, Sales Agents, etc. to manage
70
+ the Builder Requests, approve/deny Properties, manage visits and appointments,
71
+ manage leads, etc.
72
+
73
+
74
+
75
+ Introducing the world of Global Automotive Brand.We have implemented a Multi Locale
76
+ Multilingual Omnichannel platform for Royal Enfield. The platform supports public
77
+ websites, customer portals, internal portals, business applications for over 35+
78
+ different locations all over the world.
79
+
80
+
81
+ Developed Digital Platform for Students, Guardians, Teachers, Tutors, with AI/ML
82
+ in collaboration with Successive Technologies Inc, USA. Cloud, Dev-Sec-Ops &
83
+ Data Governance
84
+
85
+ Managing cloud provisioning and modernization alongside automated infrastructure,
86
+ event-driven microservices, containerization, DevOps, cybersecurity, and 24x7
87
+ monitoring support ensures efficient, secure, and responsive IT operations.'
88
+ - "SERVICES WE PROVIDE\nFlexible engagement models tailored to your needs\nWe specialize\
89
+ \ in comprehensive website audits that provide valuable insights and recommendations\
90
+ \ to enhance your online presence.\nDigital Strategy & Consulting\nCreating digital\
91
+ \ roadmap that transform your digital enterprise and produce a return on investment,\
92
+ \ basis our discovery framework, brainstorming sessions & current state analysis.\n\
93
+ \nPlatform Selection\nHelping you select the optimal digital experience, commerce,\
94
+ \ cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying\
95
+ \ next-gen scalable and agile enterprise digital platforms, along with multi-platform\
96
+ \ integrations. \nProduct Builds\nHelp you ideate, strategize, and engineer\
97
+ \ your product with help of our enterprise frameworks\nInfrastructure\nSpecialize\
98
+ \ in multi-cloud infrastructure helping you put forward the right cloud infrastructure\
99
+ \ and optimization strategy.\n\nManaged Services\nOperate and monitor your business-critical\
100
+ \ applications, data, and IT workloads, along with Application maintenance and\
101
+ \ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\
102
+ \ team to solve your hiring challenges with our easy to deploy staff augmentation\
103
+ \ offerings.\""
104
+ - source_sentence: What challenges did the company face in its early days?
105
+ sentences:
106
+ - 'Our Solutions
107
+
108
+ Strategy & Digital Transformation
109
+
110
+ Innovate via digital transformation, modernize tech, craft product strategies,
111
+ enhance customer experiences, optimize data analytics, transition to cloud for
112
+ growth and efficiency
113
+
114
+
115
+ Product Engineering & Custom Development
116
+
117
+ Providing product development, enterprise web and mobile development, microservices
118
+ integrations, quality engineering, and application support services to drive innovation
119
+ and enhance operational efficiency.'
120
+ - 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal
121
+ decision to depart from the corporate ladder in December 2016. Fueled by a clear
122
+ vision to revolutionize the digital landscape, Mayank set out to leverage the
123
+ best technology ingredients, crafting custom applications and digital ecosystems
124
+ tailored to clients'' specific needs, limitations, and budgets.
125
+
126
+
127
+ However, this solo journey was not without its challenges. Mayank had to initiate
128
+ the revenue engine by offering corporate trainings and conducting online batches
129
+ for tech training across the USA. He also undertook small projects and subcontracted
130
+ modules of larger projects for clients in the US, UK, and India. It was only after
131
+ this initial groundwork that Mayank was able to hire a group of interns, whom
132
+ he meticulously trained and groomed to prepare them for handling Enterprise Level
133
+ Applications. This journey reflects Mayank''s resilience, determination, and entrepreneurial
134
+ spirit in building TechChefz Digital from the ground up.
135
+
136
+
137
+ With a passion for innovation and a relentless drive for excellence, Mayank has
138
+ steered TechChefz Digital through strategic partnerships, groundbreaking projects,
139
+ and exponential growth. His leadership has been instrumental in shaping TechChefz
140
+ Digital into a leading force in the digital transformation arena, inspiring a
141
+ culture of innovation and excellence that continues to propel the company forward.'
142
+ - 'What makes your DevOps solutions stand out from the competition?
143
+
144
+ Our DevOps solutions stand out due to our personalized approach, extensive expertise,
145
+ and commitment to innovation. We focus on delivering measurable results, such
146
+ as reduced deployment times, improved system reliability, and enhanced security,
147
+ ensuring you get the maximum benefit from our services.'
