Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1396.42 +/- 145.39
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:005e67156c5810c4e79de3f24c19a664e1c966835f594bf955e9630c235b079b
|
3 |
+
size 129256
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b5359fd30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b5359fdc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b5359fe50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b5359fee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5b5359ff70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5b535a3040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b535a30d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b535a3160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5b535a31f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b535a3280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b535a3310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b535a33a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f5b53599b40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674092824836061930,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHcTQD+CNFo/oV+dPsOe4T+H6kK/KEG0vz7uPL1IFZe/DeAyPw18Hb9ITKw/NGl/v9k/Pb9Cy1I/v58Svi8ZJD/LTM6/YQm4O3RyZz+Kzao8aBOUvhzLIj9gxSe/WEGLP3VjVT8yvdm/jjDnPvMvmb8bteW+l3ZTP+uVpT46aBg/xx/TPt8sH770kF2+eYD/vXijYT3Y8oS/QkZDv/mR5z43eIq9J9PQvYI6Aj/NuYk8yQCBP1a//b597Aw82zSPvuXgEb9gihy/dYMIPqeNab1uj5m/+H0WP44w5z536FU/WyI9QKJMHL/DTLY+NmjxvrcYfr57q3zAccCDP/Pto77roYK/ljuLQO1lNT8VvotAGM+Tv+xm1zxtBSdA1KjcPLLtEMDyA8q8CTrrP4rMuzx8UEG/f/Fkv32bFcDIDqS8bo+ZvzK92b+GvA3A8y+Zvwh9Kj8PVL4/I46Xvj1sqz8YcOm97om9PwGWSb/muga/nV1cvd6rsL/inCY/QbMxP62Ut74I9krALeQCP2voarwfOs+9UQYWwFnJFr9E73k/EeYxPhYvAcAUrIu+y3AdwHVjVT/4fRY/jjDnPvMvmb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABVgNE0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcZFrPQAAAABD2+K/AAAAAGi11T0AAAAAFIXzPwAAAADLKem9AAAAAGyZ4j8AAAAAzwSzvQAAAACb2tu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvyw8NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLqZvb0AAAAAqhMAwAAAAABjYKu9AAAAACL8/z8AAAAAnSFsPQAAAABDUvA/AAAAAMvZQr0AAAAA9gLovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwWHDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA4IOe9AAAAALk/6r8AAAAAJR3MPQAAAAA38+w/AAAAACAeAb4AAAAA8Ef8PwAAAADnC028AAAAAEs8978