- Timbre Classification of Musical Instruments with a Deep Learning Multi-Head Attention-Based Model The aim of this work is to define a model based on deep learning that is able to identify different instrument timbres with as few parameters as possible. For this purpose, we have worked with classical orchestral instruments played with different dynamics, which are part of a few instrument families and which play notes in the same pitch range. It has been possible to assess the ability to classify instruments by timbre even if the instruments are playing the same note with the same intensity. The network employed uses a multi-head attention mechanism, with 8 heads and a dense network at the output taking as input the log-mel magnitude spectrograms of the sound samples. This network allows the identification of 20 instrument classes of the classical orchestra, achieving an overall F_1 value of 0.62. An analysis of the weights of the attention layer has been performed and the confusion matrix of the model is presented, allowing us to assess the ability of the proposed architecture to distinguish timbre and to establish the aspects on which future work should focus. 2 authors · Jul 13, 2021
- SLAM-Omni: Timbre-Controllable Voice Interaction System with Single-Stage Training Recent advancements highlight the potential of end-to-end real-time spoken dialogue systems, showcasing their low latency and high quality. In this paper, we introduce SLAM-Omni, a timbre-controllable, end-to-end voice interaction system with single-stage training. SLAM-Omni achieves zero-shot timbre control by modeling spoken language with semantic tokens and decoupling speaker information to a vocoder. By predicting grouped speech semantic tokens at each step, our method significantly reduces the sequence length of audio tokens, accelerating both training and inference. Additionally, we propose historical text prompting to compress dialogue history, facilitating efficient multi-round interactions. Comprehensive evaluations reveal that SLAM-Omni outperforms prior models of similar scale, requiring only 15 hours of training on 4 GPUs with limited data. Notably, it is the first spoken dialogue system to achieve competitive performance with a single-stage training approach, eliminating the need for pre-training on TTS or ASR tasks. Further experiments validate its multilingual and multi-turn dialogue capabilities on larger datasets. 16 authors · Dec 20, 2024
- Singer Identification Using Deep Timbre Feature Learning with KNN-Net In this paper, we study the issue of automatic singer identification (SID) in popular music recordings, which aims to recognize who sang a given piece of song. The main challenge for this investigation lies in the fact that a singer's singing voice changes and intertwines with the signal of background accompaniment in time domain. To handle this challenge, we propose the KNN-Net for SID, which is a deep neural network model with the goal of learning local timbre feature representation from the mixture of singer voice and background music. Unlike other deep neural networks using the softmax layer as the output layer, we instead utilize the KNN as a more interpretable layer to output target singer labels. Moreover, attention mechanism is first introduced to highlight crucial timbre features for SID. Experiments on the existing artist20 dataset show that the proposed approach outperforms the state-of-the-art method by 4%. We also create singer32 and singer60 datasets consisting of Chinese pop music to evaluate the reliability of the proposed method. The more extensive experiments additionally indicate that our proposed model achieves a significant performance improvement compared to the state-of-the-art methods. 5 authors · Feb 19, 2021