148
+ - source_sentence: What kind of data do you leverage for AI solutions?
149
+ sentences:
150
+ - 'In what ways can machine learning optimize our operations?
151
+
152
+ Machine learning algorithms can analyze operational data to identify inefficiencies,
153
+ predict maintenance needs, optimize supply chains, and automate repetitive tasks,
154
+ significantly improving operational efficiency and reducing costs.'
155
+ - 'Why do we need Microservices ?
156
+
157
+ Instead of building a monolithic application where all functionalities are tightly
158
+ integrated, microservices break down the system into modular and loosely coupled
159
+ services.
160
+
161
+
162
+ Scalability
163
+
164
+ Flexibility and Agility
165
+
166
+ Resilience and Fault Isolation
167
+
168
+ Technology Diversity
169
+
170
+ Continuous Delivery'
171
+ - Our AI/ML services pave the way for transformative change across industries, embodying
172
+ a client-focused approach that integrates seamlessly with human-centric innovation.
173
+ Our collaborative teams are dedicated to fostering growth, leveraging data, and
174
+ harnessing the predictive power of artificial intelligence to forge the next wave
175
+ of software excellence. We don't just deliver AI; we deliver the future.
176
+ - source_sentence: What do you guys do for digital strategy?
177
+ sentences:
178
+ - " What we do\n\nDigital Strategy\nCreating digital frameworks that transform\
179
+ \ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\
180
+ Helping you select the optimal digital experience, commerce, cloud and marketing\
181
+ \ platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable\
182
+ \ and agile enterprise digital platforms, along with multi-platform integrations.\n\
183
+ \nProduct Builds\nHelp you ideate, strategize, and engineer your product with\
184
+ \ help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and\
185
+ \ augment your existing team to solve your hiring challenges with our easy to\
186
+ \ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\
187
+ \ your business-critical applications, data, and IT workloads, along with Application\
188
+ \ maintenance and operations\n"
189
+ - 'Introducing the world of General Insurance Firm
190
+
191
+ In this project, we implemented Digital Solution and Implementation with Headless
192
+ Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the
193
+ following features:
194
+
195
+ PWA & AMP based Web Pages
196
+
197
+ Page Speed Optimization
198
+
199
+ Reusable and scalable React JS / Next JS Templates and Components
200
+
201
+ Headless Drupal CMS with Content & Experience management, approval workflows,
202
+ etc for seamless collaboration between the business and marketing teams
203
+
204
+ Minimalistic Buy and Renewal Journeys for various products, with API integrations
205
+ and adherence to data compliances
206
+
207
+
208
+ We achieved 250% Reduction in Operational Time and Effort in managing the Content
209
+ & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during
210
+ buy and renewal journeys, 300% Reduction in bounce rate on policy landing and
211
+ campaign pages'
212
+ - 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions
213
+ for Complex Problems and delieverd a comprehensive Website Development, Production
214
+ Support & Managed Services, we optimized customer journeys, integrate analytics,
215
+ CRM, ERP, and third-party applications, and implement cutting-edge technologies
216
+ for enhanced performance and efficiency