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAruMK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD7TLPAAAAACb4+O/AAAAAECKET4AAAAAb4HdPwAAAACQnEq9AAAAAHqv9j8AAAAAIhcFPgAAAABb3ti/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQInWtINEw36MAWyUTegDjAF0lEdAp83DJOnEVHV9lChoBkdAZWlTZxrBTGgHTegDaAhHQKfPwEg4ffZ1fZQoaAZHQJJg2bqhUR5oB03oA2gIR0Cn0IrHlwLmdX2UKGgGR0CQ8YmW+oLoaAdN6ANoCEdAp9HHMdLg43V9lChoBkdASexL/S6UaGgHS6RoCEdAp9KG18b70nV9lChoBkdAY84hkiD/VGgHTegDaAhHQKfZ+GZ/kNp1fZQoaAZHQIN99xdY4hloB03oA2gIR0Cn2+4j8k2QdX2UKGgGR0CIx3Ms6JZXaAdN6ANoCEdAp94Er3CbdHV9lChoBkdAf15MhHLA6GgHTegDaAhHQKfewcxTKkl1fZQoaAZHQGkoOU+s5n1oB03oA2gIR0Cn5nRUWEbpdX2UKGgGR0CBp3/7SApbaAdN6ANoCEdAp+h+XLNfPXV9lChoBkdAkSuJIxxku2gHTegDaAhHQKfqnkCFK051fZQoaAZHQH/ZBq9GqghoB03oA2gIR0Cn62VOKwY+dX2UKGgGR0CRWA27nPmgaAdN6ANoCEdAp/LwRf4REnV9lChoBkdAlDoONPxhD2gHTegDaAhHQKf1A+mm+Cd1fZQoaAZHQJRB/oicG1RoB03oA2gIR0Cn9xlt0mtydX2UKGgGR0CVM+butwJgaAdN6ANoCEdAp/fhvR7Z4HV9lChoBkdAlFg6KgqVhWgHTegDaAhHQKf/VldTo+x1fZQoaAZHQJMyIpnYg7poB03oA2gIR0CoAWG/etSydX2UKGgGR0CO6+0ZWJaaaAdN6ANoCEdAqANxqIrOJXV9lChoBkdAleb1AVwgkmgHTegDaAhHQKgEOPS2H+J1fZQoaAZHQJN9Ka8YhuBoB03oA2gIR0CoC38274BWdX2UKGgGR0CUwPgMMI/raAdN6ANoCEdAqA2Ig5imVXV9lChoBkdAlxMkhNdqtmgHTegDaAhHQKgPokLx7Rh1fZQoaAZHQIqidIClrM1oB03oA2gIR0CoEGf0mMOxdX2UKGgGR0CT789A5aNdaAdN6ANoCEdAqBfLah6By3V9lChoBkdAk6CPkili0GgHTegDaAhHQKgZ1Mr3Cbd1fZQoaAZHQI6xAwZflZJoB03oA2gIR0CoG/FR51NhdX2UKGgGR0CSrClnAZbZaAdN6ANoCEdAqBy0dmxt53V9lChoBkdAfqG/p+tr9GgHTegDaAhHQKgkkeo1k2B1fZQoaAZHQIhB+r6tT1loB03oA2gIR0CoJpZGBnSOdX2UKGgGR0CKQ2iC8OCoaAdN6ANoCEdAqCiiJGe+VXV9lChoBkdAkC7ih8IAwWgHTegDaAhHQKgpWThYNiJ1fZQoaAZHQJNnvRBu4w1oB03oA2gIR0CoMNLEDQqqdX2UKGgGR0CYbmjAi3XqaAdN6ANoCEdAqDLV4NZvDXV9lChoBkdAg2kzLns9jmgHTegDaAhHQKg0+XsPatd1fZQoaAZHQJU9e19fCyhoB03oA2gIR0CoNcGGEf1ZdX2UKGgGR0CDeSKhL5ARaAdN6ANoCEdAqD1K6jFhonV9lChoBkdAkrcFQyhzvWgHTegDaAhHQKg/VkWAPNF1fZQoaAZHQJfVAHnlnyxoB03oA2gIR0CoQWetr9EUdX2UKGgGR0CVNa0HyEteaAdN6ANoCEdAqEIlR+BpYnV9lChoBkdAkPOJLEk0JmgHTegDaAhHQKhJzCO3lS11fZQoaAZHQJR6+i0v4/NoB03oA2gIR0CoS8h1klNUdX2UKGgGR0B78EP1+RYBaAdN6ANoCEdAqE3jxTbWVnV9lChoBkdAkGVEUXYUWWgHTegDaAhHQKhOoRlHz6J1fZQoaAZHQJX5iV9nbqRoB03oA2gIR0CoVgkSVW0adX2UKGgGR0CS1jIZIg/1aAdN6ANoCEdAqFfvHxSYPXV9lChoBkdAkwVcMd92HWgHTegDaAhHQKhaAgbp/w11fZQoaAZHQJSeQt9QXRBoB03oA2gIR0CoWraNlyzYdX2UKGgGR0CU82cvduYQaAdN6ANoCEdAqGIaUFB6bHV9lChoBkdATSSU1Q66rmgHTegDaAhHQKhkFVYp2EF1fZQoaAZHQJFwYicG1QZoB03oA2gIR0CoZju6ErXldX2UKGgGR0CTFapI+W4WaAdN6ANoCEdAqGbziMo+fXV9lChoBkdAkEXNEofCAWgHTegDaAhHQKhufkU9IPN1fZQoaAZHQIhIBnWattBoB03oA2gIR0CocHqXv6TGdX2UKGgGR0CX+IpbD/EPaAdN6ANoCEdAqHKJ93KSxXV9lChoBkdAg0U69bor4GgHTegDaAhHQKhzPwcYIjZ1fZQoaAZHQJAgPVEuxr1oB03oA2gIR0CoeqP863iJdX2UKGgGR0CQvdPYFqzraAdN6ANoCEdAqHyfIKc/dXV9lChoBkdAkLVFI/Z/TmgHTegDaAhHQKh+slZ5iVl1fZQoaAZHQI2WIdyT6i1oB03oA2gIR0Cof24u9OARdX2UKGgGR0CSbWNUOuq4aAdN6ANoCEdAqIbXRArxzHV9lChoBkdAkAJY287IUGgHTegDaAhHQKiI1yMDOkd1fZQoaAZHQJJQGDh99c9oB03oA2gIR0CoiucwxnFpdX2UKGgGR0CP/JRBu4wzaAdN6ANoCEdAqIuqDdxhlXV9lChoBkdAk6MtPgvUSmgHTegDaAhHQKiTBUpd8iR1fZQoaAZHQJJdEJTl1bJoB03oA2gIR0ColP7wKBuodX2UKGgGR0CR00wAU+LWaAdN6ANoCEdAqJcSv1UVBXV9lChoBkdAiHbEdeY2KmgHTegDaAhHQKiX15hScb11fZQoaAZHQIbEatYB/7VoB03oA2gIR0Con2iPhhphdX2UKGgGR0CS1lfMOf/WaAdN6ANoCEdAqKFxjMFEA3V9lChoBkdAkgL894eLemgHTegDaAhHQKijg1cdHUd1fZQoaAZHQJUdzxWkrPNoB03oA2gIR0CopEOh9LHudX2UKGgGR0CL3k3PzFuOaAdN6ANoCEdAqKvB2U0N0HV9lChoBkdAko+4fSx7iWgHTegDaAhHQKit0SJ0nw51fZQoaAZHQIVyAA2hqTNoB03oA2gIR0CosIt9H+ZPdX2UKGgGR0CTbh0rK/21aAdN6ANoCEdAqLGWoBJZn3V9lChoBkdAlVcjk6tDD2gHTegDaAhHQKi7NTn7pFF1fZQoaAZHQJSniZ8a4tpoB03oA2gIR0CovUYnndO7dX2UKGgGR0CXE0fvnbItaAdN6ANoCEdAqL9Tg4wRG3V9lChoBkdAl5ps1O0sv2gHTegDaAhHQKjAExKxs2x1fZQoaAZHQJZwrlgc94hoB03oA2gIR0Cox2M6zVtodX2UKGgGR0CW0rTF2mpEaAdN6ANoCEdAqMlMQmNR33V9lChoBkdAl1rY3Jgb62gHTegDaAhHQKjLVaxoqTd1fZQoaAZHQJd3JUS7GvRoB03oA2gIR0CozB6qjrRjdX2UKGgGR0CXwIuyNXHSaAdN6ANoCEdAqNOCT+vQnnV9lChoBkdAmXKpsGgSOGgHTegDaAhHQKjVjw2ETQF1fZQoaAZHQJht/AwfyPNoB03oA2gIR0Co16sir1dxdX2UKGgGR0CQzJWE9MbnaAdN6ANoCEdAqNhvX/YJ3XV9lChoBkdAmJCnTI/7i2gHTegDaAhHQKjgE1dgOSZ1fZQoaAZHQJWDqnDR+jNoB03oA2gIR0Co4hnhsImgdX2UKGgGR0CVuGM6zVtoaAdN6ANoCEdAqOQy57PY4HV9lChoBkdAl1qAOvt+kWgHTegDaAhHQKjk8LGaQV91fZQoaAZHQJR/wTg2qDNoB03oA2gIR0Co7G9deIEbdX2UKGgGR0CS8w2i+L3saAdN6ANoCEdAqO55kNFz+3V9lChoBkdAlDbWtdRiw2gHTegDaAhHQKjwiyYXwb51fZQoaAZHQJBwA0HhS+BoB03oA2gIR0Co8VI/RmbtdX2UKGgGR0CV7z+kxh2GaAdN6ANoCEdAqPi90Lc9GXV9lChoBkdAleIepfhMrWgHTegDaAhHQKj6t1gYxcp1fZQoaAZHQJbFBiONo8JoB03oA2gIR0Co/NJm29csdWUu"
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ef12f481f78ffca4d9f30ae722abfaa703f33ccd3254aa9ff79e3a4128e80ff
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:537170d09d935d54ca8d9a01bf1c41e56a3788f661b365398e092f72223a6bfe
