--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-fineturned-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9383870967741935 --- # distilbert-base-uncased-fineturned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.0292 - Accuracy: 0.9384 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 1280 - eval_batch_size: 1280 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0092 | 1.0 | 12 | 0.6032 | 0.4881 | | 0.5561 | 2.0 | 24 | 0.2063 | 0.7877 | | 0.2481 | 3.0 | 36 | 0.0843 | 0.8977 | | 0.1194 | 4.0 | 48 | 0.0525 | 0.9223 | | 0.0563 | 5.0 | 60 | 0.0398 | 0.9326 | | 0.0474 | 6.0 | 72 | 0.0351 | 0.9365 | | 0.0423 | 7.0 | 84 | 0.0318 | 0.9358 | | 0.0397 | 8.0 | 96 | 0.0306 | 0.9377 | | 0.0378 | 9.0 | 108 | 0.0297 | 0.9381 | | 0.0359 | 10.0 | 120 | 0.0292 | 0.9384 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3