217
+
218
+ and achievied 200% Reduction in operational time & effort managing content & experience,
219
+ 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion
220
+ & Retention'
221
+ pipeline_tag: sentence-similarity
222
+ library_name: sentence-transformers
223
+ metrics:
224
+ - cosine_accuracy@1
225
+ - cosine_accuracy@3
226
+ - cosine_accuracy@5
227
+ - cosine_accuracy@10
228
+ - cosine_precision@1
229
+ - cosine_precision@3
230
+ - cosine_precision@5
231
+ - cosine_precision@10
232
+ - cosine_recall@1
233
+ - cosine_recall@3
234
+ - cosine_recall@5
235
+ - cosine_recall@10
236
+ - cosine_ndcg@10
237
+ - cosine_mrr@10
238
+ - cosine_map@100
239
+ model-index:
240
+ - name: SentenceTransformer
241
+ results:
242
+ - task:
243
+ type: information-retrieval
244
+ name: Information Retrieval
245
+ dataset:
246
+ name: dim 768
247
+ type: dim_768
248
+ metrics:
249
+ - type: cosine_accuracy@1
250
+ value: 0.17333333333333334
251
+ name: Cosine Accuracy@1
252
+ - type: cosine_accuracy@3
253
+ value: 0.44
254
+ name: Cosine Accuracy@3
255
+ - type: cosine_accuracy@5
256
+ value: 0.49333333333333335
257
+ name: Cosine Accuracy@5
258
+ - type: cosine_accuracy@10
259
+ value: 0.6666666666666666
260
+ name: Cosine Accuracy@10
261
+ - type: cosine_precision@1
262
+ value: 0.17333333333333334
263
+ name: Cosine Precision@1
264
+ - type: cosine_precision@3
265
+ value: 0.14666666666666667
266
+ name: Cosine Precision@3
267
+ - type: cosine_precision@5
268
+ value: 0.09866666666666667
269
+ name: Cosine Precision@5
270
+ - type: cosine_precision@10
271
+ value: 0.06666666666666665
272
+ name: Cosine Precision@10
273
+ - type: cosine_recall@1
274
+ value: 0.17333333333333334
275
+ name: Cosine Recall@1
276
+ - type: cosine_recall@3
277
+ value: 0.44
278
+ name: Cosine Recall@3
279
+ - type: cosine_recall@5
280
+ value: 0.49333333333333335
281
+ name: Cosine Recall@5
282
+ - type: cosine_recall@10
283
+ value: 0.6666666666666666
284
+ name: Cosine Recall@10
285
+ - type: cosine_ndcg@10
286
+ value: 0.4029604397032228
287
+ name: Cosine Ndcg@10
288
+ - type: cosine_mrr@10
289
+ value: 0.3202486772486772
290
+ name: Cosine Mrr@10
291
+ - type: cosine_map@100
292
+ value: 0.3328735319518024
293
+ name: Cosine Map@100
294
+ - task:
295
+ type: information-retrieval
296
+ name: Information Retrieval
297
+ dataset:
298
+ name: dim 512
299
+ type: dim_512
300
+ metrics:
301
+ - type: cosine_accuracy@1
302
+ value: 0.09333333333333334
303
+ name: Cosine Accuracy@1
304
+ - type: cosine_accuracy@3
305
+ value: 0.41333333333333333
306
+ name: Cosine Accuracy@3
307
+ - type: cosine_accuracy@5
308
+ value: 0.44
309
+ name: Cosine Accuracy@5
310
+ - type: cosine_accuracy@10
311
+ value: 0.6133333333333333
312
+ name: Cosine Accuracy@10
313
+ - type: cosine_precision@1
314
+ value: 0.09333333333333334
315
+ name: Cosine Precision@1
316
+ - type: cosine_precision@3
317
+ value: 0.13777777777777775
318
+ name: Cosine Precision@3
319
+ - type: cosine_precision@5
320
+ value: 0.08800000000000001
321
+ name: Cosine Precision@5
322
+ - type: cosine_precision@10
323
+ value: 0.06133333333333333
324
+ name: Cosine Precision@10
325
+ - type: cosine_recall@1
326
+ value: 0.09333333333333334
327
+ name: Cosine Recall@1
328
+ - type: cosine_recall@3
329
+ value: 0.41333333333333333
330
+ name: Cosine Recall@3
331
+ - type: cosine_recall@5
332
+ value: 0.44
333
+ name: Cosine Recall@5
334
+ - type: cosine_recall@10
335
+ value: 0.6133333333333333
336
+ name: Cosine Recall@10
337
