File size: 11,983 Bytes
b5eb6ef 9d3ebbc b5eb6ef 9d3ebbc b5eb6ef 9d3ebbc b5eb6ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
from dataclasses import dataclass
import __main__
import os
import ujson
from huggingface_hub import hf_hub_download
import dataclasses
import datetime
from typing import Any
from dataclasses import dataclass, fields
import socket
import git
import time
import torch
import sys
def torch_load_dnn(path):
if path.startswith("http:") or path.startswith("https:"):
dnn = torch.hub.load_state_dict_from_url(path, map_location='cpu')
else:
dnn = torch.load(path, map_location='cpu')
return dnn
class dotdict(dict):
"""
dot.notation access to dictionary attributes
Credit: derek73 @ https://stackoverflow.com/questions/2352181
"""
__getattr__ = dict.__getitem__
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def get_metadata_only():
args = dotdict()
args.hostname = socket.gethostname()
try:
args.git_branch = git.Repo(search_parent_directories=True).active_branch.name
args.git_hash = git.Repo(search_parent_directories=True).head.object.hexsha
args.git_commit_datetime = str(git.Repo(search_parent_directories=True).head.object.committed_datetime)
except git.exc.InvalidGitRepositoryError as e:
pass
args.current_datetime = time.strftime('%b %d, %Y ; %l:%M%p %Z (%z)')
args.cmd = ' '.join(sys.argv)
return args
def timestamp(daydir=False):
format_str = f"%Y-%m{'/' if daydir else '-'}%d{'/' if daydir else '_'}%H.%M.%S"
result = datetime.datetime.now().strftime(format_str)
return result
@dataclass
class DefaultVal:
val: Any
def __hash__(self):
return hash(repr(self.val))
def __eq__(self, other):
self.val == other.val
@dataclass
class RunSettings:
"""
The defaults here have a special status in Run(), which initially calls assign_defaults(),
so these aren't soft defaults in that specific context.
"""
overwrite: bool = DefaultVal(False)
root: str = DefaultVal(os.path.join(os.getcwd(), 'experiments'))
experiment: str = DefaultVal('default')
index_root: str = DefaultVal(None)
name: str = DefaultVal(timestamp(daydir=True))
rank: int = DefaultVal(0)
nranks: int = DefaultVal(1)
amp: bool = DefaultVal(True)
total_visible_gpus = torch.cuda.device_count()
gpus: int = DefaultVal(total_visible_gpus)
avoid_fork_if_possible: bool = DefaultVal(False)
@property
def gpus_(self):
value = self.gpus
if isinstance(value, int):
value = list(range(value))
if isinstance(value, str):
value = value.split(',')
value = list(map(int, value))
value = sorted(list(set(value)))
assert all(device_idx in range(0, self.total_visible_gpus) for device_idx in value), value
return value
@property
def index_root_(self):
return self.index_root or os.path.join(self.root, self.experiment, 'indexes/')
@property
def script_name_(self):
if '__file__' in dir(__main__):
cwd = os.path.abspath(os.getcwd())
script_path = os.path.abspath(__main__.__file__)
root_path = os.path.abspath(self.root)
if script_path.startswith(cwd):
script_path = script_path[len(cwd):]
else:
try:
commonpath = os.path.commonpath([script_path, root_path])
script_path = script_path[len(commonpath):]
except:
pass
assert script_path.endswith('.py')
script_name = script_path.replace('/', '.').strip('.')[:-3]
assert len(script_name) > 0, (script_name, script_path, cwd)
return script_name
return 'none'
@property
def path_(self):
return os.path.join(self.root, self.experiment, self.script_name_, self.name)
@property
def device_(self):
return self.gpus_[self.rank % self.nranks]
@dataclass
class TokenizerSettings:
query_token_id: str = DefaultVal("[unused0]")
doc_token_id: str = DefaultVal("[unused1]")
query_token: str = DefaultVal("[Q]")
doc_token: str = DefaultVal("[D]")
@dataclass
class ResourceSettings:
checkpoint: str = DefaultVal(None)
triples: str = DefaultVal(None)
collection: str = DefaultVal(None)
queries: str = DefaultVal(None)
index_name: str = DefaultVal(None)
name_or_path: str = DefaultVal(None)
@dataclass
class DocSettings:
dim: int = DefaultVal(128)
doc_maxlen: int = DefaultVal(220)
mask_punctuation: bool = DefaultVal(True)
@dataclass
class QuerySettings:
query_maxlen: int = DefaultVal(32)
attend_to_mask_tokens : bool = DefaultVal(False)
interaction: str = DefaultVal('colbert')
@dataclass
class TrainingSettings:
similarity: str = DefaultVal('cosine')
bsize: int = DefaultVal(32)
accumsteps: int = DefaultVal(1)
lr: float = DefaultVal(3e-06)
maxsteps: int = DefaultVal(500_000)
save_every: int = DefaultVal(None)
resume: bool = DefaultVal(False)
## NEW:
warmup: int = DefaultVal(None)
warmup_bert: int = DefaultVal(None)
relu: bool = DefaultVal(False)
nway: int = DefaultVal(2)
use_ib_negatives: bool = DefaultVal(False)
reranker: bool = DefaultVal(False)
distillation_alpha: float = DefaultVal(1.0)
ignore_scores: bool = DefaultVal(False)
model_name: str = DefaultVal(None) # DefaultVal('bert-base-uncased')
@dataclass
class IndexingSettings:
index_path: str = DefaultVal(None)
index_bsize: int = DefaultVal(64)
nbits: int = DefaultVal(1)
kmeans_niters: int = DefaultVal(4)
resume: bool = DefaultVal(False)
@property
def index_path_(self):
return self.index_path or os.path.join(self.index_root_, self.index_name)
@dataclass
class SearchSettings:
ncells: int = DefaultVal(None)
centroid_score_threshold: float = DefaultVal(None)
ndocs: int = DefaultVal(None)
load_index_with_mmap: bool = DefaultVal(False)
@dataclass
class CoreConfig:
def __post_init__(self):
"""
Source: https://stackoverflow.com/a/58081120/1493011
"""
self.assigned = {}
for field in fields(self):
field_val = getattr(self, field.name)
if isinstance(field_val, DefaultVal) or field_val is None:
setattr(self, field.name, field.default.val)
if not isinstance(field_val, DefaultVal):
self.assigned[field.name] = True
def assign_defaults(self):
for field in fields(self):
setattr(self, field.name, field.default.val)
self.assigned[field.name] = True
def configure(self, ignore_unrecognized=True, **kw_args):
ignored = set()
for key, value in kw_args.items():
self.set(key, value, ignore_unrecognized) or ignored.update({key})
return ignored
"""
