End of training
Browse files- README.md +142 -0
- config.json +144 -0
- model.safetensors +3 -0
- preprocessor_config.json +23 -0
- runs/Jan21_03-49-11_jupyter-demo05/events.out.tfevents.1737431456.jupyter-demo05.168.0 +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/segformer-b1-finetuned-ade-512-512
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- image-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: my-fine-tuned-model
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# my-fine-tuned-model
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the segments/sidewalk-semantic dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.6885
|
22 |
+
- Mean Iou: 0.1644
|
23 |
+
- Mean Accuracy: 0.2067
|
24 |
+
- Overall Accuracy: 0.7604
|
25 |
+
- Accuracy Unlabeled: nan
|
26 |
+
- Accuracy Flat-road: 0.9243
|
27 |
+
- Accuracy Flat-sidewalk: 0.9308
|
28 |
+
- Accuracy Flat-crosswalk: 0.0
|
29 |
+
- Accuracy Flat-cyclinglane: 0.3658
|
30 |
+
- Accuracy Flat-parkingdriveway: 0.0
|
31 |
+
- Accuracy Flat-railtrack: nan
|
32 |
+
- Accuracy Flat-curb: 0.0
|
33 |
+
- Accuracy Human-person: 0.0
|
34 |
+
- Accuracy Human-rider: 0.0
|
35 |
+
- Accuracy Vehicle-car: 0.8785
|
36 |
+
- Accuracy Vehicle-truck: 0.0
|
37 |
+
- Accuracy Vehicle-bus: 0.0
|
38 |
+
- Accuracy Vehicle-tramtrain: nan
|
39 |
+
- Accuracy Vehicle-motorcycle: 0.0
|
40 |
+
- Accuracy Vehicle-bicycle: 0.0
|
41 |
+
- Accuracy Vehicle-caravan: 0.0
|
42 |
+
- Accuracy Vehicle-cartrailer: 0.0
|
43 |
+
- Accuracy Construction-building: 0.8929
|
44 |
+
- Accuracy Construction-door: 0.0
|
45 |
+
- Accuracy Construction-wall: 0.0
|
46 |
+
- Accuracy Construction-fenceguardrail: 0.0
|
47 |
+
- Accuracy Construction-bridge: 0.0
|
48 |
+
- Accuracy Construction-tunnel: nan
|
49 |
+
- Accuracy Construction-stairs: 0.0
|
50 |
+
- Accuracy Object-pole: 0.0
|
51 |
+
- Accuracy Object-trafficsign: 0.0
|
52 |
+
- Accuracy Object-trafficlight: 0.0
|
53 |
+
- Accuracy Nature-vegetation: 0.9517
|
54 |
+
- Accuracy Nature-terrain: 0.5597
|
55 |
+
- Accuracy Sky: 0.9033
|
56 |
+
- Accuracy Void-ground: 0.0
|
57 |
+
- Accuracy Void-dynamic: 0.0
|
58 |
+
- Accuracy Void-static: 0.0
|
59 |
+
- Accuracy Void-unclear: 0.0
|
60 |
+
- Iou Unlabeled: nan
|
61 |
+
- Iou Flat-road: 0.5694
|
62 |
+
- Iou Flat-sidewalk: 0.7974
|
63 |
+
- Iou Flat-crosswalk: 0.0
|
64 |
+
- Iou Flat-cyclinglane: 0.3462
|
65 |
+
- Iou Flat-parkingdriveway: 0.0
|
66 |
+
- Iou Flat-railtrack: nan
|
67 |
+
- Iou Flat-curb: 0.0
|
68 |
+
- Iou Human-person: 0.0
|
69 |
+
- Iou Human-rider: 0.0
|
70 |
+
- Iou Vehicle-car: 0.6909
|
71 |
+
- Iou Vehicle-truck: 0.0
|
72 |
+
- Iou Vehicle-bus: 0.0
|
73 |
+
- Iou Vehicle-tramtrain: nan
|
74 |
+
- Iou Vehicle-motorcycle: 0.0
|
75 |
+
- Iou Vehicle-bicycle: 0.0
|
76 |
+
- Iou Vehicle-caravan: 0.0
|
77 |
+
- Iou Vehicle-cartrailer: 0.0
|
78 |
+
- Iou Construction-building: 0.5876
|
79 |
+
- Iou Construction-door: 0.0
|
80 |
+
- Iou Construction-wall: 0.0
|
81 |
+
- Iou Construction-fenceguardrail: 0.0
|
82 |
+
- Iou Construction-bridge: 0.0
|
83 |
+
- Iou Construction-tunnel: nan
|
84 |
+
- Iou Construction-stairs: 0.0
|
85 |
+
- Iou Object-pole: 0.0
|
86 |
+
- Iou Object-trafficsign: 0.0
|
87 |
+
- Iou Object-trafficlight: 0.0
|
88 |
+
- Iou Nature-vegetation: 0.7378
|
89 |
+
- Iou Nature-terrain: 0.5221
|
90 |
+
- Iou Sky: 0.8453
|
91 |
+
- Iou Void-ground: 0.0
|
92 |
+
- Iou Void-dynamic: 0.0
|
93 |
+
- Iou Void-static: 0.0
|
94 |
+
- Iou Void-unclear: 0.0
|
95 |
+
|
96 |
+
## Model description
|
97 |
+
|
98 |
+
More information needed
|
99 |
+
|
100 |
+
## Intended uses & limitations
|
101 |
+
|
102 |
+
More information needed
|
103 |
