new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 13

Softplus Attention with Re-weighting Boosts Length Extrapolation in Large Language Models

Large language models have achieved remarkable success in recent years, primarily due to the implementation of self-attention mechanisms. However, traditional Softmax attention suffers from numerical instability and reduced performance as the length of inference tokens increases. This paper addresses these issues by decomposing the Softmax operation into a non-linear transformation and the l_1-norm. We identify the latter as essential for maintaining model performance. By replacing the non-linear transformation with the Softplus activation function and introducing a dynamic scale factor for different token lengths based on invariance entropy, we create a novel attention mechanism with performance better than conventional Softmax attention across various inference lengths. To further improve the length extrapolation ability of the proposed attention mechanism, we introduce a fine-tuning-free re-weighting mechanism that amplifies significant attention weights while diminishing weaker ones, enabling the model to concentrate more effectively on relevant tokens without requiring retraining. When combined with our proposed attention mechanism, this approach demonstrates significant promise in managing longer sequences, maintaining nearly constant validation loss even at 16times the training token length while ensuring numerical stability. Our code is available at: https://github.com/iminfine/freeatten.

DOEI: Dual Optimization of Embedding Information for Attention-Enhanced Class Activation Maps

Weakly supervised semantic segmentation (WSSS) typically utilizes limited semantic annotations to obtain initial Class Activation Maps (CAMs). However, due to the inadequate coupling between class activation responses and semantic information in high-dimensional space, the CAM is prone to object co-occurrence or under-activation, resulting in inferior recognition accuracy. To tackle this issue, we propose DOEI, Dual Optimization of Embedding Information, a novel approach that reconstructs embedding representations through semantic-aware attention weight matrices to optimize the expression capability of embedding information. Specifically, DOEI amplifies tokens with high confidence and suppresses those with low confidence during the class-to-patch interaction. This alignment of activation responses with semantic information strengthens the propagation and decoupling of target features, enabling the generated embeddings to more accurately represent target features in high-level semantic space. In addition, we propose a hybrid-feature alignment module in DOEI that combines RGB values, embedding-guided features, and self-attention weights to increase the reliability of candidate tokens. Comprehensive experiments show that DOEI is an effective plug-and-play module that empowers state-of-the-art visual transformer-based WSSS models to significantly improve the quality of CAMs and segmentation performance on popular benchmarks, including PASCAL VOC (+3.6%, +1.5%, +1.2% mIoU) and MS COCO (+1.2%, +1.6% mIoU). Code will be available at https://github.com/AIGeeksGroup/DOEI.

Giraffe: Adventures in Expanding Context Lengths in LLMs

Modern large language models (LLMs) that rely on attention mechanisms are typically trained with fixed context lengths which enforce upper limits on the length of input sequences that they can handle at evaluation time. To use these models on sequences longer than the train-time context length, one might employ techniques from the growing family of context length extrapolation methods -- most of which focus on modifying the system of positional encodings used in the attention mechanism to indicate where tokens or activations are located in the input sequence. We conduct a wide survey of existing methods of context length extrapolation on a base LLaMA or LLaMA 2 model, and introduce some of our own design as well -- in particular, a new truncation strategy for modifying the basis for the position encoding. We test these methods using three new evaluation tasks (FreeFormQA, AlteredNumericQA, and LongChat-Lines) as well as perplexity, which we find to be less fine-grained as a measure of long context performance of LLMs. We release the three tasks publicly as datasets on HuggingFace. We discover that linear scaling is the best method for extending context length, and show that further gains can be achieved by using longer scales at evaluation time. We also discover promising extrapolation capabilities in the truncated basis. To support further research in this area, we release three new 13B parameter long-context models which we call Giraffe: 4k and 16k context models trained from base LLaMA-13B, and a 32k context model trained from base LLaMA2-13B. We also release the code to replicate our results.

See What You Are Told: Visual Attention Sink in Large Multimodal Models

Large multimodal models (LMMs) "see" images by leveraging the attention mechanism between text and visual tokens in the transformer decoder. Ideally, these models should focus on key visual information relevant to the text token. However, recent findings indicate that LMMs have an extraordinary tendency to consistently allocate high attention weights to specific visual tokens, even when these tokens are irrelevant to the corresponding text. In this study, we investigate the property behind the appearance of these irrelevant visual tokens and examine their characteristics. Our findings show that this behavior arises due to the massive activation of certain hidden state dimensions, which resembles the attention sink found in language models. Hence, we refer to this phenomenon as the visual attention sink. In particular, our analysis reveals that removing the irrelevant visual sink tokens does not impact model performance, despite receiving high attention weights. Consequently, we recycle the attention to these tokens as surplus resources, redistributing the attention budget to enhance focus on the image. To achieve this, we introduce Visual Attention Redistribution (VAR), a method that redistributes attention in image-centric heads, which we identify as innately focusing on visual information. VAR can be seamlessly applied across different LMMs to improve performance on a wide range of tasks, including general vision-language tasks, visual hallucination tasks, and vision-centric tasks, all without the need for additional training, models, or inference steps. Experimental results demonstrate that VAR enables LMMs to process visual information more effectively by adjusting their internal attention mechanisms, offering a new direction to enhancing the multimodal capabilities of LMMs.

Unveiling and Harnessing Hidden Attention Sinks: Enhancing Large Language Models without Training through Attention Calibration

Attention is a fundamental component behind the remarkable achievements of large language models (LLMs). However, our current understanding of the attention mechanism, especially regarding how attention distributions are established, remains limited. Inspired by recent studies that explore the presence of attention sink in the initial token, which receives disproportionately large attention scores despite their lack of semantic importance, this work delves deeper into this phenomenon. We aim to provide a more profound understanding of the existence of attention sinks within LLMs and to uncover ways to enhance the achievable accuracy of LLMs by directly optimizing the attention distributions, without the need for weight finetuning. Specifically, this work begins with comprehensive visualizations of the attention distributions in LLMs during inference across various inputs and tasks. Based on these visualizations, to the best of our knowledge, we are the first to discover that (1) attention sinks occur not only at the start of sequences but also within later tokens of the input, and (2) not all attention sinks have a positive impact on the achievable accuracy of LLMs. Building upon our findings, we propose a training-free Attention Calibration Technique (ACT) that automatically optimizes the attention distributions on the fly during inference in an input-adaptive manner. Extensive experiments validate that ACT consistently enhances the accuracy of various LLMs across different applications. Specifically, ACT achieves an average improvement of up to 7.30% in accuracy across different datasets when applied to Llama-30B. Our code is available at https://github.com/GATECH-EIC/ACT.

Fixing Imbalanced Attention to Mitigate In-Context Hallucination of Large Vision-Language Model

Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models frequently exhibit hallucination behavior, where they generate descriptions containing objects or details absent in the input image. Our work investigates this phenomenon by analyzing attention patterns across transformer layers and heads, revealing that hallucinations often stem from progressive degradation of visual grounding in deeper layers. We propose a novel attention modification approach that combines selective token emphasis and head-specific modulation to maintain visual grounding throughout the generation process. Our method introduces two key components: (1) a dual-stream token selection mechanism that identifies and prioritizes both locally informative and spatially significant visual tokens, and (2) an attention head-specific modulation strategy that differentially amplifies visual information processing based on measured visual sensitivity of individual attention heads. Through extensive experimentation on the MSCOCO dataset, we demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining comparable task performance. Our analysis reveals that selectively modulating tokens across attention heads with varying levels of visual sensitivity can significantly improve visual grounding without requiring model retraining.

Landmark Attention: Random-Access Infinite Context Length for Transformers

While transformers have shown remarkable success in natural language processing, their attention mechanism's large memory requirements have limited their ability to handle longer contexts. Prior approaches, such as recurrent memory or retrieval-based augmentation, have either compromised the random-access flexibility of attention (i.e., the capability to select any token in the entire context) or relied on separate mechanisms for relevant context retrieval, which may not be compatible with the model's attention. In this paper, we present a novel approach that allows access to the complete context while retaining random-access flexibility, closely resembling running attention on the entire context. Our method uses a landmark token to represent each block of the input and trains the attention to use it for selecting relevant blocks, enabling retrieval of blocks directly through the attention mechanism instead of by relying on a separate mechanism. Our approach seamlessly integrates with specialized data structures and the system's memory hierarchy, enabling processing of arbitrarily long context lengths. We demonstrate that our method can obtain comparable performance with Transformer-XL while significantly reducing the number of retrieved tokens in each step. Finally, we show that fine-tuning LLaMA 7B with our method successfully extends its context length capacity up to 32k tokens, allowing for inference at the context lengths of GPT-4.

When Attention Sink Emerges in Language Models: An Empirical View

Language Models (LMs) assign significant attention to the first token, even if it is not semantically important, which is known as attention sink. This phenomenon has been widely adopted in applications such as streaming/long context generation, KV cache optimization, inference acceleration, model quantization, and others. Despite its widespread use, a deep understanding of attention sink in LMs is still lacking. In this work, we first demonstrate that attention sinks exist universally in LMs with various inputs, even in small models. Furthermore, attention sink is observed to emerge during the LM pre-training, motivating us to investigate how optimization, data distribution, loss function, and model architecture in LM pre-training influence its emergence. We highlight that attention sink emerges after effective optimization on sufficient training data. The sink position is highly correlated with the loss function and data distribution. Most importantly, we find that attention sink acts more like key biases, storing extra attention scores, which could be non-informative and not contribute to the value computation. We also observe that this phenomenon (at least partially) stems from tokens' inner dependence on attention scores as a result of softmax normalization. After relaxing such dependence by replacing softmax attention with other attention operations, such as sigmoid attention without normalization, attention sinks do not emerge in LMs up to 1B parameters. The code is available at https://github.com/sail-sg/Attention-Sink.