+ - type: cosine_ndcg@10
338
+ value: 0.34290902620520913
339
+ name: Cosine Ndcg@10
340
+ - type: cosine_mrr@10
341
+ value: 0.25745502645502644
342
+ name: Cosine Mrr@10
343
+ - type: cosine_map@100
344
+ value: 0.2730901521723073
345
+ name: Cosine Map@100
346
+ - task:
347
+ type: information-retrieval
348
+ name: Information Retrieval
349
+ dataset:
350
+ name: dim 256
351
+ type: dim_256
352
+ metrics:
353
+ - type: cosine_accuracy@1
354
+ value: 0.10666666666666667
355
+ name: Cosine Accuracy@1
356
+ - type: cosine_accuracy@3
357
+ value: 0.4266666666666667
358
+ name: Cosine Accuracy@3
359
+ - type: cosine_accuracy@5
360
+ value: 0.52
361
+ name: Cosine Accuracy@5
362
+ - type: cosine_accuracy@10
363
+ value: 0.6266666666666667
364
+ name: Cosine Accuracy@10
365
+ - type: cosine_precision@1
366
+ value: 0.10666666666666667
367
+ name: Cosine Precision@1
368
+ - type: cosine_precision@3
369
+ value: 0.14222222222222222
370
+ name: Cosine Precision@3
371
+ - type: cosine_precision@5
372
+ value: 0.104
373
+ name: Cosine Precision@5
374
+ - type: cosine_precision@10
375
+ value: 0.06266666666666666
376
+ name: Cosine Precision@10
377
+ - type: cosine_recall@1
378
+ value: 0.10666666666666667
379
+ name: Cosine Recall@1
380
+ - type: cosine_recall@3
381
+ value: 0.4266666666666667
382
+ name: Cosine Recall@3
383
+ - type: cosine_recall@5
384
+ value: 0.52
385
+ name: Cosine Recall@5
386
+ - type: cosine_recall@10
387
+ value: 0.6266666666666667
388
+ name: Cosine Recall@10
389
+ - type: cosine_ndcg@10
390
+ value: 0.3553253114246597
391
+ name: Cosine Ndcg@10
392
+ - type: cosine_mrr@10
393
+ value: 0.2693121693121692
394
+ name: Cosine Mrr@10
395
+ - type: cosine_map@100
396
+ value: 0.28168304085528845
397
+ name: Cosine Map@100
398
+ - task:
399
+ type: information-retrieval
400
+ name: Information Retrieval
401
+ dataset:
402
+ name: dim 128
403
+ type: dim_128
404
+ metrics:
405
+ - type: cosine_accuracy@1
406
+ value: 0.12
407
+ name: Cosine Accuracy@1
408
+ - type: cosine_accuracy@3
409
+ value: 0.38666666666666666
410
+ name: Cosine Accuracy@3
411
+ - type: cosine_accuracy@5
412
+ value: 0.4266666666666667
413
+ name: Cosine Accuracy@5
414
+ - type: cosine_accuracy@10
415
+ value: 0.5333333333333333
416
+ name: Cosine Accuracy@10
417
+ - type: cosine_precision@1
418
+ value: 0.12
419
+ name: Cosine Precision@1
420
+ - type: cosine_precision@3
421
+ value: 0.1288888888888889
422
+ name: Cosine Precision@3
423
+ - type: cosine_precision@5
424
+ value: 0.08533333333333334
425
+ name: Cosine Precision@5
426
+ - type: cosine_precision@10
427
+ value: 0.05333333333333334
428
+ name: Cosine Precision@10
429
+ - type: cosine_recall@1
430
+ value: 0.12
431
+ name: Cosine Recall@1
432
+ - type: cosine_recall@3
433
+ value: 0.38666666666666666
434
+ name: Cosine Recall@3
435
+ - type: cosine_recall@5
436
+ value: 0.4266666666666667
437
+ name: Cosine Recall@5
438
+ - type: cosine_recall@10
439
+ value: 0.5333333333333333
440
+ name: Cosine Recall@10
441
+ - type: cosine_ndcg@10
442
+ value: 0.3188459572833639
443
+ name: Cosine Ndcg@10
444
+ - type: cosine_mrr@10
445
+ value: 0.2501798941798941
446
+ name: Cosine Mrr@10
447
+ - type: cosine_map@100
448
+ value: 0.2696550837856536
449
+ name: Cosine Map@100
450
+ - task:
451
+ type: information-retrieval
452
+ name: Information Retrieval
453
+ dataset:
454
+ name: dim 64
455
+ type: dim_64
456
+ metrics:
457
+ - type: cosine_accuracy@1
458
+ value: 0.10666666666666667
459
+ name: Cosine Accuracy@1
460
+ - type: cosine_accuracy@3
