pimupsorn commited on
Commit
03a1eaf
·
verified ·
1 Parent(s): 2f75018

End of training

Browse files
README.md ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: nvidia/segformer-b1-finetuned-ade-512-512
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: my-fine-tuned-model
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # my-fine-tuned-model
18
+
19
+ This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the segments/sidewalk-semantic dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 1.6885
22
+ - Mean Iou: 0.1644
23
+ - Mean Accuracy: 0.2067
24
+ - Overall Accuracy: 0.7604
25
+ - Accuracy Unlabeled: nan
26
+ - Accuracy Flat-road: 0.9243
27
+ - Accuracy Flat-sidewalk: 0.9308
28
+ - Accuracy Flat-crosswalk: 0.0
29
+ - Accuracy Flat-cyclinglane: 0.3658
30
+ - Accuracy Flat-parkingdriveway: 0.0
31
+ - Accuracy Flat-railtrack: nan
32
+ - Accuracy Flat-curb: 0.0
33
+ - Accuracy Human-person: 0.0
34
+ - Accuracy Human-rider: 0.0
35
+ - Accuracy Vehicle-car: 0.8785
36
+ - Accuracy Vehicle-truck: 0.0
37
+ - Accuracy Vehicle-bus: 0.0
38
+ - Accuracy Vehicle-tramtrain: nan
39
+ - Accuracy Vehicle-motorcycle: 0.0
40
+ - Accuracy Vehicle-bicycle: 0.0
41
+ - Accuracy Vehicle-caravan: 0.0
42
+ - Accuracy Vehicle-cartrailer: 0.0
43
+ - Accuracy Construction-building: 0.8929
44
+ - Accuracy Construction-door: 0.0
45
+ - Accuracy Construction-wall: 0.0
46
+ - Accuracy Construction-fenceguardrail: 0.0
47
+ - Accuracy Construction-bridge: 0.0
48
+ - Accuracy Construction-tunnel: nan
49
+ - Accuracy Construction-stairs: 0.0
50
+ - Accuracy Object-pole: 0.0
51
+ - Accuracy Object-trafficsign: 0.0
52
+ - Accuracy Object-trafficlight: 0.0
53
+ - Accuracy Nature-vegetation: 0.9517
54
+ - Accuracy Nature-terrain: 0.5597
55
+ - Accuracy Sky: 0.9033
56
+ - Accuracy Void-ground: 0.0
57
+ - Accuracy Void-dynamic: 0.0
58
+ - Accuracy Void-static: 0.0
59
+ - Accuracy Void-unclear: 0.0
60
+ - Iou Unlabeled: nan
61
+ - Iou Flat-road: 0.5694
62
+ - Iou Flat-sidewalk: 0.7974
63
+ - Iou Flat-crosswalk: 0.0
64
+ - Iou Flat-cyclinglane: 0.3462
65
+ - Iou Flat-parkingdriveway: 0.0
66
+ - Iou Flat-railtrack: nan
67
+ - Iou Flat-curb: 0.0
68
+ - Iou Human-person: 0.0
69
+ - Iou Human-rider: 0.0
70
+ - Iou Vehicle-car: 0.6909
71
+ - Iou Vehicle-truck: 0.0
72
+ - Iou Vehicle-bus: 0.0
73
+ - Iou Vehicle-tramtrain: nan
74
+ - Iou Vehicle-motorcycle: 0.0
75
+ - Iou Vehicle-bicycle: 0.0
76
+ - Iou Vehicle-caravan: 0.0
77
+ - Iou Vehicle-cartrailer: 0.0
78
+ - Iou Construction-building: 0.5876
79
+ - Iou Construction-door: 0.0
80
+ - Iou Construction-wall: 0.0
81
+ - Iou Construction-fenceguardrail: 0.0
82
+ - Iou Construction-bridge: 0.0
83
+ - Iou Construction-tunnel: nan
84
+ - Iou Construction-stairs: 0.0
85
+ - Iou Object-pole: 0.0
86
+ - Iou Object-trafficsign: 0.0
87
+ - Iou Object-trafficlight: 0.0
88
+ - Iou Nature-vegetation: 0.7378
89
+ - Iou Nature-terrain: 0.5221
90
+ - Iou Sky: 0.8453
91
+ - Iou Void-ground: 0.0
92
+ - Iou Void-dynamic: 0.0
93
+ - Iou Void-static: 0.0
94
+ - Iou Void-unclear: 0.0
95
+
96
+ ## Model description
97
+
98
+ More information needed
99
+
100
+ ## Intended uses & limitations
101
+
102
+ More information needed
103
+
104
+ ## Training and evaluation data
105
+
106
+ More information needed
107
+
108
+ ## Training procedure
109
+
110
+ ### Training hyperparameters
111
+
112
+ The following hyperparameters were used during training:
113
+ - learning_rate: 6e-05
114
+ - train_batch_size: 8
115
+ - eval_batch_size: 8
116
+ - seed: 42
117
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
118
+ - lr_scheduler_type: linear
119
+ - num_epochs: 2
120
+
121
+ ### Training results
122
+
123
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
124
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
125
+ | 2.9927 | 0.2 | 20 | 2.8323 | 0.0790 | 0.1384 | 0.6032 | nan | 0.7510 | 0.9017 | 0.0000 | 0.0002 | 0.0000 | nan | 0.0000 | 0.4465 | 0.0 | 0.3131 | 0.0304 | 0.0 | nan | 0.0007 | 0.0 | 0.0 | 0.0776 | 0.4690 | 0.0051 | 0.0233 | 0.0 | 0.0 | nan | 0.0 | 0.0102 | 0.0 | 0.0 | 0.9462 | 0.0001 | 0.2894 | 0.0 | 0.0006 | 0.0253 | 0.0 | 0.0 | 0.4130 | 0.7047 | 0.0000 | 0.0002 | 0.0000 | 0.0 | 0.0000 | 0.0393 | 0.0 | 0.2934 | 0.0044 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0062 | 0.3769 | 0.0005 | 0.0210 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0088 | 0.0 | 0.0 | 0.5968 | 0.0001 | 0.2841 | 0.0 | 0.0004 | 0.0145 | 0.0 |
126
+ | 2.7054 | 0.4 | 40 | 2.4661 | 0.1140 | 0.1677 | 0.6892 | nan | 0.8508 | 0.9033 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.1089 | 0.0 | 0.7446 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7878 | 0.0 | 0.0152 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9695 | 0.0012 | 0.7824 | 0.0 | 0.0 | 0.0353 | 0.0 | 0.0 | 0.4629 | 0.7392 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0480 | 0.0 | 0.6429 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5762 | 0.0 | 0.0150 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6004 | 0.0012 | 0.7581 | 0.0 | 0.0 | 0.0316 | 0.0 |
127
+ | 2.3703 | 0.6 | 60 | 2.2220 | 0.1307 | 0.1726 | 0.7091 | nan | 0.8602 | 0.9235 | 0.0 | 0.0087 | 0.0 | nan | 0.0 | 0.0078 | 0.0 | 0.8029 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8432 | 0.0 | 0.0032 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9634 | 0.0720 | 0.8469 | 0.0 | 0.0 | 0.0175 | 0.0 | nan | 0.4991 | 0.7506 | 0.0 | 0.0087 | 0.0 | nan | 0.0 | 0.0066 | 0.0 | 0.6632 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5803 | 0.0 | 0.0032 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6381 | 0.0711 | 0.8138 | 0.0 | 0.0 | 0.0169 | 0.0 |
128
+ | 2.1115 | 0.8 | 80 | 2.0338 | 0.1408 | 0.1832 | 0.7268 | nan | 0.8785 | 0.9295 | 0.0 | 0.0351 | 0.0 | nan | 0.0000 | 0.0009 | 0.0 | 0.8476 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8966 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9472 | 0.2668 | 0.8725 | 0.0 | 0.0 | 0.0061 | 0.0 | nan | 0.5161 | 0.7578 | 0.0 | 0.0350 | 0.0 | nan | 0.0000 | 0.0008 | 0.0 | 0.6755 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5838 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7029 | 0.2587 | 0.8285 | 0.0 | 0.0 | 0.0061 | 0.0 |
129
+ | 2.0943 | 1.0 | 100 | 1.9439 | 0.1409 | 0.1883 | 0.7309 | nan | 0.9316 | 0.9111 | 0.0 | 0.0606 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.8286 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9048 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9431 | 0.3701 | 0.8879 | 0.0 | 0.0 | 0.0005 | 0.0 | nan | 0.4925 | 0.7839 | 0.0 | 0.0605 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.6885 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5688 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7221 | 0.3542 | 0.8377 | 0.0 | 0.0 | 0.0005 | 0.0 |
130