Core Context Aware Attention for Long Context Language Modeling

Transformer-based Large Language Models (LLMs) have exhibited remarkable success in various natural language processing tasks primarily attributed to self-attention mechanism, which requires a token to consider all preceding tokens as its context to compute the attention score. However, when the context length L becomes very large (e.g., 32K), more redundant context information will be included w.r.t. any tokens, making the self-attention suffer from two main limitations: 1) The computational and memory complexity scales quadratically w.r.t. L; 2) The presence of redundant context information may hamper the model to capture dependencies among crucial tokens, which may degrade the representation performance. In this paper, we propose a plug-and-play Core Context Aware (CCA) Attention for efficient long-range context modeling, which consists of two components: 1) Globality-pooling attention that divides input tokens into groups and then dynamically merges tokens within each group into one core token based on their significance; 2) Locality-preserved attention that incorporates neighboring tokens into the attention calculation. The two complementary attentions will then be fused to the final attention, maintaining comprehensive modeling ability as the full self-attention. In this way, the core context information w.r.t. a given token will be automatically focused and strengthened, while the context information in redundant groups will be diminished during the learning process. As a result, the computational and memory complexity will be significantly reduced. More importantly, the CCA-Attention can improve the long-context modeling ability by diminishing the redundant context information. Extensive experimental results demonstrate that our CCA-Attention significantly outperforms state-of-the-art models in terms of computational efficiency and long-context modeling ability.

Active-Dormant Attention Heads: Mechanistically Demystifying Extreme-Token Phenomena in LLMs

Practitioners have consistently observed three puzzling phenomena in transformer-based large language models (LLMs): attention sinks, value-state drains, and residual-state peaks, collectively referred to as extreme-token phenomena. These phenomena are characterized by certain so-called "sink tokens" receiving disproportionately high attention weights, exhibiting significantly smaller value states, and having much larger residual-state norms than those of other tokens. These extreme tokens give rise to various challenges in LLM inference, quantization, and interpretability. We elucidate the mechanisms behind extreme-token phenomena. First, we show that these phenomena arise in very simple architectures -- transformers with one to three layers -- trained on a toy model, the Bigram-Backcopy (BB) task. In this setting, we identify an active-dormant mechanism, where attention heads become sinks for specific input domains while remaining non-sinks for others. Our theoretical analysis of the training dynamics reveals that these phenomena are driven by a mutual reinforcement mechanism. Building on these insights, we propose strategies to mitigate extreme-token phenomena during pretraining, including replacing softmax with ReLU and Adam with SGD. Next, we extend our analysis to pretrained LLMs, including Llama and OLMo, showing that many attention heads exhibit a similar active-dormant mechanism as in the BB task, and that the mutual reinforcement mechanism also governs the emergence of extreme-token phenomena during LLM pretraining. Our results reveal that many of the static and dynamic properties of extreme-token phenomena predicted by the BB task align with observations in pretrained LLMs.

Sparsifiner: Learning Sparse Instance-Dependent Attention for Efficient Vision Transformers

Vision Transformers (ViT) have shown their competitive advantages performance-wise compared to convolutional neural networks (CNNs) though they often come with high computational costs. To this end, previous methods explore different attention patterns by limiting a fixed number of spatially nearby tokens to accelerate the ViT's multi-head self-attention (MHSA) operations. However, such structured attention patterns limit the token-to-token connections to their spatial relevance, which disregards learned semantic connections from a full attention mask. In this work, we propose a novel approach to learn instance-dependent attention patterns, by devising a lightweight connectivity predictor module to estimate the connectivity score of each pair of tokens. Intuitively, two tokens have high connectivity scores if the features are considered relevant either spatially or semantically. As each token only attends to a small number of other tokens, the binarized connectivity masks are often very sparse by nature and therefore provide the opportunity to accelerate the network via sparse computations. Equipped with the learned unstructured attention pattern, sparse attention ViT (Sparsifiner) produces a superior Pareto-optimal trade-off between FLOPs and top-1 accuracy on ImageNet compared to token sparsity. Our method reduces 48% to 69% FLOPs of MHSA while the accuracy drop is within 0.4%. We also show that combining attention and token sparsity reduces ViT FLOPs by over 60%.

Interpreting Key Mechanisms of Factual Recall in Transformer-Based Language Models

In this paper, we delve into several mechanisms employed by Transformer-based language models (LLMs) for factual recall tasks. We outline a pipeline consisting of three major steps: (1) Given a prompt ``The capital of France is,'' task-specific attention heads extract the topic token, such as ``France,'' from the context and pass it to subsequent MLPs. (2) As attention heads' outputs are aggregated with equal weight and added to the residual stream, the subsequent MLP acts as an ``activation,'' which either erases or amplifies the information originating from individual heads. As a result, the topic token ``France'' stands out in the residual stream. (3) A deep MLP takes ``France'' and generates a component that redirects the residual stream towards the direction of the correct answer, i.e., ``Paris.'' This procedure is akin to applying an implicit function such as ``get\_capital(X),'' and the argument X is the topic token information passed by attention heads. To achieve the above quantitative and qualitative analysis for MLPs, we proposed a novel analytic method aimed at decomposing the outputs of the MLP into components understandable by humans. Additionally, we observed a universal anti-overconfidence mechanism in the final layer of models, which suppresses correct predictions. We mitigate this suppression by leveraging our interpretation to improve factual recall confidence. The above interpretations are evaluated across diverse tasks spanning various domains of factual knowledge, using various language models from the GPT-2 families, 1.3B OPT, up to 7B Llama-2, and in both zero- and few-shot setups.

[CLS] Token Tells Everything Needed for Training-free Efficient MLLMs

Multimodal Large Language Models (MLLMs) have recently demonstrated strong performance across a wide range of vision-language tasks, garnering significant attention in the computer vision. However, their efficient deployment remains a substantial challenge due to high computational costs and memory requirements. Recognizing the redundancy of information within the vision modality, recent studies have explored methods for compressing visual tokens in MLLMs to enhance efficiency in a training-free manner. Despite their effectiveness, existing methods like Fast rely on the attention between visual tokens and prompt text tokens as the importance indicator, overlooking the relevance to response text and thus introducing perception bias. In this paper, we demonstrate that in MLLMs, the [CLS] token in the visual encoder inherently knows which visual tokens are important for MLLMs. Building on this prior, we introduce a simple yet effective method for train-free visual token compression, called VTC-CLS. Firstly, it leverages the attention score of the [CLS] token on visual tokens as an importance indicator for pruning visual tokens. Besides, we also explore ensembling the importance scores derived by the [CLS] token from different layers to capture the key visual information more comprehensively. Extensive experiments demonstrate that our VTC-CLS achieves the state-of-the-art performance across various tasks compared with baseline methods. It also brings notably less computational costs in a training-free manner, highlighting its effectiveness and superiority. Code and models are available at https://github.com/THU-MIG/VTC-CLS.

Agent Attention: On the Integration of Softmax and Linear Attention

The attention module is the key component in Transformers. While the global attention mechanism offers high expressiveness, its excessive computational cost restricts its applicability in various scenarios. In this paper, we propose a novel attention paradigm, Agent Attention, to strike a favorable balance between computational efficiency and representation power. Specifically, the Agent Attention, denoted as a quadruple (Q, A, K, V), introduces an additional set of agent tokens A into the conventional attention module. The agent tokens first act as the agent for the query tokens Q to aggregate information from K and V, and then broadcast the information back to Q. Given the number of agent tokens can be designed to be much smaller than the number of query tokens, the agent attention is significantly more efficient than the widely adopted Softmax attention, while preserving global context modelling capability. Interestingly, we show that the proposed agent attention is equivalent to a generalized form of linear attention. Therefore, agent attention seamlessly integrates the powerful Softmax attention and the highly efficient linear attention. Extensive experiments demonstrate the effectiveness of agent attention with various vision Transformers and across diverse vision tasks, including image classification, object detection, semantic segmentation and image generation. Notably, agent attention has shown remarkable performance in high-resolution scenarios, owning to its linear attention nature. For instance, when applied to Stable Diffusion, our agent attention accelerates generation and substantially enhances image generation quality without any additional training. Code is available at https://github.com/LeapLabTHU/Agent-Attention.

TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection

With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a model-agnostic, training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a small number of critical KV cache tokens in the attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we designed the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead of token selection. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.

Improving Multi-Subject Consistency in Open-Domain Image Generation with Isolation and Reposition Attention

Training-free diffusion models have achieved remarkable progress in generating multi-subject consistent images within open-domain scenarios. The key idea of these methods is to incorporate reference subject information within the attention layer. However, existing methods still obtain suboptimal performance when handling numerous subjects. This paper reveals the two primary issues contributing to this deficiency. Firstly, there is undesired interference among different subjects within the target image. Secondly, tokens tend to reference nearby tokens, which reduces the effectiveness of the attention mechanism when there is a significant positional difference between subjects in reference and target images. To address these challenges, we propose a training-free diffusion model with Isolation and Reposition Attention, named IR-Diffusion. Specifically, Isolation Attention ensures that multiple subjects in the target image do not reference each other, effectively eliminating the subject fusion. On the other hand, Reposition Attention involves scaling and repositioning subjects in both reference and target images to the same position within the images. This ensures that subjects in the target image can better reference those in the reference image, thereby maintaining better consistency. Extensive experiments demonstrate that the proposed methods significantly enhance multi-subject consistency, outperforming all existing methods in open-domain scenarios.

Mixture of Tunable Experts -- Behavior Modification of DeepSeek-R1 at Inference Time

We present the Mixture-of-Tunable-Experts (MoTE), a method that extends the Mixture-of-Experts architecture of Large Language Models (LLMs). Without additional training, MoTE enables meaningful and focused behavior changes in LLMs on-the-fly during inference time. By analyzing the digital LLM brain of DeepSeek-R1 using a technique we dub 'functional Token Resonance Imaging' (fTRI) -- inspired by fMRI and using prompts designed to elicit specific behavior (e.g., 'What happened {time}{place}?') -- we empirically identify distinctive experts associated with behaviors like refusal responses. Using MoTE we are able to intervene and control such specific behavior. We switched off the top 10 most refusal-relevant experts (0.07% of R1's 14,848 routed experts), achieving a 52% refusal reduction on sensitive reference prompts without performance degradation on MT-Bench. Random expert deactivation resulted in smaller behavioral shifts with increased noise, whereas forced expert activation led to significantly higher refusal rates. Our approach shares similarities with sparse autoencoders (SAEs) in terms of explainability and steerability. Unlike SAEs, MoTE does not require large training efforts, as within MoEs with a vast number of experts, specialization already emerged naturally during pretraining. Our findings suggest that significant functional mechanisms in Mixture-of-Experts architectures can at least partially be localized in a small number of specific experts, rather than being distributed throughout the model's weights. Expert subgroups can be tuned to trigger significant behavior variations, providing insights into the inner workings of LLMs.

Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings

The excessive use of visual tokens in existing Multimoal Large Language Models (MLLMs) often exhibits obvious redundancy and brings in prohibitively expensive computation. To gain insights into this problem, we first conduct extensive empirical studies on the attention behaviors of MLLMs, and summarize three main inference stages in MLLMs: (i) Early fusion between tokens is first accomplished quickly. (ii) Intra-modality modeling then comes to play. (iii) Multimodal reasoning} resumes and lasts until the end of inference. In particular, we reveal that visual tokens will stop contributing to reasoning when the text tokens receive enough image information, yielding obvious visual redundancy. Based on these generalized observations, we propose a simple yet effective method to improve the efficiency of MLLMs, termed dynamic visual-token exit (DyVTE). DyVTE uses lightweight hyper-networks to perceive the text token status and decide the removal of all visual tokens after a certain layer, thereby addressing the observed visual redundancy. To validate VTE, we apply it to a set of MLLMs, including LLaVA, VILA, Eagle and InternVL, and conduct extensive experiments on a bunch of benchmarks. The experiment results not only show the effectiveness of our VTE in improving MLLMs' efficiency, but also yield the general modeling patterns of MLLMs, well facilitating the in-depth understanding of MLLMs. Our code is anonymously released at https://github.com/DoubtedSteam/DyVTE.

Recycled Attention: Efficient inference for long-context language models

Generating long sequences of tokens given a long-context input imposes a heavy computational burden for large language models (LLMs). One of the computational bottleneck comes from computing attention over a long sequence of input at each generation step. In this paper, we propose Recycled Attention, an inference-time method which alternates between full context attention and attention over a subset of input tokens. When performing partial attention, we recycle the attention pattern of a previous token that has performed full attention and attend only to the top K most attended tokens, reducing the cost of data movement and attention computation. Compared to previously proposed inference-time acceleration method which attends only to local context or tokens with high accumulative attention scores, our approach flexibly chooses tokens that are relevant to the current decoding step. We evaluate our methods on RULER, a suite of tasks designed to comprehensively evaluate long-context abilities, and long-context language modeling tasks. Applying our method to off-the-shelf LLMs achieves comparable speedup to baselines which only consider local context while improving the performance by 2x. We further explore two ideas to improve performance-efficiency trade-offs: (1) dynamically decide when to perform recycled or full attention step based on the query similarities and (2) continued pre-training the model with Recycled Attention.

Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer

Transformer architecture has shown impressive performance in multiple research domains and has become the backbone of many neural network models. However, there is limited understanding on how it works. In particular, with a simple predictive loss, how the representation emerges from the gradient training dynamics remains a mystery. In this paper, for 1-layer transformer with one self-attention layer plus one decoder layer, we analyze its SGD training dynamics for the task of next token prediction in a mathematically rigorous manner. We open the black box of the dynamic process of how the self-attention layer combines input tokens, and reveal the nature of underlying inductive bias. More specifically, with the assumption (a) no positional encoding, (b) long input sequence, and (c) the decoder layer learns faster than the self-attention layer, we prove that self-attention acts as a discriminative scanning algorithm: starting from uniform attention, it gradually attends more to distinct key tokens for a specific next token to be predicted, and pays less attention to common key tokens that occur across different next tokens. Among distinct tokens, it progressively drops attention weights, following the order of low to high co-occurrence between the key and the query token in the training set. Interestingly, this procedure does not lead to winner-takes-all, but decelerates due to a phase transition that is controllable by the learning rates of the two layers, leaving (almost) fixed token combination. We verify this \emph{scan and snap} dynamics on synthetic and real-world data (WikiText).

BiFormer: Vision Transformer with Bi-Level Routing Attention

As the core building block of vision transformers, attention is a powerful tool to capture long-range dependency. However, such power comes at a cost: it incurs a huge computation burden and heavy memory footprint as pairwise token interaction across all spatial locations is computed. A series of works attempt to alleviate this problem by introducing handcrafted and content-agnostic sparsity into attention, such as restricting the attention operation to be inside local windows, axial stripes, or dilated windows. In contrast to these approaches, we propose a novel dynamic sparse attention via bi-level routing to enable a more flexible allocation of computations with content awareness. Specifically, for a query, irrelevant key-value pairs are first filtered out at a coarse region level, and then fine-grained token-to-token attention is applied in the union of remaining candidate regions (\ie, routed regions). We provide a simple yet effective implementation of the proposed bi-level routing attention, which utilizes the sparsity to save both computation and memory while involving only GPU-friendly dense matrix multiplications. Built with the proposed bi-level routing attention, a new general vision transformer, named BiFormer, is then presented. As BiFormer attends to a small subset of relevant tokens in a query adaptive manner without distraction from other irrelevant ones, it enjoys both good performance and high computational efficiency, especially in dense prediction tasks. Empirical results across several computer vision tasks such as image classification, object detection, and semantic segmentation verify the effectiveness of our design. Code is available at https://github.com/rayleizhu/BiFormer.

DaViT: Dual Attention Vision Transformers

In this work, we introduce Dual Attention Vision Transformers (DaViT), a simple yet effective vision transformer architecture that is able to capture global context while maintaining computational efficiency. We propose approaching the problem from an orthogonal angle: exploiting self-attention mechanisms with both "spatial tokens" and "channel tokens". With spatial tokens, the spatial dimension defines the token scope, and the channel dimension defines the token feature dimension. With channel tokens, we have the inverse: the channel dimension defines the token scope, and the spatial dimension defines the token feature dimension. We further group tokens along the sequence direction for both spatial and channel tokens to maintain the linear complexity of the entire model. We show that these two self-attentions complement each other: (i) since each channel token contains an abstract representation of the entire image, the channel attention naturally captures global interactions and representations by taking all spatial positions into account when computing attention scores between channels; (ii) the spatial attention refines the local representations by performing fine-grained interactions across spatial locations, which in turn helps the global information modeling in channel attention. Extensive experiments show our DaViT achieves state-of-the-art performance on four different tasks with efficient computations. Without extra data, DaViT-Tiny, DaViT-Small, and DaViT-Base achieve 82.8%, 84.2%, and 84.6% top-1 accuracy on ImageNet-1K with 28.3M, 49.7M, and 87.9M parameters, respectively. When we further scale up DaViT with 1.5B weakly supervised image and text pairs, DaViT-Gaint reaches 90.4% top-1 accuracy on ImageNet-1K. Code is available at https://github.com/dingmyu/davit.

StimuVAR: Spatiotemporal Stimuli-aware Video Affective Reasoning with Multimodal Large Language Models

Predicting and reasoning how a video would make a human feel is crucial for developing socially intelligent systems. Although Multimodal Large Language Models (MLLMs) have shown impressive video understanding capabilities, they tend to focus more on the semantic content of videos, often overlooking emotional stimuli. Hence, most existing MLLMs fall short in estimating viewers' emotional reactions and providing plausible explanations. To address this issue, we propose StimuVAR, a spatiotemporal Stimuli-aware framework for Video Affective Reasoning (VAR) with MLLMs. StimuVAR incorporates a two-level stimuli-aware mechanism: frame-level awareness and token-level awareness. Frame-level awareness involves sampling video frames with events that are most likely to evoke viewers' emotions. Token-level awareness performs tube selection in the token space to make the MLLM concentrate on emotion-triggered spatiotemporal regions. Furthermore, we create VAR instruction data to perform affective training, steering MLLMs' reasoning strengths towards emotional focus and thereby enhancing their affective reasoning ability. To thoroughly assess the effectiveness of VAR, we provide a comprehensive evaluation protocol with extensive metrics. StimuVAR is the first MLLM-based method for viewer-centered VAR. Experiments demonstrate its superiority in understanding viewers' emotional responses to videos and providing coherent and insightful explanations.

Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations

Vision Transformers (ViTs) take all the image patches as tokens and construct multi-head self-attention (MHSA) among them. Complete leverage of these image tokens brings redundant computations since not all the tokens are attentive in MHSA. Examples include that tokens containing semantically meaningless or distractive image backgrounds do not positively contribute to the ViT predictions. In this work, we propose to reorganize image tokens during the feed-forward process of ViT models, which is integrated into ViT during training. For each forward inference, we identify the attentive image tokens between MHSA and FFN (i.e., feed-forward network) modules, which is guided by the corresponding class token attention. Then, we reorganize image tokens by preserving attentive image tokens and fusing inattentive ones to expedite subsequent MHSA and FFN computations. To this end, our method EViT improves ViTs from two perspectives. First, under the same amount of input image tokens, our method reduces MHSA and FFN computation for efficient inference. For instance, the inference speed of DeiT-S is increased by 50% while its recognition accuracy is decreased by only 0.3% for ImageNet classification. Second, by maintaining the same computational cost, our method empowers ViTs to take more image tokens as input for recognition accuracy improvement, where the image tokens are from higher resolution images. An example is that we improve the recognition accuracy of DeiT-S by 1% for ImageNet classification at the same computational cost of a vanilla DeiT-S. Meanwhile, our method does not introduce more parameters to ViTs. Experiments on the standard benchmarks show the effectiveness of our method. The code is available at https://github.com/youweiliang/evit

Mask-Enhanced Autoregressive Prediction: Pay Less Attention to Learn More

Large Language Models (LLMs) are discovered to suffer from accurately retrieving key information. To address this, we propose Mask-Enhanced Autoregressive Prediction (MEAP), a simple yet effective training paradigm that seamlessly integrates Masked Language Modeling (MLM) into Next-Token Prediction (NTP) to enhance the latter's in-context retrieval capabilities. Specifically, MEAP first randomly masks a small fraction of input tokens and then directly performs the standard next-token prediction autoregressive using a decoder-only Transformer. MEAP eliminates the need for bidirectional attention or encoder-decoder architectures for MLM, incurring no additional computational overhead during pre-training or inference. Intensive experiments demonstrate that MEAP substantially outperforms NTP on key information retrieval and long-context reasoning tasks, while performing on par or better on commonsense reasoning tasks. The benefits of MEAP also extend to supervised fine-tuning, where it shows remarkable advantages in lost-in-the-middle scenarios, outperforming NTP by 11.77 percentage points. Our analysis indicates that MEAP's effectiveness arises from its ability to promote more distinguishable attention scores by concentrating on a reduced set of non-masked tokens. This mechanism improves the model's focus on task-relevant signals while mitigating the influence of peripheral context. These findings position MEAP as a promising training paradigm for large language models.