461
+ value: 0.3466666666666667
462
+ name: Cosine Accuracy@3
463
+ - type: cosine_accuracy@5
464
+ value: 0.4
465
+ name: Cosine Accuracy@5
466
+ - type: cosine_accuracy@10
467
+ value: 0.56
468
+ name: Cosine Accuracy@10
469
+ - type: cosine_precision@1
470
+ value: 0.10666666666666667
471
+ name: Cosine Precision@1
472
+ - type: cosine_precision@3
473
+ value: 0.11555555555555555
474
+ name: Cosine Precision@3
475
+ - type: cosine_precision@5
476
+ value: 0.08
477
+ name: Cosine Precision@5
478
+ - type: cosine_precision@10
479
+ value: 0.05599999999999999
480
+ name: Cosine Precision@10
481
+ - type: cosine_recall@1
482
+ value: 0.10666666666666667
483
+ name: Cosine Recall@1
484
+ - type: cosine_recall@3
485
+ value: 0.3466666666666667
486
+ name: Cosine Recall@3
487
+ - type: cosine_recall@5
488
+ value: 0.4
489
+ name: Cosine Recall@5
490
+ - type: cosine_recall@10
491
+ value: 0.56
492
+ name: Cosine Recall@10
493
+ - type: cosine_ndcg@10
494
+ value: 0.3116794605912927
495
+ name: Cosine Ndcg@10
496
+ - type: cosine_mrr@10
497
+ value: 0.23436507936507936
498
+ name: Cosine Mrr@10
499
+ - type: cosine_map@100
500
+ value: 0.24870377550028352
501
+ name: Cosine Map@100
502
+ ---
503
+
504
+ # SentenceTransformer
505
+
506
+ This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
507
+
508
+ ## Model Details
509
+
510
+ ### Model Description
511
+ - **Model Type:** Sentence Transformer
512
+ <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
513
+ - **Maximum Sequence Length:** 512 tokens
514
+ - **Output Dimensionality:** 768 dimensions
515
+ - **Similarity Function:** Cosine Similarity
516
+ <!-- - **Training Dataset:** Unknown -->
517
+ <!-- - **Language:** Unknown -->
518
+ <!-- - **License:** Unknown -->
519
+
520
+ ### Model Sources
521
+
522
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
523
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
524
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
525
+
526
+ ### Full Model Architecture
527
+
528
+ ```
529
+ SentenceTransformer(
530
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
531
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
532
+ )
533
+ ```
534
+
535
+ ## Usage
536
+
537
+ ### Direct Usage (Sentence Transformers)
538
+
539
+ First install the Sentence Transformers library:
540
+
541
+ ```bash
542
+ pip install -U sentence-transformers
543
+ ```
544
+
545
+ Then you can load this model and run inference.
546
+ ```python
547
+ from sentence_transformers import SentenceTransformer
548
+
549
+ # Download from the 🤗 Hub
550
+ model = SentenceTransformer("Shashwat13333/msmarco-distilbert-base-v4")
551
+ # Run inference
552
+ sentences = [
553
+ 'What do you guys do for digital strategy?',
554
+ ' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n',
555
+ 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency\nand achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention',
556
+ ]
557
+ embeddings = model.encode(sentences)
558
+ print(embeddings.shape)
559
+ # [3, 768]
560
+
561
+ # Get the similarity scores for the embeddings
562
+ similarities = model.similarity(embeddings, embeddings)
563
+ print(similarities.shape)
564
+ # [3, 3]
565
+ ```
566
+
567
+ <!--
568
+ ### Direct Usage (Transformers)
569
+
570
+ <details><summary>Click to see the direct usage in Transformers</summary>
571
+
572
+ </details>
573
+ -->
574
+
575
+ <!--
576
+ ### Downstream Usage (Sentence Transformers)
577
+
578
+ You can finetune this model on your own dataset.