# TODO: Take a config object, not kw_args.
for key in config.assigned:
value = getattr(config, key)
"""
def set(self, key, value, ignore_unrecognized=False):
if hasattr(self, key):
setattr(self, key, value)
self.assigned[key] = True
return True
if not ignore_unrecognized:
raise Exception(f"Unrecognized key `{key}` for {type(self)}")
def help(self):
print(ujson.dumps(self.export(), indent=4))
def __export_value(self, v):
v = v.provenance() if hasattr(v, 'provenance') else v
if isinstance(v, list) and len(v) > 100:
v = (f"list with {len(v)} elements starting with...", v[:3])
if isinstance(v, dict) and len(v) > 100:
v = (f"dict with {len(v)} keys starting with...", list(v.keys())[:3])
return v
def export(self):
d = dataclasses.asdict(self)
for k, v in d.items():
d[k] = self.__export_value(v)
return d
@dataclass
class BaseConfig(CoreConfig):
@classmethod
def from_existing(cls, *sources):
kw_args = {}
for source in sources:
if source is None:
continue
local_kw_args = dataclasses.asdict(source)
local_kw_args = {k: local_kw_args[k] for k in source.assigned}
kw_args = {**kw_args, **local_kw_args}
obj = cls(**kw_args)
return obj
@classmethod
def from_deprecated_args(cls, args):
obj = cls()
ignored = obj.configure(ignore_unrecognized=True, **args)
return obj, ignored
@classmethod
def from_path(cls, name):
with open(name) as f:
args = ujson.load(f)
if "config" in args:
args = args["config"]
return cls.from_deprecated_args(
args
) # the new, non-deprecated version functions the same at this level.
@classmethod
def load_from_checkpoint(cls, checkpoint_path):
if checkpoint_path.endswith(".dnn"):
dnn = torch_load_dnn(checkpoint_path)
config, _ = cls.from_deprecated_args(dnn.get("arguments", {}))
# TODO: FIXME: Decide if the line below will have any unintended consequences. We don't want to overwrite those!
config.set("checkpoint", checkpoint_path)
return config
name_or_path = checkpoint_path
try:
checkpoint_path = hf_hub_download(
repo_id=checkpoint_path, filename="artifact.metadata"
).split("artifact")[0]
except Exception:
pass
loaded_config_path = os.path.join(checkpoint_path, "artifact.metadata")
if os.path.exists(loaded_config_path):
loaded_config, _ = cls.from_path(loaded_config_path)
loaded_config.set("checkpoint", checkpoint_path)
loaded_config.set("name_or_path", name_or_path)
return loaded_config
return (
None # can happen if checkpoint_path is something like 'bert-base-uncased'
)
@classmethod
def load_from_index(cls, index_path):
# FIXME: We should start here with initial_config = ColBERTConfig(config, Run().config).
# This should allow us to say initial_config.index_root. Then, below, set config = Config(..., initial_c)
# default_index_root = os.path.join(Run().root, Run().experiment, 'indexes/')
# index_path = os.path.join(default_index_root, index_path)
# CONSIDER: No more plan/metadata.json. Only metadata.json to avoid weird issues when loading an index.
try:
metadata_path = os.path.join(index_path, "metadata.json")
loaded_config, _ = cls.from_path(metadata_path)
except:
metadata_path = os.path.join(index_path, "plan.json")
loaded_config, _ = cls.from_path(metadata_path)
return loaded_config
def save(self, path, overwrite=False):
assert overwrite or not os.path.exists(path), path
with open(path, "w") as f:
args = self.export() # dict(self.__config)
args["meta"] = get_metadata_only()
args["meta"]["version"] = "colbert-v0.4"
# TODO: Add git_status details.. It can't be too large! It should be a path that Runs() saves on exit, maybe!
f.write(ujson.dumps(args, indent=4) + "\n")
def save_for_checkpoint(self, checkpoint_path):
assert not checkpoint_path.endswith(
".dnn"
), f"{checkpoint_path}: We reserve *.dnn names for the deprecated checkpoint format."
output_config_path = os.path.join(checkpoint_path, "artifact.metadata")
self.save(output_config_path, overwrite=True)
@dataclass
class ColBERTConfig(RunSettings, ResourceSettings, DocSettings, QuerySettings, TrainingSettings,
IndexingSettings, SearchSettings, BaseConfig, TokenizerSettings):
pass |