Planting a SEED of Vision in Large Language Model

We present SEED, an elaborate image tokenizer that empowers Large Language Models (LLMs) with the emergent ability to SEE and Draw at the same time. Research on image tokenizers has previously reached an impasse, as frameworks employing quantized visual tokens have lost prominence due to subpar performance and convergence in multimodal comprehension (compared to BLIP-2, etc.) or generation (compared to Stable Diffusion, etc.). Despite the limitations, we remain confident in its natural capacity to unify visual and textual representations, facilitating scalable multimodal training with LLM's original recipe. In this study, we identify two crucial principles for the architecture and training of SEED that effectively ease subsequent alignment with LLMs. (1) Image tokens should be independent of 2D physical patch positions and instead be produced with a 1D causal dependency, exhibiting intrinsic interdependence that aligns with the left-to-right autoregressive prediction mechanism in LLMs. (2) Image tokens should capture high-level semantics consistent with the degree of semantic abstraction in words, and be optimized for both discriminativeness and reconstruction during the tokenizer training phase. As a result, the off-the-shelf LLM is able to perform both image-to-text and text-to-image generation by incorporating our SEED through efficient LoRA tuning. Comprehensive multimodal pretraining and instruction tuning, which may yield improved results, are reserved for future investigation. This version of SEED was trained in 5.7 days using only 64 V100 GPUs and 5M publicly available image-text pairs. Our preliminary study emphasizes the great potential of discrete visual tokens in versatile multimodal LLMs and the importance of proper image tokenizers in broader research.

TidalDecode: Fast and Accurate LLM Decoding with Position Persistent Sparse Attention

Large language models (LLMs) have driven significant advancements across diverse NLP tasks, with long-context models gaining prominence for handling extended inputs. However, the expanding key-value (KV) cache size required by Transformer architectures intensifies the memory constraints, particularly during the decoding phase, creating a significant bottleneck. Existing sparse attention mechanisms designed to address this bottleneck have two limitations: (1) they often fail to reliably identify the most relevant tokens for attention, and (2) they overlook the spatial coherence of token selection across consecutive Transformer layers, which can lead to performance degradation and substantial overhead in token selection. This paper introduces TidalDecode, a simple yet effective algorithm and system for fast and accurate LLM decoding through position persistent sparse attention. TidalDecode leverages the spatial coherence of tokens selected by existing sparse attention methods and introduces a few token selection layers that perform full attention to identify the tokens with the highest attention scores, while all other layers perform sparse attention with the pre-selected tokens. This design enables TidalDecode to substantially reduce the overhead of token selection for sparse attention without sacrificing the quality of the generated results. Evaluation on a diverse set of LLMs and tasks shows that TidalDecode closely matches the generative performance of full attention methods while reducing the LLM decoding latency by up to 2.1x.

The Hidden Life of Tokens: Reducing Hallucination of Large Vision-Language Models via Visual Information Steering

Large Vision-Language Models (LVLMs) can reason effectively over both textual and visual inputs, but they tend to hallucinate syntactically coherent yet visually ungrounded contents. In this paper, we investigate the internal dynamics of hallucination by examining the tokens logits rankings throughout the generation process, revealing three key patterns in how LVLMs process information: (1) gradual visual information loss -- visually grounded tokens gradually become less favored throughout generation, and (2) early excitation -- semantically meaningful tokens achieve peak activation in the layers earlier than the final layer. (3) hidden genuine information -- visually grounded tokens though not being eventually decided still retain relatively high rankings at inference. Based on these insights, we propose VISTA (Visual Information Steering with Token-logit Augmentation), a training-free inference-time intervention framework that reduces hallucination while promoting genuine information. VISTA works by combining two complementary approaches: reinforcing visual information in activation space and leveraging early layer activations to promote semantically meaningful decoding. Compared to existing methods, VISTA requires no external supervision and is applicable to various decoding strategies. Extensive experiments show that VISTA on average reduces hallucination by abount 40% on evaluated open-ended generation task, and it consistently outperforms existing methods on four benchmarks across four architectures under three decoding strategies.

Visual Dependency Transformers: Dependency Tree Emerges from Reversed Attention

Humans possess a versatile mechanism for extracting structured representations of our visual world. When looking at an image, we can decompose the scene into entities and their parts as well as obtain the dependencies between them. To mimic such capability, we propose Visual Dependency Transformers (DependencyViT) that can induce visual dependencies without any labels. We achieve that with a novel neural operator called reversed attention that can naturally capture long-range visual dependencies between image patches. Specifically, we formulate it as a dependency graph where a child token in reversed attention is trained to attend to its parent tokens and send information following a normalized probability distribution rather than gathering information in conventional self-attention. With such a design, hierarchies naturally emerge from reversed attention layers, and a dependency tree is progressively induced from leaf nodes to the root node unsupervisedly. DependencyViT offers several appealing benefits. (i) Entities and their parts in an image are represented by different subtrees, enabling part partitioning from dependencies; (ii) Dynamic visual pooling is made possible. The leaf nodes which rarely send messages can be pruned without hindering the model performance, based on which we propose the lightweight DependencyViT-Lite to reduce the computational and memory footprints; (iii) DependencyViT works well on both self- and weakly-supervised pretraining paradigms on ImageNet, and demonstrates its effectiveness on 8 datasets and 5 tasks, such as unsupervised part and saliency segmentation, recognition, and detection.

Reasoning to Attend: Try to Understand How <SEG> Token Works

Current Large Multimodal Models (LMMs) empowered visual grounding typically rely on <SEG> tokens as a text prompt to jointly optimize the vision-language model (e.g., LLaVA) and the downstream task-specific model (e.g., SAM). However, we observe that little research has looked into how it works.In this work, we first visualize the similarity maps, which are obtained by computing the semantic similarity between the <SEG> token and the image token embeddings derived from the last hidden layer in both the LLaVA encoder and SAM decoder. Intriguingly, we have found that a striking consistency holds in terms of activation responses in the similarity map, which reveals that what the <SEG> token contributes to is semantic similarity within image-text pairs. Specifically, the <SEG> token, a placeholder expanded in text vocabulary, extensively queries among individual tokenized image patches to match the semantics of an object from text to the paired image, while the Large Language Models (LLMs) are being fine-tuned. Upon the above findings, we present READ, which facilitates LMMs' resilient REAsoning capability of where to attenD under the guidance of highly activated points borrowed from similarity maps. Remarkably, READ features an intuitive design, Similarity as Points module (SasP), which can be seamlessly applied to <SEG>-like paradigms in a plug-and-play fashion. Also, extensive experiments have been conducted on ReasonSeg and RefCOCO(+/g) datasets. To validate whether READ suffers from catastrophic forgetting of previous skills after fine-tuning, we further assess its generation ability on an augmented FP-RefCOCO(+/g) dataset. All codes and models are publicly available at https://github.com/rui-qian/READ.

Circuit Component Reuse Across Tasks in Transformer Language Models

Recent work in mechanistic interpretability has shown that behaviors in language models can be successfully reverse-engineered through circuit analysis. A common criticism, however, is that each circuit is task-specific, and thus such analysis cannot contribute to understanding the models at a higher level. In this work, we present evidence that insights (both low-level findings about specific heads and higher-level findings about general algorithms) can indeed generalize across tasks. Specifically, we study the circuit discovered in Wang et al. (2022) for the Indirect Object Identification (IOI) task and 1.) show that it reproduces on a larger GPT2 model, and 2.) that it is mostly reused to solve a seemingly different task: Colored Objects (Ippolito & Callison-Burch, 2023). We provide evidence that the process underlying both tasks is functionally very similar, and contains about a 78% overlap in in-circuit attention heads. We further present a proof-of-concept intervention experiment, in which we adjust four attention heads in middle layers in order to 'repair' the Colored Objects circuit and make it behave like the IOI circuit. In doing so, we boost accuracy from 49.6% to 93.7% on the Colored Objects task and explain most sources of error. The intervention affects downstream attention heads in specific ways predicted by their interactions in the IOI circuit, indicating that this subcircuit behavior is invariant to the different task inputs. Overall, our results provide evidence that it may yet be possible to explain large language models' behavior in terms of a relatively small number of interpretable task-general algorithmic building blocks and computational components.

Does Circuit Analysis Interpretability Scale? Evidence from Multiple Choice Capabilities in Chinchilla

Circuit analysis is a promising technique for understanding the internal mechanisms of language models. However, existing analyses are done in small models far from the state of the art. To address this, we present a case study of circuit analysis in the 70B Chinchilla model, aiming to test the scalability of circuit analysis. In particular, we study multiple-choice question answering, and investigate Chinchilla's capability to identify the correct answer label given knowledge of the correct answer text. We find that the existing techniques of logit attribution, attention pattern visualization, and activation patching naturally scale to Chinchilla, allowing us to identify and categorize a small set of `output nodes' (attention heads and MLPs). We further study the `correct letter' category of attention heads aiming to understand the semantics of their features, with mixed results. For normal multiple-choice question answers, we significantly compress the query, key and value subspaces of the head without loss of performance when operating on the answer labels for multiple-choice questions, and we show that the query and key subspaces represent an `Nth item in an enumeration' feature to at least some extent. However, when we attempt to use this explanation to understand the heads' behaviour on a more general distribution including randomized answer labels, we find that it is only a partial explanation, suggesting there is more to learn about the operation of `correct letter' heads on multiple choice question answering.

