File size: 9,585 Bytes
371a1da
54762f6
371a1da
 
 
 
 
 
 
 
 
54762f6
 
 
 
 
 
 
 
 
 
 
 
371a1da
54762f6
 
 
 
 
 
 
 
 
 
 
 
 
 
371a1da
 
54762f6
371a1da
54762f6
371a1da
 
 
 
 
 
 
 
 
 
54762f6
371a1da
 
 
 
 
 
 
 
 
 
 
 
 
54762f6
 
 
 
 
 
 
 
 
 
 
 
 
 
371a1da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54762f6
371a1da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54762f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371a1da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
base_model: BAAI/bge-small-en-v1.5
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: How does the choice of oxidizer, such as liquid oxygen or nitrogen tetroxide,
    affect the performance and handling requirements of a rocket engine?
- text: Rocket engines designed for vacuum operation often incorporate radiative cooling
    methods, utilizing large surface areas to dissipate heat in the absence of convective
    cooling mechanisms.
- text: Thermo-optical properties of surface materials, such as absorptivity and emissivity,
    are critical parameters in the design of the thermal control subsystem.
- text: The thrust produced by a rocket engine is a function of the mass flow rate
    of the propellant and the velocity of the exhaust gases as they exit the nozzle.
- text: Thermal analysis of a satellite involves finite element modeling to predict
    temperature gradients and ensure proper thermal design and component placement.
inference: true
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 1.0
      name: Accuracy
---

# SetFit with BAAI/bge-small-en-v1.5

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label           | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|:----------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Propulsion      | <ul><li>"Rocket engines operate on the principle of Newton's Third Law of Motion, where the expulsion of high-speed exhaust gases produces a reaction force that propels the rocket forward."</li><li>'The combustion efficiency of a rocket engine depends on factors like propellant mixture ratio, injector design, and combustion chamber pressure.'</li><li>'Deep throttling capability, which allows a rocket engine to vary its thrust over a wide range, is essential for applications requiring precise landing maneuvers, such as lunar landers.'</li></ul>                          |
| Power Subsystem | <ul><li>'Redundant power paths and autonomous fault detection mechanisms are implemented to ensure continuous electrical supply even in the event of subsystem failures or external anomalies.'</li><li>'Electromagnetic interference (EMI) shielding and grounding techniques are essential in satellite design to prevent power system noise from affecting sensitive communication and navigation subsystems.'</li><li>'Autonomous diagnostic and recovery protocols are embedded within the power management system to isolate and rectify faults, ensuring mission continuity.'</li></ul> |
| Thermal Control | <ul><li>'The thermal control subsystem must accommodate both internal heat generated by electronic components and external thermal loads from the space environment.'</li><li>'Describe the impact of albedo and infrared emissions from Earth on satellite thermal design.'</li><li>'Passive thermal control elements, such as multi-layer insulation (MLI), surface coatings, and radiators, are used to minimize thermal fluctuations and radiation absorption.'</li></ul>                                                                                                                  |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 1.0      |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("patrickfleith/my-awesome-astro-text-classifier")
# Run inference
preds = model("How does the choice of oxidizer, such as liquid oxygen or nitrogen tetroxide, affect the performance and handling requirements of a rocket engine?")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 11  | 22.2368 | 30  |

| Label           | Training Sample Count |
|:----------------|:----------------------|
| Propulsion      | 15                    |
| Thermal Control | 14                    |
| Power Subsystem | 9                     |

### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0333 | 1    | 0.2377        | -               |
| 1.6667 | 50   | 0.0551        | -               |
| 3.3333 | 100  | 0.0046        | -               |
| 5.0    | 150  | 0.0031        | -               |
| 6.6667 | 200  | 0.0024        | -               |
| 8.3333 | 250  | 0.0022        | -               |
| 10.0   | 300  | 0.002         | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->