579
+
580
+ <details><summary>Click to expand</summary>
581
+
582
+ </details>
583
+ -->
584
+
585
+ <!--
586
+ ### Out-of-Scope Use
587
+
588
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
589
+ -->
590
+
591
+ ## Evaluation
592
+
593
+ ### Metrics
594
+
595
+ #### Information Retrieval
596
+
597
+ * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
598
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
599
+
600
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
601
+ |:--------------------|:----------|:-----------|:-----------|:-----------|:-----------|
602
+ | cosine_accuracy@1 | 0.1733 | 0.0933 | 0.1067 | 0.12 | 0.1067 |
603
+ | cosine_accuracy@3 | 0.44 | 0.4133 | 0.4267 | 0.3867 | 0.3467 |
604
+ | cosine_accuracy@5 | 0.4933 | 0.44 | 0.52 | 0.4267 | 0.4 |
605
+ | cosine_accuracy@10 | 0.6667 | 0.6133 | 0.6267 | 0.5333 | 0.56 |
606
+ | cosine_precision@1 | 0.1733 | 0.0933 | 0.1067 | 0.12 | 0.1067 |
607
+ | cosine_precision@3 | 0.1467 | 0.1378 | 0.1422 | 0.1289 | 0.1156 |
608
+ | cosine_precision@5 | 0.0987 | 0.088 | 0.104 | 0.0853 | 0.08 |
609
+ | cosine_precision@10 | 0.0667 | 0.0613 | 0.0627 | 0.0533 | 0.056 |
610
+ | cosine_recall@1 | 0.1733 | 0.0933 | 0.1067 | 0.12 | 0.1067 |
611
+ | cosine_recall@3 | 0.44 | 0.4133 | 0.4267 | 0.3867 | 0.3467 |
612
+ | cosine_recall@5 | 0.4933 | 0.44 | 0.52 | 0.4267 | 0.4 |
613
+ | cosine_recall@10 | 0.6667 | 0.6133 | 0.6267 | 0.5333 | 0.56 |
614
+ | **cosine_ndcg@10** | **0.403** | **0.3429** | **0.3553** | **0.3188** | **0.3117** |
615
+ | cosine_mrr@10 | 0.3202 | 0.2575 | 0.2693 | 0.2502 | 0.2344 |
616
+ | cosine_map@100 | 0.3329 | 0.2731 | 0.2817 | 0.2697 | 0.2487 |
617
+
618
+ <!--
619
+ ## Bias, Risks and Limitations
620
+
621
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
622
+ -->
623
+
624
+ <!--
625
+ ### Recommendations
626
+
627
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
628
+ -->
629
+
630
+ ## Training Details
631
+
632
+ ### Training Dataset
633
+
634
+ #### Unnamed Dataset
635
+
636
+
637
+ * Size: 150 training samples
638
+ * Columns: <code>anchor</code> and <code>positive</code>
639
+ * Approximate statistics based on the first 150 samples:
640
+ | | anchor | positive |
641
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
642
+ | type | string | string |
643
+ | details | <ul><li>min: 7 tokens</li><li>mean: 12.31 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 126.17 tokens</li><li>max: 378 tokens</li></ul> |
644
+ * Samples:
645
+ | anchor | positive |
646
+ |:----------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
647
+ | <code>How can digital transformation enhance customer interactions across multiple channels?</code> | <code>We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.<br><br>"Engage, analyze & target your customers<br>Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations<br>The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products<br>The push for digi...</code> |
648
+ | <code>How does a CRM system improve customer retention?</code> | <code>Our MarTech capabilities<br><br>Personalization<br>Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.<br><br>Marketing Automation<br>Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.<br><br>Customer Relationship Management<br>CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.</code> |
649
+ | <code>How can your recommendation engines improve our business?</code> | <code>How can your recommendation engines improve our business?<br>Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.</code> |
650
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
651
+ ```json
652
+ {
653
+ "loss": "MultipleNegativesRankingLoss",
654
+ "matryoshka_dims": [
655
+ 768,
656
+ 512,
657
+ 256,
658
+ 128,
659
+ 64
660
+ ],
661
+ "matryoshka_weights": [
662
+ 1,
663
+ 1,
664
+ 1,
665
+ 1,
666
+ 1
667
+ ],
668
+ "n_dims_per_step": -1