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5b5359fd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5b5359fdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5b5359fe50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5b5359fee0>", "_build": "<function ActorCriticPolicy._build at 0x7f5b5359ff70>", "forward": "<function ActorCriticPolicy.forward at 0x7f5b535a3040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5b535a30d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5b535a3160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5b535a31f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5b535a3280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5b535a3310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5b535a33a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5b53599b40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674092824836061930, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHcTQD+CNFo/oV+dPsOe4T+H6kK/KEG0vz7uPL1IFZe/DeAyPw18Hb9ITKw/NGl/v9k/Pb9Cy1I/v58Svi8ZJD/LTM6/YQm4O3RyZz+Kzao8aBOUvhzLIj9gxSe/WEGLP3VjVT8yvdm/jjDnPvMvmb8bteW+l3ZTP+uVpT46aBg/xx/TPt8sH770kF2+eYD/vXijYT3Y8oS/QkZDv/mR5z43eIq9J9PQvYI6Aj/NuYk8yQCBP1a//b597Aw82zSPvuXgEb9gihy/dYMIPqeNab1uj5m/+H0WP44w5z536FU/WyI9QKJMHL/DTLY+NmjxvrcYfr57q3zAccCDP/Pto77roYK/ljuLQO1lNT8VvotAGM+Tv+xm1zxtBSdA1KjcPLLtEMDyA8q8CTrrP4rMuzx8UEG/f/Fkv32bFcDIDqS8bo+ZvzK92b+GvA3A8y+Zvwh9Kj8PVL4/I46Xvj1sqz8YcOm97om9PwGWSb/muga/nV1cvd6rsL/inCY/QbMxP62Ut74I9krALeQCP2voarwfOs+9UQYWwFnJFr9E73k/EeYxPhYvAcAUrIu+y3AdwHVjVT/4fRY/jjDnPvMvmb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABVgNE0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcZFrPQAAAABD2+K/AAAAAGi11T0AAAAAFIXzPwAAAADLKem9AAAAAGyZ4j8AAAAAzwSzvQAAAACb2tu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAvyw8NgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLqZvb0AAAAAqhMAwAAAAABjYKu9AAAAACL8/z8AAAAAnSFsPQAAAABDUvA/AAAAAMvZQr0AAAAA9gLovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwWHDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA4IOe9AAAAALk/6r8AAAAAJR3MPQAAAAA38+w/AAAAACAeAb4AAAAA8Ef8PwAAAADnC028AAAAAEs8978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAruMK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD7TLPAAAAACb4+O/AAAAAECKET4AAAAAb4HdPwAAAACQnEq9AAAAAHqv9j8AAAAAIhcFPgAAAABb3ti/