+ | 1.962 | 1.2 | 120 | 1.8278 | 0.1523 | 0.1943 | 0.7457 | nan | 0.8894 | 0.9411 | 0.0 | 0.2402 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8845 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8780 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9544 | 0.3342 | 0.9011 | 0.0 | 0.0 | 0.0003 | 0.0 | nan | 0.5553 | 0.7789 | 0.0 | 0.2357 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6855 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5929 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7078 | 0.3194 | 0.8442 | 0.0 | 0.0 | 0.0003 | 0.0 |
131
+ | 1.8545 | 1.4 | 140 | 1.7513 | 0.1615 | 0.2032 | 0.7568 | nan | 0.9153 | 0.9350 | 0.0 | 0.3471 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8702 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8852 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9552 | 0.4967 | 0.8943 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.5723 | 0.7897 | 0.0 | 0.3290 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6881 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5908 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7264 | 0.4707 | 0.8396 | 0.0 | 0.0 | 0.0000 | 0.0 |
132
+ | 1.8784 | 1.6 | 160 | 1.7246 | 0.1600 | 0.2014 | 0.7559 | nan | 0.9107 | 0.9375 | 0.0 | 0.3514 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8730 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8984 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9522 | 0.4351 | 0.8847 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5759 | 0.7914 | 0.0 | 0.3336 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6908 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5874 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7221 | 0.4148 | 0.8429 | 0.0 | 0.0 | 0.0 | 0.0 |
133
+ | 1.9631 | 1.8 | 180 | 1.7066 | 0.1627 | 0.2047 | 0.7573 | nan | 0.9303 | 0.9268 | 0.0 | 0.3374 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8747 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8908 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9549 | 0.5359 | 0.8947 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5559 | 0.7977 | 0.0 | 0.3210 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6966 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5896 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7321 | 0.5057 | 0.8436 | 0.0 | 0.0 | 0.0 | 0.0 |
134
+ | 1.8769 | 2.0 | 200 | 1.6885 | 0.1644 | 0.2067 | 0.7604 | nan | 0.9243 | 0.9308 | 0.0 | 0.3658 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8785 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8929 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9517 | 0.5597 | 0.9033 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5694 | 0.7974 | 0.0 | 0.3462 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6909 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5876 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7378 | 0.5221 | 0.8453 | 0.0 | 0.0 | 0.0 | 0.0 |
135
+
136
+
137
+ ### Framework versions
138
+
139
+ - Transformers 4.48.0
140
+ - Pytorch 2.1.1+cu118
141
+ - Datasets 3.2.0
142
+ - Tokenizers 0.21.0
config.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/segformer-b1-finetuned-ade-512-512",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "flat-road",
33
+ "2": "flat-sidewalk",
34
+ "3": "flat-crosswalk",
35
+ "4": "flat-cyclinglane",
36
+ "5": "flat-parkingdriveway",
37
+ "6": "flat-railtrack",