+
|
104 |
+
## Training and evaluation data
|
105 |
+
|
106 |
+
More information needed
|
107 |
+
|
108 |
+
## Training procedure
|
109 |
+
|
110 |
+
### Training hyperparameters
|
111 |
+
|
112 |
+
The following hyperparameters were used during training:
|
113 |
+
- learning_rate: 6e-05
|
114 |
+
- train_batch_size: 8
|
115 |
+
- eval_batch_size: 8
|
116 |
+
- seed: 42
|
117 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
118 |
+
- lr_scheduler_type: linear
|
119 |
+
- num_epochs: 2
|
120 |
+
|
121 |
+
### Training results
|
122 |
+
|
123 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
|
124 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
|
125 |
+
| 2.9927 | 0.2 | 20 | 2.8323 | 0.0790 | 0.1384 | 0.6032 | nan | 0.7510 | 0.9017 | 0.0000 | 0.0002 | 0.0000 | nan | 0.0000 | 0.4465 | 0.0 | 0.3131 | 0.0304 | 0.0 | nan | 0.0007 | 0.0 | 0.0 | 0.0776 | 0.4690 | 0.0051 | 0.0233 | 0.0 | 0.0 | nan | 0.0 | 0.0102 | 0.0 | 0.0 | 0.9462 | 0.0001 | 0.2894 | 0.0 | 0.0006 | 0.0253 | 0.0 | 0.0 | 0.4130 | 0.7047 | 0.0000 | 0.0002 | 0.0000 | 0.0 | 0.0000 | 0.0393 | 0.0 | 0.2934 | 0.0044 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.0062 | 0.3769 | 0.0005 | 0.0210 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0088 | 0.0 | 0.0 | 0.5968 | 0.0001 | 0.2841 | 0.0 | 0.0004 | 0.0145 | 0.0 |
|
126 |
+
| 2.7054 | 0.4 | 40 | 2.4661 | 0.1140 | 0.1677 | 0.6892 | nan | 0.8508 | 0.9033 | 0.0 | 0.0000 | 0.0 | nan | 0.0 | 0.1089 | 0.0 | 0.7446 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7878 | 0.0 | 0.0152 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9695 | 0.0012 | 0.7824 | 0.0 | 0.0 | 0.0353 | 0.0 | 0.0 | 0.4629 | 0.7392 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.0480 | 0.0 | 0.6429 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5762 | 0.0 | 0.0150 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6004 | 0.0012 | 0.7581 | 0.0 | 0.0 | 0.0316 | 0.0 |
|
127 |
+
| 2.3703 | 0.6 | 60 | 2.2220 | 0.1307 | 0.1726 | 0.7091 | nan | 0.8602 | 0.9235 | 0.0 | 0.0087 | 0.0 | nan | 0.0 | 0.0078 | 0.0 | 0.8029 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8432 | 0.0 | 0.0032 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9634 | 0.0720 | 0.8469 | 0.0 | 0.0 | 0.0175 | 0.0 | nan | 0.4991 | 0.7506 | 0.0 | 0.0087 | 0.0 | nan | 0.0 | 0.0066 | 0.0 | 0.6632 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5803 | 0.0 | 0.0032 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6381 | 0.0711 | 0.8138 | 0.0 | 0.0 | 0.0169 | 0.0 |
|
128 |
+
| 2.1115 | 0.8 | 80 | 2.0338 | 0.1408 | 0.1832 | 0.7268 | nan | 0.8785 | 0.9295 | 0.0 | 0.0351 | 0.0 | nan | 0.0000 | 0.0009 | 0.0 | 0.8476 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8966 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9472 | 0.2668 | 0.8725 | 0.0 | 0.0 | 0.0061 | 0.0 | nan | 0.5161 | 0.7578 | 0.0 | 0.0350 | 0.0 | nan | 0.0000 | 0.0008 | 0.0 | 0.6755 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5838 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7029 | 0.2587 | 0.8285 | 0.0 | 0.0 | 0.0061 | 0.0 |
|
129 |
+
| 2.0943 | 1.0 | 100 | 1.9439 | 0.1409 | 0.1883 | 0.7309 | nan | 0.9316 | 0.9111 | 0.0 | 0.0606 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.8286 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9048 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9431 | 0.3701 | 0.8879 | 0.0 | 0.0 | 0.0005 | 0.0 | nan | 0.4925 | 0.7839 | 0.0 | 0.0605 | 0.0 | 0.0 | 0.0 | 0.0000 | 0.0 | 0.6885 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5688 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7221 | 0.3542 | 0.8377 | 0.0 | 0.0 | 0.0005 | 0.0 |
|
130 |
+