669
+ }
670
+ ```
671
+
672
+ ### Training Hyperparameters
673
+ #### Non-Default Hyperparameters
674
+
675
+ - `eval_strategy`: epoch
676
+ - `gradient_accumulation_steps`: 4
677
+ - `learning_rate`: 1e-05
678
+ - `weight_decay`: 0.01
679
+ - `num_train_epochs`: 4
680
+ - `lr_scheduler_type`: cosine
681
+ - `warmup_ratio`: 0.1
682
+ - `fp16`: True
683
+ - `load_best_model_at_end`: True
684
+ - `optim`: adamw_torch_fused
685
+ - `push_to_hub`: True
686
+ - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4
687
+ - `push_to_hub_model_id`: msmarco-distilbert-base-v4
688
+ - `batch_sampler`: no_duplicates
689
+
690
+ #### All Hyperparameters
691
+ <details><summary>Click to expand</summary>
692
+
693
+ - `overwrite_output_dir`: False
694
+ - `do_predict`: False
695
+ - `eval_strategy`: epoch
696
+ - `prediction_loss_only`: True
697
+ - `per_device_train_batch_size`: 8
698
+ - `per_device_eval_batch_size`: 8
699
+ - `per_gpu_train_batch_size`: None
700
+ - `per_gpu_eval_batch_size`: None
701
+ - `gradient_accumulation_steps`: 4
702
+ - `eval_accumulation_steps`: None
703
+ - `torch_empty_cache_steps`: None
704
+ - `learning_rate`: 1e-05
705
+ - `weight_decay`: 0.01
706
+ - `adam_beta1`: 0.9
707
+ - `adam_beta2`: 0.999
708
+ - `adam_epsilon`: 1e-08
709
+ - `max_grad_norm`: 1.0
710
+ - `num_train_epochs`: 4
711
+ - `max_steps`: -1
712
+ - `lr_scheduler_type`: cosine
713
+ - `lr_scheduler_kwargs`: {}
714
+ - `warmup_ratio`: 0.1
715
+ - `warmup_steps`: 0
716
+ - `log_level`: passive
717
+ - `log_level_replica`: warning
718
+ - `log_on_each_node`: True
719
+ - `logging_nan_inf_filter`: True
720
+ - `save_safetensors`: True
721
+ - `save_on_each_node`: False
722
+ - `save_only_model`: False
723
+ - `restore_callback_states_from_checkpoint`: False
724
+ - `no_cuda`: False
725
+ - `use_cpu`: False
726
+ - `use_mps_device`: False
727
+ - `seed`: 42
728
+ - `data_seed`: None
729
+ - `jit_mode_eval`: False
730
+ - `use_ipex`: False
731
+ - `bf16`: False
732
+ - `fp16`: True
733
+ - `fp16_opt_level`: O1
734
+ - `half_precision_backend`: auto
735
+ - `bf16_full_eval`: False
736
+ - `fp16_full_eval`: False
737
+ - `tf32`: None
738
+ - `local_rank`: 0
739
+ - `ddp_backend`: None
740
+ - `tpu_num_cores`: None
741
+ - `tpu_metrics_debug`: False
742
+ - `debug`: []
743
+ - `dataloader_drop_last`: False
744
+ - `dataloader_num_workers`: 0
745
+ - `dataloader_prefetch_factor`: None
746
+ - `past_index`: -1
747
+ - `disable_tqdm`: False
748
+ - `remove_unused_columns`: True
749
+ - `label_names`: None
750
+ - `load_best_model_at_end`: True
751
+ - `ignore_data_skip`: False
752
+ - `fsdp`: []
753
+ - `fsdp_min_num_params`: 0
754
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
755
+ - `fsdp_transformer_layer_cls_to_wrap`: None
756
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
757
+ - `deepspeed`: None
758
+ - `label_smoothing_factor`: 0.0
759
+ - `optim`: adamw_torch_fused
760
+ - `optim_args`: None
761
+ - `adafactor`: False
762
+ - `group_by_length`: False
763
+ - `length_column_name`: length
764
+ - `ddp_find_unused_parameters`: None
765
+ - `ddp_bucket_cap_mb`: None
766
+ - `ddp_broadcast_buffers`: False
767
+ - `dataloader_pin_memory`: True
768
+ - `dataloader_persistent_workers`: False
769
+ - `skip_memory_metrics`: True
770
+ - `use_legacy_prediction_loop`: False
771
+ - `push_to_hub`: True
772
+ - `resume_from_checkpoint`: None
773
+ - `hub_model_id`: Shashwat13333/msmarco-distilbert-base-v4
774
+ - `hub_strategy`: every_save
775
+ - `hub_private_repo`: None
776
+ - `hub_always_push`: False
777
+ - `gradient_checkpointing`: False
778
+ - `gradient_checkpointing_kwargs`: None
779
+ - `include_inputs_for_metrics`: False
780
+ - `include_for_metrics`: []
781
+ - `eval_do_concat_batches`: True
782
+ - `fp16_backend`: auto
783
+ - `push_to_hub_model_id`: msmarco-distilbert-base-v4
784