Robustifying Token Attention for Vision Transformers

Despite the success of vision transformers (ViTs), they still suffer from significant drops in accuracy in the presence of common corruptions, such as noise or blur. Interestingly, we observe that the attention mechanism of ViTs tends to rely on few important tokens, a phenomenon we call token overfocusing. More critically, these tokens are not robust to corruptions, often leading to highly diverging attention patterns. In this paper, we intend to alleviate this overfocusing issue and make attention more stable through two general techniques: First, our Token-aware Average Pooling (TAP) module encourages the local neighborhood of each token to take part in the attention mechanism. Specifically, TAP learns average pooling schemes for each token such that the information of potentially important tokens in the neighborhood can adaptively be taken into account. Second, we force the output tokens to aggregate information from a diverse set of input tokens rather than focusing on just a few by using our Attention Diversification Loss (ADL). We achieve this by penalizing high cosine similarity between the attention vectors of different tokens. In experiments, we apply our methods to a wide range of transformer architectures and improve robustness significantly. For example, we improve corruption robustness on ImageNet-C by 2.4% while simultaneously improving accuracy by 0.4% based on state-of-the-art robust architecture FAN. Also, when finetuning on semantic segmentation tasks, we improve robustness on CityScapes-C by 2.4% and ACDC by 3.1%.

Beyond Next-Token: Next-X Prediction for Autoregressive Visual Generation

Autoregressive (AR) modeling, known for its next-token prediction paradigm, underpins state-of-the-art language and visual generative models. Traditionally, a ``token'' is treated as the smallest prediction unit, often a discrete symbol in language or a quantized patch in vision. However, the optimal token definition for 2D image structures remains an open question. Moreover, AR models suffer from exposure bias, where teacher forcing during training leads to error accumulation at inference. In this paper, we propose xAR, a generalized AR framework that extends the notion of a token to an entity X, which can represent an individual patch token, a cell (a ktimes k grouping of neighboring patches), a subsample (a non-local grouping of distant patches), a scale (coarse-to-fine resolution), or even a whole image. Additionally, we reformulate discrete token classification as continuous entity regression, leveraging flow-matching methods at each AR step. This approach conditions training on noisy entities instead of ground truth tokens, leading to Noisy Context Learning, which effectively alleviates exposure bias. As a result, xAR offers two key advantages: (1) it enables flexible prediction units that capture different contextual granularity and spatial structures, and (2) it mitigates exposure bias by avoiding reliance on teacher forcing. On ImageNet-256 generation benchmark, our base model, xAR-B (172M), outperforms DiT-XL/SiT-XL (675M) while achieving 20times faster inference. Meanwhile, xAR-H sets a new state-of-the-art with an FID of 1.24, running 2.2times faster than the previous best-performing model without relying on vision foundation modules (\eg, DINOv2) or advanced guidance interval sampling.

Attention Meets Perturbations: Robust and Interpretable Attention with Adversarial Training

Although attention mechanisms have been applied to a variety of deep learning models and have been shown to improve the prediction performance, it has been reported to be vulnerable to perturbations to the mechanism. To overcome the vulnerability to perturbations in the mechanism, we are inspired by adversarial training (AT), which is a powerful regularization technique for enhancing the robustness of the models. In this paper, we propose a general training technique for natural language processing tasks, including AT for attention (Attention AT) and more interpretable AT for attention (Attention iAT). The proposed techniques improved the prediction performance and the model interpretability by exploiting the mechanisms with AT. In particular, Attention iAT boosts those advantages by introducing adversarial perturbation, which enhances the difference in the attention of the sentences. Evaluation experiments with ten open datasets revealed that AT for attention mechanisms, especially Attention iAT, demonstrated (1) the best performance in nine out of ten tasks and (2) more interpretable attention (i.e., the resulting attention correlated more strongly with gradient-based word importance) for all tasks. Additionally, the proposed techniques are (3) much less dependent on perturbation size in AT. Our code is available at https://github.com/shunk031/attention-meets-perturbation

Efficient Streaming Language Models with Attention Sinks

Deploying Large Language Models (LLMs) in streaming applications such as multi-round dialogue, where long interactions are expected, is urgently needed but poses two major challenges. Firstly, during the decoding stage, caching previous tokens' Key and Value states (KV) consumes extensive memory. Secondly, popular LLMs cannot generalize to longer texts than the training sequence length. Window attention, where only the most recent KVs are cached, is a natural approach -- but we show that it fails when the text length surpasses the cache size. We observe an interesting phenomenon, namely attention sink, that keeping the KV of initial tokens will largely recover the performance of window attention. In this paper, we first demonstrate that the emergence of attention sink is due to the strong attention scores towards initial tokens as a ``sink'' even if they are not semantically important. Based on the above analysis, we introduce StreamingLLM, an efficient framework that enables LLMs trained with a finite length attention window to generalize to infinite sequence lengths without any fine-tuning. We show that StreamingLLM can enable Llama-2, MPT, Falcon, and Pythia to perform stable and efficient language modeling with up to 4 million tokens and more. In addition, we discover that adding a placeholder token as a dedicated attention sink during pre-training can further improve streaming deployment. In streaming settings, StreamingLLM outperforms the sliding window recomputation baseline by up to 22.2x speedup. Code and datasets are provided at https://github.com/mit-han-lab/streaming-llm.

Retrieval Head Mechanistically Explains Long-Context Factuality

Despite the recent progress in long-context language models, it remains elusive how transformer-based models exhibit the capability to retrieve relevant information from arbitrary locations within the long context. This paper aims to address this question. Our systematic investigation across a wide spectrum of models reveals that a special type of attention heads are largely responsible for retrieving information, which we dub retrieval heads. We identify intriguing properties of retrieval heads:(1) universal: all the explored models with long-context capability have a set of retrieval heads; (2) sparse: only a small portion (less than 5\%) of the attention heads are retrieval. (3) intrinsic: retrieval heads already exist in models pretrained with short context. When extending the context length by continual pretraining, it is still the same set of heads that perform information retrieval. (4) dynamically activated: take Llama-2 7B for example, 12 retrieval heads always attend to the required information no matter how the context is changed. The rest of the retrieval heads are activated in different contexts. (5) causal: completely pruning retrieval heads leads to failure in retrieving relevant information and results in hallucination, while pruning random non-retrieval heads does not affect the model's retrieval ability. We further show that retrieval heads strongly influence chain-of-thought (CoT) reasoning, where the model needs to frequently refer back the question and previously-generated context. Conversely, tasks where the model directly generates the answer using its intrinsic knowledge are less impacted by masking out retrieval heads. These observations collectively explain which internal part of the model seeks information from the input tokens. We believe our insights will foster future research on reducing hallucination, improving reasoning, and compressing the KV cache.

HiP Attention: Sparse Sub-Quadratic Attention with Hierarchical Attention Pruning

In modern large language models (LLMs), increasing sequence lengths is a crucial challenge for enhancing their comprehension and coherence in handling complex tasks such as multi-modal question answering. However, handling long context sequences with LLMs is prohibitively costly due to the conventional attention mechanism's quadratic time and space complexity, and the context window size is limited by the GPU memory. Although recent works have proposed linear and sparse attention mechanisms to address this issue, their real-world applicability is often limited by the need to re-train pre-trained models. In response, we propose a novel approach, Hierarchically Pruned Attention (HiP), which simultaneously reduces the training and inference time complexity from O(T^2) to O(T log T) and the space complexity from O(T^2) to O(T). To this end, we devise a dynamic sparse attention mechanism that generates an attention mask through a novel tree-search-like algorithm for a given query on the fly. HiP is training-free as it only utilizes the pre-trained attention scores to spot the positions of the top-k most significant elements for each query. Moreover, it ensures that no token is overlooked, unlike the sliding window-based sub-quadratic attention methods, such as StreamingLLM. Extensive experiments on diverse real-world benchmarks demonstrate that HiP significantly reduces prompt (i.e., prefill) and decoding latency and memory usage while maintaining high generation performance with little or no degradation. As HiP allows pretrained LLMs to scale to millions of tokens on commodity GPUs with no additional engineering due to its easy plug-and-play deployment, we believe that our work will have a large practical impact, opening up the possibility to many long-context LLM applications previously infeasible.

Implicit Multimodal Alignment: On the Generalization of Frozen LLMs to Multimodal Inputs

Large Language Models (LLMs) have demonstrated impressive performance on multimodal tasks, without any multimodal finetuning. They are the building block for Large Multimodal Models, yet, we still lack a proper understanding of their success. In this work, we expose frozen LLMs to image, video, audio and text inputs and analyse their internal representation aiming to understand their generalization beyond textual inputs. Findings. Perceptual tokens (1) are easily distinguishable from textual ones inside LLMs, with significantly different representations, and complete translation to textual tokens does not exist. Yet, (2) both perceptual and textual tokens activate similar LLM weights. Despite being different, (3) perceptual and textual tokens are implicitly aligned inside LLMs, we call this the implicit multimodal alignment (IMA), and argue that this is linked to architectural design, helping LLMs to generalize. This provide more evidence to believe that the generalization of LLMs to multimodal inputs is mainly due to their architecture. Implications. (1) We find a positive correlation between the implicit alignment score and the task performance, suggesting that this could act as a proxy metric for model evaluation and selection. (2) A negative correlation exists regarding hallucinations, revealing that this problem is mainly due to misalignment between the internal perceptual and textual representations. (3) Perceptual tokens change slightly throughout the model, thus, we propose different approaches to skip computations (e.g. in FFN layers), and significantly reduce the inference cost. (4) Due to the slowly changing embeddings across layers, and the high overlap between textual and multimodal activated weights, we compress LLMs by keeping only 1 subnetwork that works well across a wide range of multimodal tasks. Paper code: https://github.com/mshukor/ima-lmms.

The mechanistic basis of data dependence and abrupt learning in an in-context classification task

Transformer models exhibit in-context learning: the ability to accurately predict the response to a novel query based on illustrative examples in the input sequence. In-context learning contrasts with traditional in-weights learning of query-output relationships. What aspects of the training data distribution and architecture favor in-context vs in-weights learning? Recent work has shown that specific distributional properties inherent in language, such as burstiness, large dictionaries and skewed rank-frequency distributions, control the trade-off or simultaneous appearance of these two forms of learning. We first show that these results are recapitulated in a minimal attention-only network trained on a simplified dataset. In-context learning (ICL) is driven by the abrupt emergence of an induction head, which subsequently competes with in-weights learning. By identifying progress measures that precede in-context learning and targeted experiments, we construct a two-parameter model of an induction head which emulates the full data distributional dependencies displayed by the attention-based network. A phenomenological model of induction head formation traces its abrupt emergence to the sequential learning of three nested logits enabled by an intrinsic curriculum. We propose that the sharp transitions in attention-based networks arise due to a specific chain of multi-layer operations necessary to achieve ICL, which is implemented by nested nonlinearities sequentially learned during training.