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQInWtINEw36MAWyUTegDjAF0lEdAp83DJOnEVHV9lChoBkdAZWlTZxrBTGgHTegDaAhHQKfPwEg4ffZ1fZQoaAZHQJJg2bqhUR5oB03oA2gIR0Cn0IrHlwLmdX2UKGgGR0CQ8YmW+oLoaAdN6ANoCEdAp9HHMdLg43V9lChoBkdASexL/S6UaGgHS6RoCEdAp9KG18b70nV9lChoBkdAY84hkiD/VGgHTegDaAhHQKfZ+GZ/kNp1fZQoaAZHQIN99xdY4hloB03oA2gIR0Cn2+4j8k2QdX2UKGgGR0CIx3Ms6JZXaAdN6ANoCEdAp94Er3CbdHV9lChoBkdAf15MhHLA6GgHTegDaAhHQKfewcxTKkl1fZQoaAZHQGkoOU+s5n1oB03oA2gIR0Cn5nRUWEbpdX2UKGgGR0CBp3/7SApbaAdN6ANoCEdAp+h+XLNfPXV9lChoBkdAkSuJIxxku2gHTegDaAhHQKfqnkCFK051fZQoaAZHQH/ZBq9GqghoB03oA2gIR0Cn62VOKwY+dX2UKGgGR0CRWA27nPmgaAdN6ANoCEdAp/LwRf4REnV9lChoBkdAlDoONPxhD2gHTegDaAhHQKf1A+mm+Cd1fZQoaAZHQJRB/oicG1RoB03oA2gIR0Cn9xlt0mtydX2UKGgGR0CVM+butwJgaAdN6ANoCEdAp/fhvR7Z4HV9lChoBkdAlFg6KgqVhWgHTegDaAhHQKf/VldTo+x1fZQoaAZHQJMyIpnYg7poB03oA2gIR0CoAWG/etSydX2UKGgGR0CO6+0ZWJaaaAdN6ANoCEdAqANxqIrOJXV9lChoBkdAleb1AVwgkmgHTegDaAhHQKgEOPS2H+J1fZQoaAZHQJN9Ka8YhuBoB03oA2gIR0CoC38274BWdX2UKGgGR0CUwPgMMI/raAdN6ANoCEdAqA2Ig5imVXV9lChoBkdAlxMkhNdqtmgHTegDaAhHQKgPokLx7Rh1fZQoaAZHQIqidIClrM1oB03oA2gIR0CoEGf0mMOxdX2UKGgGR0CT789A5aNdaAdN6ANoCEdAqBfLah6By3V9lChoBkdAk6CPkili0GgHTegDaAhHQKgZ1Mr3Cbd1fZQoaAZHQI6xAwZflZJoB03oA2gIR0CoG/FR51NhdX2UKGgGR0CSrClnAZbZaAdN6ANoCEdAqBy0dmxt53V9lChoBkdAfqG/p+tr9GgHTegDaAhHQKgkkeo1k2B1fZQoaAZHQIhB+r6tT1loB03oA2gIR0CoJpZGBnSOdX2UKGgGR0CKQ2iC8OCoaAdN6ANoCEdAqCiiJGe+VXV9lChoBkdAkC7ih8IAwWgHTegDaAhHQKgpWThYNiJ1fZQoaAZHQJNnvRBu4w1oB03oA2gIR0CoMNLEDQqqdX2UKGgGR0CYbmjAi3XqaAdN6ANoCEdAqDLV4NZvDXV9lChoBkdAg2kzLns9jmgHTegDaAhHQKg0+XsPatd1fZQoaAZHQJU9e19fCyhoB03oA2gIR0CoNcGGEf1ZdX2UKGgGR0CDeSKhL5ARaAdN6ANoCEdAqD1K6jFhonV9lChoBkdAkrcFQyhzvWgHTegDaAhHQKg/VkWAPNF1fZQoaAZHQJfVAHnlnyxoB03oA2gIR0CoQWetr9EUdX2UKGgGR0CVNa0HyEteaAdN6ANoCEdAqEIlR+BpYnV9lChoBkdAkPOJLEk0JmgHTegDaAhHQKhJzCO3lS11fZQoaAZHQJR6+i0v4/NoB03oA2gIR0CoS8h1klNUdX2UKGgGR0B78EP1+RYBaAdN6ANoCEdAqE3jxTbWVnV9lChoBkdAkGVEUXYUWWgHTegDaAhHQKhOoRlHz6J1fZQoaAZHQJX5iV9nbqRoB03oA2gIR0CoVgkSVW0adX2UKGgGR0CS1jIZIg/1aAdN6ANoCEdAqFfvHxSYPXV9lChoBkdAkwVcMd92HWgHTegDaAhHQKhaAgbp/w11fZQoaAZHQJSeQt9QXRBoB03oA2gIR0CoWraNlyzYdX2UKGgGR0CU82cvduYQaAdN6ANoCEdAqGIaUFB6bHV9lChoBkdATSSU1Q66rmgHTegDaAhHQKhkFVYp2EF1fZQoaAZHQJFwYicG1QZoB03oA2gIR0CoZju6ErXldX2UKGgGR0CTFapI+W4WaAdN6ANoCEdAqGbziMo+fXV9lChoBkdAkEXNEofCAWgHTegDaAhHQKhufkU9IPN1fZQoaAZHQIhIBnWattBoB03oA2gIR0CocHqXv6TGdX2UKGgGR0CX+IpbD/EPaAdN6ANoCEdAqHKJ93KSxXV9lChoBkdAg0U69bor4GgHTegDaAhHQKhzPwcYIjZ1fZQoaAZHQJAgPVEuxr1oB03oA2gIR0CoeqP863iJdX2UKGgGR0CQvdPYFqzraAdN6ANoCEdAqHyfIKc/dXV9lChoBkdAkLVFI/Z/TmgHTegDaAhHQKh+slZ5iVl1fZQoaAZHQI2WIdyT6i1oB03oA2gIR0Cof24u9OARdX2UKGgGR0CSbWNUOuq4aAdN6ANoCEdAqIbXRArxzHV9lChoBkdAkAJY287IUGgHTegDaAhHQKiI1yMDOkd1fZQoaAZHQJJQGDh99c9oB03oA2gIR0CoiucwxnFpdX2UKGgGR0CP/JRBu4wzaAdN6ANoCEdAqIuqDdxhlXV9lChoBkdAk6MtPgvUSmgHTegDaAhHQKiTBUpd8iR1fZQoaAZHQJJdEJTl1bJoB03oA2gIR0ColP7wKBuodX2UKGgGR0CR00wAU+LWaAdN6ANoCEdAqJcSv1UVBXV9lChoBkdAiHbEdeY2KmgHTegDaAhHQKiX15hScb11fZQoaAZHQIbEatYB/7VoB03oA2gIR0Con2iPhhphdX2UKGgGR0CS1lfMOf/WaAdN6ANoCEdAqKFxjMFEA3V9lChoBkdAkgL894eLemgHTegDaAhHQKijg1cdHUd1fZQoaAZHQJUdzxWkrPNoB03oA2gIR0CopEOh9LHudX2UKGgGR0CL3k3PzFuOaAdN6ANoCEdAqKvB2U0N0HV9lChoBkdAko+4fSx7iWgHTegDaAhHQKit0SJ0nw51fZQoaAZHQIVyAA2hqTNoB03oA2gIR0CosIt9H+ZPdX2UKGgGR0CTbh0rK/21aAdN6ANoCEdAqLGWoBJZn3V9lChoBkdAlVcjk6tDD2gHTegDaAhHQKi7NTn7pFF1fZQoaAZHQJSniZ8a4tpoB03oA2gIR0CovUYnndO7dX2UKGgGR0CXE0fvnbItaAdN6ANoCEdAqL9Tg4wRG3V9lChoBkdAl5ps1O0sv2gHTegDaAhHQKjAExKxs2x1fZQoaAZHQJZwrlgc94hoB03oA2gIR0Cox2M6zVtodX2UKGgGR0CW0rTF2mpEaAdN6ANoCEdAqMlMQmNR33V9lChoBkdAl1rY3Jgb62gHTegDaAhHQKjLVaxoqTd1fZQoaAZHQJd3JUS7GvRoB03oA2gIR0CozB6qjrRjdX2UKGgGR0CXwIuyNXHSaAdN6ANoCEdAqNOCT+vQnnV9lChoBkdAmXKpsGgSOGgHTegDaAhHQKjVjw2ETQF1fZQoaAZHQJht/AwfyPNoB03oA2gIR0Co16sir1dxdX2UKGgGR0CQzJWE9MbnaAdN6ANoCEdAqNhvX/YJ3XV9lChoBkdAmJCnTI/7i2gHTegDaAhHQKjgE1dgOSZ1fZQoaAZHQJWDqnDR+jNoB03oA2gIR0Co4hnhsImgdX2UKGgGR0CVuGM6zVtoaAdN6ANoCEdAqOQy57PY4HV9lChoBkdAl1qAOvt+kWgHTegDaAhHQKjk8LGaQV91fZQoaAZHQJR/wTg2qDNoB03oA2gIR0Co7G9deIEbdX2UKGgGR0CS8w2i+L3saAdN6ANoCEdAqO55kNFz+3V9lChoBkdAlDbWtdRiw2gHTegDaAhHQKjwiyYXwb51fZQoaAZHQJBwA0HhS+BoB03oA2gIR0Co8VI/RmbtdX2UKGgGR0CV7z+kxh2GaAdN6ANoCEdAqPi90Lc9GXV9lChoBkdAleIepfhMrWgHTegDaAhHQKj6t1gYxcp1fZQoaAZHQJbFBiONo8JoB03oA2gIR0Co/NJm29csdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb6d3a582f81398342b55587b38e938f35eeca68426e186839d5785681de31b4
|
3 |
+
size 1027104
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1396.4225232403842, "std_reward": 145.38593708984084, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T02:42:58.992144"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e63d8707a3b022066e28559cda4ac85782463dbb99c0e52a19802a1b4d91ec4
|
3 |
+
size 2521
|