+ - `push_to_hub_organization`: None
785
+ - `mp_parameters`:
786
+ - `auto_find_batch_size`: False
787
+ - `full_determinism`: False
788
+ - `torchdynamo`: None
789
+ - `ray_scope`: last
790
+ - `ddp_timeout`: 1800
791
+ - `torch_compile`: False
792
+ - `torch_compile_backend`: None
793
+ - `torch_compile_mode`: None
794
+ - `dispatch_batches`: None
795
+ - `split_batches`: None
796
+ - `include_tokens_per_second`: False
797
+ - `include_num_input_tokens_seen`: False
798
+ - `neftune_noise_alpha`: None
799
+ - `optim_target_modules`: None
800
+ - `batch_eval_metrics`: False
801
+ - `eval_on_start`: False
802
+ - `use_liger_kernel`: False
803
+ - `eval_use_gather_object`: False
804
+ - `average_tokens_across_devices`: False
805
+ - `prompts`: None
806
+ - `batch_sampler`: no_duplicates
807
+ - `multi_dataset_batch_sampler`: proportional
808
+
809
+ </details>
810
+
811
+ ### Training Logs
812
+ | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
813
+ |:----------:|:-----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
814
+ | 0.2105 | 1 | 1.4398 | - | - | - | - | - |
815
+ | **0.8421** | **4** | **-** | **0.403** | **0.3429** | **0.3553** | **0.3188** | **0.3117** |
816
+ | 1.2105 | 5 | 2.8689 | - | - | - | - | - |
817
+ | 1.8421 | 8 | - | 0.4030 | 0.3429 | 0.3553 | 0.3188 | 0.3117 |
818
+ | 2.4211 | 10 | 1.2524 | - | - | - | - | - |
819
+ | 2.8421 | 12 | - | 0.4030 | 0.3429 | 0.3553 | 0.3188 | 0.3117 |
820
+ | 3.6316 | 15 | 0.8269 | - | - | - | - | - |
821
+ | 3.8421 | 16 | - | 0.4030 | 0.3429 | 0.3553 | 0.3188 | 0.3117 |
822
+
823
+ * The bold row denotes the saved checkpoint.
824
+
825
+ ### Framework Versions
826
+ - Python: 3.11.11
827
+ - Sentence Transformers: 3.3.1
828
+ - Transformers: 4.47.1
829
+ - PyTorch: 2.5.1+cu124
830
+ - Accelerate: 1.2.1
831
+ - Datasets: 3.2.0
832
+ - Tokenizers: 0.21.0
833
+
834
+ ## Citation
835
+
836
+ ### BibTeX
837
+
838
+ #### Sentence Transformers
839
+ ```bibtex
840
+ @inproceedings{reimers-2019-sentence-bert,
841
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
842
+ author = "Reimers, Nils and Gurevych, Iryna",
843
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
844
+ month = "11",
845
+ year = "2019",
846
+ publisher = "Association for Computational Linguistics",
847
+ url = "https://arxiv.org/abs/1908.10084",
848
+ }
849
+ ```
850
+
851
+ #### MatryoshkaLoss
852
+ ```bibtex
853
+ @misc{kusupati2024matryoshka,
854
+ title={Matryoshka Representation Learning},
855
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
856
+ year={2024},
857
+ eprint={2205.13147},
858
+ archivePrefix={arXiv},
859
+ primaryClass={cs.LG}
860
+ }
861
+ ```
862
+
863
+ #### MultipleNegativesRankingLoss
864
+ ```bibtex
865
+ @misc{henderson2017efficient,
866
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
867
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
868
+ year={2017},
869
+ eprint={1705.00652},
870
+ archivePrefix={arXiv},
871
+ primaryClass={cs.CL}
872
+ }
873
+ ```
874
+
875
+ <!--
876
+ ## Glossary
877
+
878
+ *Clearly define terms in order to be accessible across audiences.*
879
+ -->
880
+
881
+ <!--
882
+ ## Model Card Authors
883
+
884
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
885
+ -->
886
+
887
+ <!--
888
+ ## Model Card Contact
889
+
890
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
891
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bge-base-financial-matryoshka-finetuning-tcz-1",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3083803ab54614d7c0627b19aa2d7070cd4c49116dc8efd6fae3016526a10015
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 300,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "DistilBertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54a8bffbef8c0e07ba593b01b8d98e3a9c95e8cc2fd4dae6dfddf6515e554939
3
+ size 5752
vocab.txt ADDED
The diff for this file is too large to render. See raw diff