| 1.962 | 1.2 | 120 | 1.8278 | 0.1523 | 0.1943 | 0.7457 | nan | 0.8894 | 0.9411 | 0.0 | 0.2402 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8845 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8780 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9544 | 0.3342 | 0.9011 | 0.0 | 0.0 | 0.0003 | 0.0 | nan | 0.5553 | 0.7789 | 0.0 | 0.2357 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6855 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5929 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7078 | 0.3194 | 0.8442 | 0.0 | 0.0 | 0.0003 | 0.0 |
|
131 |
+
| 1.8545 | 1.4 | 140 | 1.7513 | 0.1615 | 0.2032 | 0.7568 | nan | 0.9153 | 0.9350 | 0.0 | 0.3471 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8702 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8852 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9552 | 0.4967 | 0.8943 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.5723 | 0.7897 | 0.0 | 0.3290 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6881 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5908 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7264 | 0.4707 | 0.8396 | 0.0 | 0.0 | 0.0000 | 0.0 |
|
132 |
+
| 1.8784 | 1.6 | 160 | 1.7246 | 0.1600 | 0.2014 | 0.7559 | nan | 0.9107 | 0.9375 | 0.0 | 0.3514 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8730 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8984 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9522 | 0.4351 | 0.8847 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5759 | 0.7914 | 0.0 | 0.3336 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6908 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5874 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7221 | 0.4148 | 0.8429 | 0.0 | 0.0 | 0.0 | 0.0 |
|
133 |
+
| 1.9631 | 1.8 | 180 | 1.7066 | 0.1627 | 0.2047 | 0.7573 | nan | 0.9303 | 0.9268 | 0.0 | 0.3374 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8747 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8908 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9549 | 0.5359 | 0.8947 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5559 | 0.7977 | 0.0 | 0.3210 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6966 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5896 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7321 | 0.5057 | 0.8436 | 0.0 | 0.0 | 0.0 | 0.0 |
|
134 |
+
| 1.8769 | 2.0 | 200 | 1.6885 | 0.1644 | 0.2067 | 0.7604 | nan | 0.9243 | 0.9308 | 0.0 | 0.3658 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.8785 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8929 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9517 | 0.5597 | 0.9033 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5694 | 0.7974 | 0.0 | 0.3462 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6909 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5876 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7378 | 0.5221 | 0.8453 | 0.0 | 0.0 | 0.0 | 0.0 |
|
135 |
+
|
136 |
+
|
137 |
+
### Framework versions
|
138 |
+
|
139 |
+
- Transformers 4.48.0
|
140 |
+
- Pytorch 2.1.1+cu118
|
141 |
+
- Datasets 3.2.0
|
142 |
+
- Tokenizers 0.21.0
|
config.json
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/segformer-b1-finetuned-ade-512-512",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "flat-road",
|
33 |
+
"2": "flat-sidewalk",
|
34 |
+
"3": "flat-crosswalk",
|
35 |
+
"4": "flat-cyclinglane",
|
36 |
+
"5": "flat-parkingdriveway",
|
37 |
+
"6": "flat-railtrack",
|
38 |
+
"7": "flat-curb",
|
39 |
+
"8": "human-person",
|
40 |
+
"9": "human-rider",
|
41 |
+
"10": "vehicle-car",
|
42 |
+
"11": "vehicle-truck",
|
43 |
+
"12": "vehicle-bus",
|
44 |
+
