update model card README.md
Browse files
README.md
CHANGED
|
@@ -24,16 +24,16 @@ model-index:
|
|
| 24 |
metrics:
|
| 25 |
- name: Precision
|
| 26 |
type: precision
|
| 27 |
-
value: 0.
|
| 28 |
- name: Recall
|
| 29 |
type: recall
|
| 30 |
-
value: 0.
|
| 31 |
- name: F1
|
| 32 |
type: f1
|
| 33 |
-
value: 0.
|
| 34 |
- name: Accuracy
|
| 35 |
type: accuracy
|
| 36 |
-
value: 0.
|
| 37 |
---
|
| 38 |
|
| 39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 43 |
|
| 44 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
|
| 45 |
It achieves the following results on the evaluation set:
|
| 46 |
-
- Loss: 0.
|
| 47 |
-
- Precision: 0.
|
| 48 |
-
- Recall: 0.
|
| 49 |
-
- F1: 0.
|
| 50 |
-
- Accuracy: 0.
|
| 51 |
|
| 52 |
## Model description
|
| 53 |
|
|
@@ -78,11 +78,11 @@ The following hyperparameters were used during training:
|
|
| 78 |
|
| 79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 81 |
-
| No log | 1.0 | 213 | 0.
|
| 82 |
-
| No log | 2.0 | 426 | 0.
|
| 83 |
-
| 0.
|
| 84 |
-
| 0.
|
| 85 |
-
| 0.
|
| 86 |
|
| 87 |
|
| 88 |
### Framework versions
|
|
|
|
| 24 |
metrics:
|
| 25 |
- name: Precision
|
| 26 |
type: precision
|
| 27 |
+
value: 0.5552523874488404
|
| 28 |
- name: Recall
|
| 29 |
type: recall
|
| 30 |
+
value: 0.37720111214087115
|
| 31 |
- name: F1
|
| 32 |
type: f1
|
| 33 |
+
value: 0.44922737306843263
|
| 34 |
- name: Accuracy
|
| 35 |
type: accuracy
|
| 36 |
+
value: 0.9469454063528707
|
| 37 |
---
|
| 38 |
|
| 39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 43 |
|
| 44 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset.
|
| 45 |
It achieves the following results on the evaluation set:
|
| 46 |
+
- Loss: 0.2942
|
| 47 |
+
- Precision: 0.5553
|
| 48 |
+
- Recall: 0.3772
|
| 49 |
+
- F1: 0.4492
|
| 50 |
+
- Accuracy: 0.9469
|
| 51 |
|
| 52 |
## Model description
|
| 53 |
|
|
|
|
| 78 |
|
| 79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 81 |
+
| No log | 1.0 | 213 | 0.2666 | 0.6024 | 0.2808 | 0.3831 | 0.9405 |
|
| 82 |
+
| No log | 2.0 | 426 | 0.2605 | 0.5708 | 0.3364 | 0.4233 | 0.9456 |
|
| 83 |
+
| 0.1299 | 3.0 | 639 | 0.2827 | 0.5658 | 0.3346 | 0.4205 | 0.9452 |
|
| 84 |
+
| 0.1299 | 4.0 | 852 | 0.2836 | 0.5503 | 0.3753 | 0.4463 | 0.9469 |
|
| 85 |
+
| 0.051 | 5.0 | 1065 | 0.2942 | 0.5553 | 0.3772 | 0.4492 | 0.9469 |
|
| 86 |
|
| 87 |
|
| 88 |
### Framework versions
|