On the Loss of Context-awareness in General Instruction Fine-tuning

Pre-trained Large Language Models (LLMs) require post-training methods such as supervised fine-tuning (SFT) on instruction-response pairs to enable instruction following. However, this process can potentially harm existing capabilities learned during pre-training. In this paper, we investigate the loss of context awareness after SFT, where context awareness is defined as the ability to extract and understand information from user-provided context and respond accordingly. We identify and demonstrate that the loss of context awareness, particularly in open-source models, occurs in instruction fine-tuned LLMs when the chat template is applied to input prompts. We identify that the performance decline is associated with a bias toward different roles learned during conversational instruction fine-tuning. We demonstrate this correlation by visualizing changes in attention allocation after the chat template is applied and manually steering the attention heads. The bias can be learned from training examples that align with the model's internal knowledge and rely less on the user-provided context to generate correct responses. Based on these observations, we propose a metric to identify context-dependent examples from general instruction fine-tuning datasets. We then apply conditional instruction fine-tuning with a context-dependency indicator, enabling the model to preserve context awareness after SFT. Empirical experiments on four context-dependent downstream tasks and three pre-trained LLMs of different sizes show that our method effectively mitigates the loss of context awareness without compromising general instruction-following capabilities.

Less is more: Summarizing Patch Tokens for efficient Multi-Label Class-Incremental Learning

Prompt tuning has emerged as an effective rehearsal-free technique for class-incremental learning (CIL) that learns a tiny set of task-specific parameters (or prompts) to instruct a pre-trained transformer to learn on a sequence of tasks. Albeit effective, prompt tuning methods do not lend well in the multi-label class incremental learning (MLCIL) scenario (where an image contains multiple foreground classes) due to the ambiguity in selecting the correct prompt(s) corresponding to different foreground objects belonging to multiple tasks. To circumvent this issue we propose to eliminate the prompt selection mechanism by maintaining task-specific pathways, which allow us to learn representations that do not interact with the ones from the other tasks. Since independent pathways in truly incremental scenarios will result in an explosion of computation due to the quadratically complex multi-head self-attention (MSA) operation in prompt tuning, we propose to reduce the original patch token embeddings into summarized tokens. Prompt tuning is then applied to these fewer summarized tokens to compute the final representation. Our proposed method Multi-Label class incremental learning via summarising pAtch tokeN Embeddings (MULTI-LANE) enables learning disentangled task-specific representations in MLCIL while ensuring fast inference. We conduct experiments in common benchmarks and demonstrate that our MULTI-LANE achieves a new state-of-the-art in MLCIL. Additionally, we show that MULTI-LANE is also competitive in the CIL setting. Source code available at https://github.com/tdemin16/multi-lane

Characterizing Verbatim Short-Term Memory in Neural Language Models

When a language model is trained to predict natural language sequences, its prediction at each moment depends on a representation of prior context. What kind of information about the prior context can language models retrieve? We tested whether language models could retrieve the exact words that occurred previously in a text. In our paradigm, language models (transformers and an LSTM) processed English text in which a list of nouns occurred twice. We operationalized retrieval as the reduction in surprisal from the first to the second list. We found that the transformers retrieved both the identity and ordering of nouns from the first list. Further, the transformers' retrieval was markedly enhanced when they were trained on a larger corpus and with greater model depth. Lastly, their ability to index prior tokens was dependent on learned attention patterns. In contrast, the LSTM exhibited less precise retrieval, which was limited to list-initial tokens and to short intervening texts. The LSTM's retrieval was not sensitive to the order of nouns and it improved when the list was semantically coherent. We conclude that transformers implemented something akin to a working memory system that could flexibly retrieve individual token representations across arbitrary delays; conversely, the LSTM maintained a coarser and more rapidly-decaying semantic gist of prior tokens, weighted toward the earliest items.

CAB: Comprehensive Attention Benchmarking on Long Sequence Modeling

Transformer has achieved remarkable success in language, image, and speech processing. Recently, various efficient attention architectures have been proposed to improve transformer's efficiency while largely preserving its efficacy, especially in modeling long sequences. A widely-used benchmark to test these efficient methods' capability on long-range modeling is Long Range Arena (LRA). However, LRA only focuses on the standard bidirectional (or noncausal) self attention, and completely ignores cross attentions and unidirectional (or causal) attentions, which are equally important to downstream applications. Although designing cross and causal variants of an attention method is straightforward for vanilla attention, it is often challenging for efficient attentions with subquadratic time and memory complexity. In this paper, we propose Comprehensive Attention Benchmark (CAB) under a fine-grained attention taxonomy with four distinguishable attention patterns, namely, noncausal self, causal self, noncausal cross, and causal cross attentions. CAB collects seven real-world tasks from different research areas to evaluate efficient attentions under the four attention patterns. Among these tasks, CAB validates efficient attentions in eight backbone networks to show their generalization across neural architectures. We conduct exhaustive experiments to benchmark the performances of nine widely-used efficient attention architectures designed with different philosophies on CAB. Extensive experimental results also shed light on the fundamental problems of efficient attentions, such as efficiency length against vanilla attention, performance consistency across attention patterns, the benefit of attention mechanisms, and interpolation/extrapolation on long-context language modeling.

Frozen Transformers in Language Models Are Effective Visual Encoder Layers

This paper reveals that large language models (LLMs), despite being trained solely on textual data, are surprisingly strong encoders for purely visual tasks in the absence of language. Even more intriguingly, this can be achieved by a simple yet previously overlooked strategy -- employing a frozen transformer block from pre-trained LLMs as a constituent encoder layer to directly process visual tokens. Our work pushes the boundaries of leveraging LLMs for computer vision tasks, significantly departing from conventional practices that typically necessitate a multi-modal vision-language setup with associated language prompts, inputs, or outputs. We demonstrate that our approach consistently enhances performance across a diverse range of tasks, encompassing pure 2D and 3D visual recognition tasks (e.g., image and point cloud classification), temporal modeling tasks (e.g., action recognition), non-semantic tasks (e.g., motion forecasting), and multi-modal tasks (e.g., 2D/3D visual question answering and image-text retrieval). Such improvements are a general phenomenon, applicable to various types of LLMs (e.g., LLaMA and OPT) and different LLM transformer blocks. We additionally propose the information filtering hypothesis to explain the effectiveness of pre-trained LLMs in visual encoding -- the pre-trained LLM transformer blocks discern informative visual tokens and further amplify their effect. This hypothesis is empirically supported by the observation that the feature activation, after training with LLM transformer blocks, exhibits a stronger focus on relevant regions. We hope that our work inspires new perspectives on utilizing LLMs and deepening our understanding of their underlying mechanisms. Code is available at https://github.com/ziqipang/LM4VisualEncoding.

Selective Attention: Enhancing Transformer through Principled Context Control

The attention mechanism within the transformer architecture enables the model to weigh and combine tokens based on their relevance to the query. While self-attention has enjoyed major success, it notably treats all queries q in the same way by applying the mapping V^topsoftmax(Kq), where V,K are the value and key embeddings respectively. In this work, we argue that this uniform treatment hinders the ability to control contextual sparsity and relevance. As a solution, we introduce the Selective Self-Attention (SSA) layer that augments the softmax nonlinearity with a principled temperature scaling strategy. By controlling temperature, SSA adapts the contextual sparsity of the attention map to the query embedding and its position in the context window. Through theory and experiments, we demonstrate that this alleviates attention dilution, aids the optimization process, and enhances the model's ability to control softmax spikiness of individual queries. We also incorporate temperature scaling for value embeddings and show that it boosts the model's ability to suppress irrelevant/noisy tokens. Notably, SSA is a lightweight method which introduces less than 0.5% new parameters through a weight-sharing strategy and can be fine-tuned on existing LLMs. Extensive empirical evaluations demonstrate that SSA-equipped models achieve a noticeable and consistent accuracy improvement on language modeling benchmarks.

Sparse Autoencoders Enable Scalable and Reliable Circuit Identification in Language Models

This paper introduces an efficient and robust method for discovering interpretable circuits in large language models using discrete sparse autoencoders. Our approach addresses key limitations of existing techniques, namely computational complexity and sensitivity to hyperparameters. We propose training sparse autoencoders on carefully designed positive and negative examples, where the model can only correctly predict the next token for the positive examples. We hypothesise that learned representations of attention head outputs will signal when a head is engaged in specific computations. By discretising the learned representations into integer codes and measuring the overlap between codes unique to positive examples for each head, we enable direct identification of attention heads involved in circuits without the need for expensive ablations or architectural modifications. On three well-studied tasks - indirect object identification, greater-than comparisons, and docstring completion - the proposed method achieves higher precision and recall in recovering ground-truth circuits compared to state-of-the-art baselines, while reducing runtime from hours to seconds. Notably, we require only 5-10 text examples for each task to learn robust representations. Our findings highlight the promise of discrete sparse autoencoders for scalable and efficient mechanistic interpretability, offering a new direction for analysing the inner workings of large language models.

SinkLoRA: Enhanced Efficiency and Chat Capabilities for Long-Context Large Language Models

Extending the functionality of the Transformer model to accommodate longer sequence lengths has become a critical challenge. This extension is crucial not only for improving tasks such as language translation and long-context processing but also for enabling novel applications like chatbots, code generation, and multimedia content creation. The primary obstacle is the self-attention mechanism, which scales quadratically with sequence length in terms of computation time and memory requirements. LongLoRA proposed shifted sparse attention (S\(^2\)-Attn), effectively enabling context extension and leading to non-trivial computation savings with similar performance to fine-tuning with vanilla attention. However, LongLoRA is still not as efficient as vanilla attention, reaching only 39\% of the perplexity improvement compared to full attention. This inefficiency is due to the cyclic shift applied within different attention head patterns, causing either chaos in the attention head structure or unnecessary information exchange between token groups. To address these issues, We propose SinkLoRA, which features better work partitioning. Specifically, (1) we developed SF-Attn with a segmentation and reassembly algorithm to proportionally return cyclically shifted groups of attention heads to their un-shifted state together with global attention of "sink attention tokens", achieving 92\% of the perplexity improvement compared to full attention after fine tuning, and (2) applied a SOTA KV cache compression algorithm H_2O to accelerate inference. Furthermore, We conducted supervised fine-tuning with SinkLoRA using a self collected LongAlpaca-plus dataset. All our code, models, datasets, and demos are available at https://github.com/Dexter-GT-86/SinkLoRA.