"13": "vehicle-tramtrain",
|
45 |
+
"14": "vehicle-motorcycle",
|
46 |
+
"15": "vehicle-bicycle",
|
47 |
+
"16": "vehicle-caravan",
|
48 |
+
"17": "vehicle-cartrailer",
|
49 |
+
"18": "construction-building",
|
50 |
+
"19": "construction-door",
|
51 |
+
"20": "construction-wall",
|
52 |
+
"21": "construction-fenceguardrail",
|
53 |
+
"22": "construction-bridge",
|
54 |
+
"23": "construction-tunnel",
|
55 |
+
"24": "construction-stairs",
|
56 |
+
"25": "object-pole",
|
57 |
+
"26": "object-trafficsign",
|
58 |
+
"27": "object-trafficlight",
|
59 |
+
"28": "nature-vegetation",
|
60 |
+
"29": "nature-terrain",
|
61 |
+
"30": "sky",
|
62 |
+
"31": "void-ground",
|
63 |
+
"32": "void-dynamic",
|
64 |
+
"33": "void-static",
|
65 |
+
"34": "void-unclear"
|
66 |
+
},
|
67 |
+
"image_size": 224,
|
68 |
+
"initializer_range": 0.02,
|
69 |
+
"label2id": {
|
70 |
+
"construction-bridge": 22,
|
71 |
+
"construction-building": 18,
|
72 |
+
"construction-door": 19,
|
73 |
+
"construction-fenceguardrail": 21,
|
74 |
+
"construction-stairs": 24,
|
75 |
+
"construction-tunnel": 23,
|
76 |
+
"construction-wall": 20,
|
77 |
+
"flat-crosswalk": 3,
|
78 |
+
"flat-curb": 7,
|
79 |
+
"flat-cyclinglane": 4,
|
80 |
+
"flat-parkingdriveway": 5,
|
81 |
+
"flat-railtrack": 6,
|
82 |
+
"flat-road": 1,
|
83 |
+
"flat-sidewalk": 2,
|
84 |
+
"human-person": 8,
|
85 |
+
"human-rider": 9,
|
86 |
+
"nature-terrain": 29,
|
87 |
+
"nature-vegetation": 28,
|
88 |
+
"object-pole": 25,
|
89 |
+
"object-trafficlight": 27,
|
90 |
+
"object-trafficsign": 26,
|
91 |
+
"sky": 30,
|
92 |
+
"unlabeled": 0,
|
93 |
+
"vehicle-bicycle": 15,
|
94 |
+
"vehicle-bus": 12,
|
95 |
+
"vehicle-car": 10,
|
96 |
+
"vehicle-caravan": 16,
|
97 |
+
"vehicle-cartrailer": 17,
|
98 |
+
"vehicle-motorcycle": 14,
|
99 |
+
"vehicle-tramtrain": 13,
|
100 |
+
"vehicle-truck": 11,
|
101 |
+
"void-dynamic": 32,
|
102 |
+
"void-ground": 31,
|
103 |
+
"void-static": 33,
|
104 |
+
"void-unclear": 34
|
105 |
+
},
|
106 |
+
"layer_norm_eps": 1e-06,
|
107 |
+
"mlp_ratios": [
|
108 |
+
4,
|
109 |
+
4,
|
110 |
+
4,
|
111 |
+
4
|
112 |
+
],
|
113 |
+
"model_type": "segformer",
|
114 |
+
"num_attention_heads": [
|
115 |
+
1,
|
116 |
+
2,
|
117 |
+
5,
|
118 |
+
8
|
119 |
+
],
|
120 |
+
"num_channels": 3,
|
121 |
+
"num_encoder_blocks": 4,
|
122 |
+
"patch_sizes": [
|
123 |
+
7,
|
124 |
+
3,
|
125 |
+
3,
|
126 |
+
3
|
127 |
+
],
|
128 |
+
"reshape_last_stage": true,
|
129 |
+
"semantic_loss_ignore_index": 255,
|
130 |
+
"sr_ratios": [
|
131 |
+
8,
|
132 |
+
4,
|
133 |
+
2,
|
134 |
+
1
|
135 |
+
],
|
136 |
+
"strides": [
|
137 |
+
4,
|
138 |
+
2,
|
139 |
+
2,
|
140 |
+
2
|
141 |
+
],
|
142 |
+
"torch_dtype": "float32",
|
143 |
+
"transformers_version": "4.48.0"
|
144 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccb48ac562f328789dfc4d18bca129a032950a053dfb761b0c32a28a4059e0e0
|
3 |
+
size 54771308
|
preprocessor_config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_reduce_labels": false,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.485,
|
8 |
+
0.456,
|
9 |
+
0.406
|
10 |
+
],
|
11 |
+
"image_processor_type": "SegformerFeatureExtractor",
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 2,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"height": 512,
|
21 |
+
"width": 512
|
22 |
+
}
|
23 |
+
}
|
runs/Jan21_03-49-11_jupyter-demo05/events.out.tfevents.1737431456.jupyter-demo05.168.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c08df3c9fe7fac596a09e70e419127a010701f0e676aa3a631a9d8ace4e9906d
|
3 |
+
size 98974
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fa5ff5888e640bb00207bba28d0baa9c3fad535eeae171dcd3d3a7fe6b7e386
|
3 |
+
size 5368
|