new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 13

DPO Meets PPO: Reinforced Token Optimization for RLHF

In the classical Reinforcement Learning from Human Feedback (RLHF) framework, Proximal Policy Optimization (PPO) is employed to learn from sparse, sentence-level rewards -- a challenging scenario in traditional deep reinforcement learning. Despite the great successes of PPO in the alignment of state-of-the-art closed-source large language models (LLMs), its open-source implementation is still largely sub-optimal, as widely reported by numerous research studies. To address these issues, we introduce a framework that models RLHF problems as a Markov decision process (MDP), enabling the capture of fine-grained token-wise information. Furthermore, we provide theoretical insights that demonstrate the superiority of our MDP framework over the previous sentence-level bandit formulation. Under this framework, we introduce an algorithm, dubbed as Reinforced Token Optimization (RTO), which learns the token-wise reward function from preference data and performs policy optimization based on this learned token-wise reward signal. Theoretically, RTO is proven to have the capability of finding the near-optimal policy sample-efficiently. For its practical implementation, RTO innovatively integrates Direct Preference Optimization (DPO) and PPO. DPO, originally derived from sparse sentence rewards, surprisingly provides us with a token-wise characterization of response quality, which is seamlessly incorporated into our subsequent PPO training stage. Extensive real-world alignment experiments verify the effectiveness of the proposed approach.

Generating refactored code accurately using reinforcement learning

Automated source code refactoring, particularly extract method refactoring, is a crucial and frequently employed technique during software development. Despite its importance and frequent use by practitioners, current automated techniques face significant limitations. These approaches often rely on developers to identify the precise bounds of refactoring opportunities in terms of source code statements. Also, they often do not capture the semantic context, resulting in offering no automated means to suggest meaningful method name, for instance. To address these challenges, we propose a novel reinforcement learning-based approach for fine-tuning and aligning code language models to perform automated, intelligent extract method refactoring on Java source code. Our approach fine-tunes sequence-to-sequence generative models and aligns them using the Proximal Policy Optimization (PPO) algorithm. We utilize code compilation and presence of the refactoring in the generated code as reward signals, providing a code-centric optimization process. Our experiments demonstrate that our approach significantly enhances the performance of large language models in code refactoring, as evidenced by both quantitative evaluation metrics such as BLEU, ROUGE, and CodeBLEU, and qualitative measures including syntactical and functional correctness. The supervised fine-tuned model, further aligned with PPO, surpasses traditional supervised fine-tuning by 11.96% and 16.45% in terms of BLEU and CodeBLEU scores, respectively. When subjected to a suite of 122 unit tests, the number of successful tests increased from 41 to 66 for the reinforcement learning aligned fine-tuned Code-T5 model, highlighting the effectiveness of our approach in producing functionally correct refactorings.