import torch from .colbert_configuration import ColBERTConfig from transformers import AutoTokenizer DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") def _split_into_batches(ids, mask, bsize): batches = [] for offset in range(0, ids.size(0), bsize): batches.append((ids[offset:offset+bsize], mask[offset:offset+bsize])) return batches def _sort_by_length(ids, mask, bsize): if ids.size(0) <= bsize: return ids, mask, torch.arange(ids.size(0)) indices = mask.sum(-1).sort().indices reverse_indices = indices.sort().indices return ids[indices], mask[indices], reverse_indices class QueryTokenizer(): def __init__(self, config: ColBERTConfig, verbose: int = 3): self.tok = AutoTokenizer.from_pretrained(config.checkpoint) self.tok.base = config.checkpoint self.verbose = verbose self.config = config self.query_maxlen = config.query_maxlen self.background_maxlen = 512 - self.query_maxlen + 1 # FIXME: Make this configurable self.Q_marker_token, self.Q_marker_token_id = config.query_token, self.tok.convert_tokens_to_ids(config.query_token_id) self.cls_token, self.cls_token_id = self.tok.cls_token, self.tok.cls_token_id self.sep_token, self.sep_token_id = self.tok.sep_token, self.tok.sep_token_id self.mask_token, self.mask_token_id = self.tok.mask_token, self.tok.mask_token_id self.pad_token,self.pad_token_id = self.tok.pad_token,self.tok.pad_token_id self.used = False def tokenize(self, batch_text, add_special_tokens=False): assert type(batch_text) in [list, tuple], (type(batch_text)) tokens = [self.tok.tokenize(x, add_special_tokens=False) for x in batch_text] if not add_special_tokens: return tokens prefix, suffix = [self.cls_token, self.Q_marker_token], [self.sep_token] tokens = [prefix + lst + suffix + [self.mask_token] * (self.query_maxlen - (len(lst)+3)) for lst in tokens] return tokens def encode(self, batch_text, add_special_tokens=False): assert type(batch_text) in [list, tuple], (type(batch_text)) ids = self.tok(batch_text, add_special_tokens=False).to(DEVICE)['input_ids'] if not add_special_tokens: return ids prefix, suffix = [self.cls_token_id, self.Q_marker_token_id], [self.sep_token_id] ids = [prefix + lst + suffix + [self.mask_token_id] * (self.query_maxlen - (len(lst)+3)) for lst in ids] return ids def tensorize(self, batch_text, bsize=None, context=None, full_length_search=False): assert type(batch_text) in [list, tuple], (type(batch_text)) # add placehold for the [Q] marker batch_text = ['. ' + x for x in batch_text] # Full length search is only available for single inference (for now) # Batched full length search requires far deeper changes to the code base assert(full_length_search == False or (type(batch_text) == list and len(batch_text) == 1)) if full_length_search: # Tokenize each string in the batch un_truncated_ids = self.tok(batch_text, add_special_tokens=False).to(DEVICE)['input_ids'] # Get the longest length in the batch max_length_in_batch = max(len(x) for x in un_truncated_ids) # Set the max length max_length = self.max_len(max_length_in_batch) else: # Max length is the default max length from the config max_length = self.query_maxlen obj = self.tok(batch_text, padding='max_length', truncation=True, return_tensors='pt', max_length=max_length).to(DEVICE) ids, mask = obj['input_ids'], obj['attention_mask'] # postprocess for the [Q] marker and the [MASK] augmentation ids[:, 1] = self.Q_marker_token_id ids[ids == self.pad_token_id] = self.mask_token_id if context is not None: assert len(context) == len(batch_text), (len(context), len(batch_text)) obj_2 = self.tok(context, padding='longest', truncation=True, return_tensors='pt', max_length=self.background_maxlen).to(DEVICE) ids_2, mask_2 = obj_2['input_ids'][:, 1:], obj_2['attention_mask'][:, 1:] # Skip the first [SEP] ids = torch.cat((ids, ids_2), dim=-1) mask = torch.cat((mask, mask_2), dim=-1) if self.config.attend_to_mask_tokens: mask[ids == self.mask_token_id] = 1 assert mask.sum().item() == mask.size(0) * mask.size(1), mask if bsize: batches = _split_into_batches(ids, mask, bsize) return batches if self.used is False: self.used = True firstbg = (context is None) or context[0] if self.verbose > 1: print() print("#> QueryTokenizer.tensorize(batch_text[0], batch_background[0], bsize) ==") print(f"#> Input: {batch_text[0]}, \t\t {firstbg}, \t\t {bsize}") print(f"#> Output IDs: {ids[0].size()}, {ids[0]}") print(f"#> Output Mask: {mask[0].size()}, {mask[0]}") print() return ids, mask # Ensure that query_maxlen <= length <= 500 tokens def max_len(self, length): return min(500, max(self.query_maxlen, length)) class DocTokenizer(): def __init__(self, config: ColBERTConfig): self.tok = AutoTokenizer.from_pretrained(config.checkpoint) self.tok.base = config.checkpoint self.config = config self.doc_maxlen = config.doc_maxlen self.D_marker_token, self.D_marker_token_id = self.config.doc_token, self.tok.convert_tokens_to_ids(self.config.doc_token_id) self.cls_token, self.cls_token_id = self.tok.cls_token, self.tok.cls_token_id self.sep_token, self.sep_token_id = self.tok.sep_token, self.tok.sep_token_id def tokenize(self, batch_text, add_special_tokens=False): assert type(batch_text) in [list, tuple], (type(batch_text)) tokens = [self.tok.tokenize(x, add_special_tokens=False).to(DEVICE) for x in batch_text] if not add_special_tokens: return tokens prefix, suffix = [self.cls_token, self.D_marker_token], [self.sep_token] tokens = [prefix + lst + suffix for lst in tokens] return tokens def encode(self, batch_text, add_special_tokens=False): assert type(batch_text) in [list, tuple], (type(batch_text)) ids = self.tok(batch_text, add_special_tokens=False).to(DEVICE)['input_ids'] if not add_special_tokens: return ids prefix, suffix = [self.cls_token_id, self.D_marker_token_id], [self.sep_token_id] ids = [prefix + lst + suffix for lst in ids] return ids def tensorize(self, batch_text, bsize=None): assert type(batch_text) in [list, tuple], (type(batch_text)) # add placehold for the [D] marker batch_text = ['. ' + x for x in batch_text] obj = self.tok(batch_text, padding='max_length', truncation='longest_first', return_tensors='pt', max_length=self.doc_maxlen).to(DEVICE) ids, mask = obj['input_ids'], obj['attention_mask'] # postprocess for the [D] marker ids[:, 1] = self.D_marker_token_id if bsize: ids, mask, reverse_indices = _sort_by_length(ids, mask, bsize) batches = _split_into_batches(ids, mask, bsize) return batches, reverse_indices return ids, mask