38
+ "7": "flat-curb",
39
+ "8": "human-person",
40
+ "9": "human-rider",
41
+ "10": "vehicle-car",
42
+ "11": "vehicle-truck",
43
+ "12": "vehicle-bus",
44
+ "13": "vehicle-tramtrain",
45
+ "14": "vehicle-motorcycle",
46
+ "15": "vehicle-bicycle",
47
+ "16": "vehicle-caravan",
48
+ "17": "vehicle-cartrailer",
49
+ "18": "construction-building",
50
+ "19": "construction-door",
51
+ "20": "construction-wall",
52
+ "21": "construction-fenceguardrail",
53
+ "22": "construction-bridge",
54
+ "23": "construction-tunnel",
55
+ "24": "construction-stairs",
56
+ "25": "object-pole",
57
+ "26": "object-trafficsign",
58
+ "27": "object-trafficlight",
59
+ "28": "nature-vegetation",
60
+ "29": "nature-terrain",
61
+ "30": "sky",
62
+ "31": "void-ground",
63
+ "32": "void-dynamic",
64
+ "33": "void-static",
65
+ "34": "void-unclear"
66
+ },
67
+ "image_size": 224,
68
+ "initializer_range": 0.02,
69
+ "label2id": {
70
+ "construction-bridge": 22,
71
+ "construction-building": 18,
72
+ "construction-door": 19,
73
+ "construction-fenceguardrail": 21,
74
+ "construction-stairs": 24,
75
+ "construction-tunnel": 23,
76
+ "construction-wall": 20,
77
+ "flat-crosswalk": 3,
78
+ "flat-curb": 7,
79
+ "flat-cyclinglane": 4,
80
+ "flat-parkingdriveway": 5,
81
+ "flat-railtrack": 6,
82
+ "flat-road": 1,
83
+ "flat-sidewalk": 2,
84
+ "human-person": 8,
85
+ "human-rider": 9,
86
+ "nature-terrain": 29,
87
+ "nature-vegetation": 28,
88
+ "object-pole": 25,
89
+ "object-trafficlight": 27,
90
+ "object-trafficsign": 26,
91
+ "sky": 30,
92
+ "unlabeled": 0,
93
+ "vehicle-bicycle": 15,
94
+ "vehicle-bus": 12,
95
+ "vehicle-car": 10,
96
+ "vehicle-caravan": 16,
97
+ "vehicle-cartrailer": 17,
98
+ "vehicle-motorcycle": 14,
99
+ "vehicle-tramtrain": 13,
100
+ "vehicle-truck": 11,
101
+ "void-dynamic": 32,
102
+ "void-ground": 31,
103
+ "void-static": 33,
104
+ "void-unclear": 34
105
+ },
106
+ "layer_norm_eps": 1e-06,
107
+ "mlp_ratios": [
108
+ 4,
109
+ 4,
110
+ 4,
111
+ 4
112
+ ],
113
+ "model_type": "segformer",
114
+ "num_attention_heads": [
115
+ 1,
116
+ 2,
117
+ 5,
118
+ 8
119
+ ],
120
+ "num_channels": 3,
121
+ "num_encoder_blocks": 4,
122
+ "patch_sizes": [
123
+ 7,
124
+ 3,
125
+ 3,
126
+ 3
127
+ ],
128
+ "reshape_last_stage": true,
129
+ "semantic_loss_ignore_index": 255,
130
+ "sr_ratios": [
131
+ 8,
132
+ 4,
133
+ 2,
134
+ 1
135
+ ],
136
+ "strides": [
137
+ 4,
138
+ 2,
139
+ 2,
140
+ 2
141
+ ],
142
+ "torch_dtype": "float32",
143
+ "transformers_version": "4.48.0"
144
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccb48ac562f328789dfc4d18bca129a032950a053dfb761b0c32a28a4059e0e0
3
+ size 54771308
preprocessor_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_reduce_labels": false,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.485,
8
+ 0.456,
9
+ 0.406
10
+ ],
11
+ "image_processor_type": "SegformerFeatureExtractor",
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 2,
18
+ "rescale_factor": 0.00392156862745098,
19
+ "size": {
20
+ "height": 512,
21
+ "width": 512
22
+ }
23
+ }
runs/Jan21_03-49-11_jupyter-demo05/events.out.tfevents.1737431456.jupyter-demo05.168.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c08df3c9fe7fac596a09e70e419127a010701f0e676aa3a631a9d8ace4e9906d
3
+ size 98974
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fa5ff5888e640bb00207bba28d0baa9c3fad535eeae171dcd3d3a7fe6b7e386
3
+ size 5368