A Song of (Dis)agreement: Evaluating the Evaluation of Explainable Artificial Intelligence in Natural Language Processing

There has been significant debate in the NLP community about whether or not attention weights can be used as an explanation - a mechanism for interpreting how important each input token is for a particular prediction. The validity of "attention as explanation" has so far been evaluated by computing the rank correlation between attention-based explanations and existing feature attribution explanations using LSTM-based models. In our work, we (i) compare the rank correlation between five more recent feature attribution methods and two attention-based methods, on two types of NLP tasks, and (ii) extend this analysis to also include transformer-based models. We find that attention-based explanations do not correlate strongly with any recent feature attribution methods, regardless of the model or task. Furthermore, we find that none of the tested explanations correlate strongly with one another for the transformer-based model, leading us to question the underlying assumption that we should measure the validity of attention-based explanations based on how well they correlate with existing feature attribution explanation methods. After conducting experiments on five datasets using two different models, we argue that the community should stop using rank correlation as an evaluation metric for attention-based explanations. We suggest that researchers and practitioners should instead test various explanation methods and employ a human-in-the-loop process to determine if the explanations align with human intuition for the particular use case at hand.

RazorAttention: Efficient KV Cache Compression Through Retrieval Heads

The memory and computational demands of Key-Value (KV) cache present significant challenges for deploying long-context language models. Previous approaches attempt to mitigate this issue by selectively dropping tokens, which irreversibly erases critical information that might be needed for future queries. In this paper, we propose a novel compression technique for KV cache that preserves all token information. Our investigation reveals that: i) Most attention heads primarily focus on the local context; ii) Only a few heads, denoted as retrieval heads, can essentially pay attention to all input tokens. These key observations motivate us to use separate caching strategy for attention heads. Therefore, we propose RazorAttention, a training-free KV cache compression algorithm, which maintains a full cache for these crucial retrieval heads and discards the remote tokens in non-retrieval heads. Furthermore, we introduce a novel mechanism involving a "compensation token" to further recover the information in the dropped tokens. Extensive evaluations across a diverse set of large language models (LLMs) demonstrate that RazorAttention achieves a reduction in KV cache size by over 70% without noticeable impacts on performance. Additionally, RazorAttention is compatible with FlashAttention, rendering it an efficient and plug-and-play solution that enhances LLM inference efficiency without overhead or retraining of the original model.

OAT: Object-Level Attention Transformer for Gaze Scanpath Prediction

Visual search is important in our daily life. The efficient allocation of visual attention is critical to effectively complete visual search tasks. Prior research has predominantly modelled the spatial allocation of visual attention in images at the pixel level, e.g. using a saliency map. However, emerging evidence shows that visual attention is guided by objects rather than pixel intensities. This paper introduces the Object-level Attention Transformer (OAT), which predicts human scanpaths as they search for a target object within a cluttered scene of distractors. OAT uses an encoder-decoder architecture. The encoder captures information about the position and appearance of the objects within an image and about the target. The decoder predicts the gaze scanpath as a sequence of object fixations, by integrating output features from both the encoder and decoder. We also propose a new positional encoding that better reflects spatial relationships between objects. We evaluated OAT on the Amazon book cover dataset and a new dataset for visual search that we collected. OAT's predicted gaze scanpaths align more closely with human gaze patterns, compared to predictions by algorithms based on spatial attention on both established metrics and a novel behavioural-based metric. Our results demonstrate the generalization ability of OAT, as it accurately predicts human scanpaths for unseen layouts and target objects.

DAMRO: Dive into the Attention Mechanism of LVLM to Reduce Object Hallucination

Despite the great success of Large Vision-Language Models (LVLMs), they inevitably suffer from hallucination. As we know, both the visual encoder and the Large Language Model (LLM) decoder in LVLMs are Transformer-based, allowing the model to extract visual information and generate text outputs via attention mechanisms. We find that the attention distribution of LLM decoder on image tokens is highly consistent with the visual encoder and both distributions tend to focus on particular background tokens rather than the referred objects in the image. We attribute to the unexpected attention distribution to an inherent flaw in the visual encoder itself, which misguides LLMs to over emphasize the redundant information and generate object hallucination. To address the issue, we propose DAMRO, a novel training-free strategy that Dive into Attention Mechanism of LVLM to Reduce Object Hallucination. Specifically, our approach employs classification token (CLS) of ViT to filter out high-attention outlier tokens scattered in the background and then eliminate their influence during decoding stage. We evaluate our method on LVLMs including LLaVA-1.5, LLaVA-NeXT and InstructBLIP, using various benchmarks such as POPE, CHAIR, MME and GPT-4V Aided Evaluation. The results demonstrate that our approach significantly reduces the impact of these outlier tokens, thus effectively alleviating the hallucination of LVLMs. The code of our method will be released soon.

Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See

By treating visual tokens from visual encoders as text tokens, Multimodal Large Language Models (MLLMs) have achieved remarkable progress across diverse visual understanding tasks, leveraging the robust architectures of Large Language Models (LLMs). However, as token counts grow, the quadratic scaling of computation in LLMs introduces a significant efficiency bottleneck, impeding further scalability. Although recent approaches have explored pruning visual tokens or employing lighter LLM architectures, the computational overhead from an increasing number of visual tokens remains a substantial challenge. In this study, we investigate the redundancy in visual computation at both the parameter and computational pattern levels within LLaVA, a representative MLLM, and introduce a suite of streamlined strategies to enhance efficiency. These include neighbor-aware visual token attention, pruning of inactive visual attention heads, and selective layer dropping for visual computations. By implementing these strategies in LLaVA, we achieve a reduction in computational demands of 88% while maintaining model performance across key benchmarks. Additionally, we validate the existence of visual computational redundancy in other MLLMs, such as Qwen2-VL-7B and InternVL-2.0-4B/8B/26B. These results present a novel pathway for MLLMs to handle dense visual tokens with minimal computational costs. Code and model checkpoints will be released to support further research.

REDAffectiveLM: Leveraging Affect Enriched Embedding and Transformer-based Neural Language Model for Readers' Emotion Detection

Technological advancements in web platforms allow people to express and share emotions towards textual write-ups written and shared by others. This brings about different interesting domains for analysis; emotion expressed by the writer and emotion elicited from the readers. In this paper, we propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM. Within state-of-the-art NLP tasks, it is well understood that utilizing context-specific representations from transformer-based pre-trained language models helps achieve improved performance. Within this affective computing task, we explore how incorporating affective information can further enhance performance. Towards this, we leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention. For empirical evaluation, we procure a new dataset REN-20k, besides using RENh-4k and SemEval-2007. We evaluate the performance of our REDAffectiveLM rigorously across these datasets, against a vast set of state-of-the-art baselines, where our model consistently outperforms baselines and obtains statistically significant results. Our results establish that utilizing affect enriched representation along with context-specific representation within a neural architecture can considerably enhance readers' emotion detection. Since the impact of affect enrichment specifically in readers' emotion detection isn't well explored, we conduct a detailed analysis over affect enriched Bi-LSTM+Attention using qualitative and quantitative model behavior evaluation techniques. We observe that compared to conventional semantic embedding, affect enriched embedding increases ability of the network to effectively identify and assign weightage to key terms responsible for readers' emotion detection.

Flowformer: Linearizing Transformers with Conservation Flows

Transformers based on the attention mechanism have achieved impressive success in various areas. However, the attention mechanism has a quadratic complexity, significantly impeding Transformers from dealing with numerous tokens and scaling up to bigger models. Previous methods mainly utilize the similarity decomposition and the associativity of matrix multiplication to devise linear-time attention mechanisms. They avoid degeneration of attention to a trivial distribution by reintroducing inductive biases such as the locality, thereby at the expense of model generality and expressiveness. In this paper, we linearize Transformers free from specific inductive biases based on the flow network theory. We cast attention as the information flow aggregated from the sources (values) to the sinks (results) through the learned flow capacities (attentions). Within this framework, we apply the property of flow conservation into attention and propose the Flow-Attention mechanism of linear complexity. By respectively conserving the incoming flow of sinks for source competition and the outgoing flow of sources for sink allocation, Flow-Attention inherently generates informative attentions without using specific inductive biases. Empowered by the Flow-Attention, Flowformer yields strong performance in linear time for wide areas, including long sequence, time series, vision, natural language, and reinforcement learning. The code and settings are available at this repository: https://github.com/thuml/Flowformer.

Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs

Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of earlier modalities (e.g., images) to incorporate information from later modalities (e.g., text). To address this problem, we propose AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code is publicly available at https://github.com/sony/aki, and we will release our AKI-4B model to encourage further advancements in MLLMs across various directions.

Various Lengths, Constant Speed: Efficient Language Modeling with Lightning Attention

We present Lightning Attention, the first linear attention implementation that maintains a constant training speed for various sequence lengths under fixed memory consumption. Due to the issue with cumulative summation operations (cumsum), previous linear attention implementations cannot achieve their theoretical advantage in a casual setting. However, this issue can be effectively solved by utilizing different attention calculation strategies to compute the different parts of attention. Specifically, we split the attention calculation into intra-blocks and inter-blocks and use conventional attention computation for intra-blocks and linear attention kernel tricks for inter-blocks. This eliminates the need for cumsum in the linear attention calculation. Furthermore, a tiling technique is adopted through both forward and backward procedures to take full advantage of the GPU hardware. To enhance accuracy while preserving efficacy, we introduce TransNormerLLM (TNL), a new architecture that is tailored to our lightning attention. We conduct rigorous testing on standard and self-collected datasets with varying model sizes and sequence lengths. TNL is notably more efficient than other language models. In addition, benchmark results indicate that TNL performs on par with state-of-the-art LLMs utilizing conventional transformer structures. The source code is released at github.com/OpenNLPLab/TransnormerLLM.

