- Real-Time Violence Detection Using CNN-LSTM Violence rates however have been brought down about 57% during the span of the past 4 decades yet it doesn't change the way that the demonstration of violence actually happens, unseen by the law. Violence can be mass controlled sometimes by higher authorities, however, to hold everything in line one must "Microgovern" over each movement occurring in every road of each square. To address the butterfly effects impact in our setting, I made a unique model and a theorized system to handle the issue utilizing deep learning. The model takes the input of the CCTV video feeds and after drawing inference, recognizes if a violent movement is going on. And hypothesized architecture aims towards probability-driven computation of video feeds and reduces overhead from naively computing for every CCTV video feeds. 1 authors · Jul 15, 2021
- Video Vision Transformers for Violence Detection Law enforcement and city safety are significantly impacted by detecting violent incidents in surveillance systems. Although modern (smart) cameras are widely available and affordable, such technological solutions are impotent in most instances. Furthermore, personnel monitoring CCTV recordings frequently show a belated reaction, resulting in the potential cause of catastrophe to people and property. Thus automated detection of violence for swift actions is very crucial. The proposed solution uses a novel end-to-end deep learning-based video vision transformer (ViViT) that can proficiently discern fights, hostile movements, and violent events in video sequences. The study presents utilizing a data augmentation strategy to overcome the downside of weaker inductive biasness while training vision transformers on a smaller training datasets. The evaluated results can be subsequently sent to local concerned authority, and the captured video can be analyzed. In comparison to state-of-theart (SOTA) approaches the proposed method achieved auspicious performance on some of the challenging benchmark datasets. 6 authors · Sep 8, 2022