Class Semantics-based Attention for Action Detection

Action localization networks are often structured as a feature encoder sub-network and a localization sub-network, where the feature encoder learns to transform an input video to features that are useful for the localization sub-network to generate reliable action proposals. While some of the encoded features may be more useful for generating action proposals, prior action localization approaches do not include any attention mechanism that enables the localization sub-network to attend more to the more important features. In this paper, we propose a novel attention mechanism, the Class Semantics-based Attention (CSA), that learns from the temporal distribution of semantics of action classes present in an input video to find the importance scores of the encoded features, which are used to provide attention to the more useful encoded features. We demonstrate on two popular action detection datasets that incorporating our novel attention mechanism provides considerable performance gains on competitive action detection models (e.g., around 6.2% improvement over BMN action detection baseline to obtain 47.5% mAP on the THUMOS-14 dataset), and a new state-of-the-art of 36.25% mAP on the ActivityNet v1.3 dataset. Further, the CSA localization model family which includes BMN-CSA, was part of the second-placed submission at the 2021 ActivityNet action localization challenge. Our attention mechanism outperforms prior self-attention modules such as the squeeze-and-excitation in action detection task. We also observe that our attention mechanism is complementary to such self-attention modules in that performance improvements are seen when both are used together.

Analyzing Transformer Dynamics as Movement through Embedding Space

Transformer based language models exhibit intelligent behaviors such as understanding natural language, recognizing patterns, acquiring knowledge, reasoning, planning, reflecting and using tools. This paper explores how their underlying mechanics give rise to intelligent behaviors. Towards that end, we propose framing Transformer dynamics as movement through embedding space. Examining Transformers through this perspective reveals key insights, establishing a Theory of Transformers: 1) Intelligent behaviours map to paths in Embedding Space which, the Transformer random-walks through during inferencing. 2) LM training learns a probability distribution over all possible paths. `Intelligence' is learnt by assigning higher probabilities to paths representing intelligent behaviors. No learning can take place in-context; context only narrows the subset of paths sampled during decoding. 5) The Transformer is a self-mapping composition function, folding a context sequence into a context-vector such that it's proximity to a token-vector reflects its co-occurrence and conditioned probability. Thus, the physical arrangement of vectors in Embedding Space determines path probabilities. 6) Context vectors are composed by aggregating features of the sequence's tokens via a process we call the encoding walk. Attention contributes a - potentially redundant - association-bias to this process. 7) This process is comprised of two principal operation types: filtering (data independent) and aggregation (data dependent). This generalization unifies Transformers with other sequence models. Building upon this foundation, we formalize a popular semantic interpretation of embeddings into a ``concept-space theory'' and find some evidence of it's validity.

QuoTA: Query-oriented Token Assignment via CoT Query Decouple for Long Video Comprehension

Recent advances in long video understanding typically mitigate visual redundancy through visual token pruning based on attention distribution. However, while existing methods employ post-hoc low-response token pruning in decoder layers, they overlook the input-level semantic correlation between visual tokens and instructions (query). In this paper, we propose QuoTA, an ante-hoc training-free modular that extends existing large video-language models (LVLMs) for visual token assignment based on query-oriented frame-level importance assessment. The query-oriented token selection is crucial as it aligns visual processing with task-specific requirements, optimizing token budget utilization while preserving semantically relevant content. Specifically, (i) QuoTA strategically allocates frame-level importance scores based on query relevance, enabling one-time visual token assignment before cross-modal interactions in decoder layers, (ii) we decouple the query through Chain-of-Thoughts reasoning to facilitate more precise LVLM-based frame importance scoring, and (iii) QuoTA offers a plug-and-play functionality that extends to existing LVLMs. Extensive experimental results demonstrate that implementing QuoTA with LLaVA-Video-7B yields an average performance improvement of 3.2% across six benchmarks (including Video-MME and MLVU) while operating within an identical visual token budget as the baseline. Codes are open-sourced at https://github.com/MAC-AutoML/QuoTA.

TokenUnify: Scalable Autoregressive Visual Pre-training with Mixture Token Prediction

Autoregressive next-token prediction is a standard pretraining method for large-scale language models, but its application to vision tasks is hindered by the non-sequential nature of image data, leading to cumulative errors. Most vision models employ masked autoencoder (MAE) based pretraining, which faces scalability issues. To address these challenges, we introduce TokenUnify, a novel pretraining method that integrates random token prediction, next-token prediction, and next-all token prediction. We provide theoretical evidence demonstrating that TokenUnify mitigates cumulative errors in visual autoregression. Cooperated with TokenUnify, we have assembled a large-scale electron microscopy (EM) image dataset with ultra-high resolution, ideal for creating spatially correlated long sequences. This dataset includes over 120 million annotated voxels, making it the largest neuron segmentation dataset to date and providing a unified benchmark for experimental validation. Leveraging the Mamba network inherently suited for long-sequence modeling on this dataset, TokenUnify not only reduces the computational complexity but also leads to a significant 45\% improvement in segmentation performance on downstream EM neuron segmentation tasks compared to existing methods. Furthermore, TokenUnify demonstrates superior scalability over MAE and traditional autoregressive methods, effectively bridging the gap between pretraining strategies for language and vision models. Code is available at https://github.com/ydchen0806/TokenUnify.

RSQ: Learning from Important Tokens Leads to Better Quantized LLMs

Layer-wise quantization is a key technique for efficiently compressing large models without expensive retraining. Previous methods typically quantize the weights of each layer by "uniformly" optimizing the layer reconstruction loss across all output tokens. However, in this paper, we demonstrate that better-quantized models can be obtained by prioritizing learning from important tokens (e.g. which have large attention scores). Building on this finding, we propose RSQ (Rotate, Scale, then Quantize), which (1) applies rotations (orthogonal transformation) to the model to mitigate outliers (those with exceptionally large magnitude), (2) scales the token feature based on its importance, and (3) quantizes the model using the GPTQ framework with the second-order statistics computed by scaled tokens. To compute token importance, we explore both heuristic and dynamic strategies. Based on a thorough analysis of all approaches, we adopt attention concentration, which uses attention scores of each token as its importance, as the best approach. We demonstrate that RSQ consistently outperforms baseline methods across multiple downstream tasks and three model families: LLaMA3, Mistral, and Qwen2.5. Additionally, models quantized with RSQ achieve superior performance on long-context tasks, further highlighting its effectiveness. Lastly, RSQ demonstrates generalizability across various setups, including different model sizes, calibration datasets, bit precisions, and quantization methods.

Making LLaMA SEE and Draw with SEED Tokenizer

The great success of Large Language Models (LLMs) has expanded the potential of multimodality, contributing to the gradual evolution of General Artificial Intelligence (AGI). A true AGI agent should not only possess the capability to perform predefined multi-tasks but also exhibit emergent abilities in an open-world context. However, despite the considerable advancements made by recent multimodal LLMs, they still fall short in effectively unifying comprehension and generation tasks, let alone open-world emergent abilities. We contend that the key to overcoming the present impasse lies in enabling text and images to be represented and processed interchangeably within a unified autoregressive Transformer. To this end, we introduce SEED, an elaborate image tokenizer that empowers LLMs with the ability to SEE and Draw at the same time. We identify two crucial design principles: (1) Image tokens should be independent of 2D physical patch positions and instead be produced with a 1D causal dependency, exhibiting intrinsic interdependence that aligns with the left-to-right autoregressive prediction mechanism in LLMs. (2) Image tokens should capture high-level semantics consistent with the degree of semantic abstraction in words, and be optimized for both discriminativeness and reconstruction during the tokenizer training phase. With SEED tokens, LLM is able to perform scalable multimodal autoregression under its original training recipe, i.e., next-word prediction. SEED-LLaMA is therefore produced by large-scale pretraining and instruction tuning on the interleaved textual and visual data, demonstrating impressive performance on a broad range of multimodal comprehension and generation tasks. More importantly, SEED-LLaMA has exhibited compositional emergent abilities such as multi-turn in-context multimodal generation, acting like your AI assistant.

Saliency Map Verbalization: Comparing Feature Importance Representations from Model-free and Instruction-based Methods

Saliency maps can explain a neural model's predictions by identifying important input features. They are difficult to interpret for laypeople, especially for instances with many features. In order to make them more accessible, we formalize the underexplored task of translating saliency maps into natural language and compare methods that address two key challenges of this approach -- what and how to verbalize. In both automatic and human evaluation setups, using token-level attributions from text classification tasks, we compare two novel methods (search-based and instruction-based verbalizations) against conventional feature importance representations (heatmap visualizations and extractive rationales), measuring simulatability, faithfulness, helpfulness and ease of understanding. Instructing GPT-3.5 to generate saliency map verbalizations yields plausible explanations which include associations, abstractive summarization and commonsense reasoning, achieving by far the highest human ratings, but they are not faithfully capturing numeric information and are inconsistent in their interpretation of the task. In comparison, our search-based, model-free verbalization approach efficiently completes templated verbalizations, is faithful by design, but falls short in helpfulness and simulatability. Our results suggest that saliency map verbalization makes feature attribution explanations more comprehensible and less cognitively challenging to humans than conventional representations.

All in Tokens: Unifying Output Space of Visual Tasks via Soft Token

Unlike language tasks, where the output space is usually limited to a set of tokens, the output space of visual tasks is more complicated, making it difficult to build a unified visual model for various visual tasks. In this paper, we seek to unify the output space of visual tasks, so that we can also build a unified model for visual tasks. To this end, we demonstrate a single unified model that simultaneously handles two typical visual tasks of instance segmentation and depth estimation, which have discrete/fixed-length and continuous/varied-length outputs, respectively. We propose several new techniques that take into account the particularity of visual tasks: 1) Soft token. We employ soft token to represent the task output. Unlike hard tokens in the common VQ-VAE which are assigned one-hot to discrete codebooks/vocabularies, the soft token is assigned softly to the codebook embeddings. Soft token can improve the accuracy of both the next token inference and decoding of the task output; 2) Mask augmentation. Many visual tasks have corruption, undefined or invalid values in label annotations, i.e., occluded area of depth maps. We show that a mask augmentation technique can greatly benefit these tasks. With these new techniques and other designs, we show that the proposed general-purpose task-solver can perform both instance segmentation and depth estimation well. Particularly, we achieve 0.279 RMSE on the specific task of NYUv2 depth estimation, setting a new record on this benchmark. The general-purpose task-solver, dubbed AiT, is available at https://github.com/SwinTransformer/AiT.