- E^2TAD: An Energy-Efficient Tracking-based Action Detector Video action detection (spatio-temporal action localization) is usually the starting point for human-centric intelligent analysis of videos nowadays. It has high practical impacts for many applications across robotics, security, healthcare, etc. The two-stage paradigm of Faster R-CNN inspires a standard paradigm of video action detection in object detection, i.e., firstly generating person proposals and then classifying their actions. However, none of the existing solutions could provide fine-grained action detection to the "who-when-where-what" level. This paper presents a tracking-based solution to accurately and efficiently localize predefined key actions spatially (by predicting the associated target IDs and locations) and temporally (by predicting the time in exact frame indices). This solution won first place in the UAV-Video Track of 2021 Low-Power Computer Vision Challenge (LPCVC). 11 authors · Apr 9, 2022
- Quantised Neural Network Accelerators for Low-Power IDS in Automotive Networks In this paper, we explore low-power custom quantised Multi-Layer Perceptrons (MLPs) as an Intrusion Detection System (IDS) for automotive controller area network (CAN). We utilise the FINN framework from AMD/Xilinx to quantise, train and generate hardware IP of our MLP to detect denial of service (DoS) and fuzzying attacks on CAN network, using ZCU104 (XCZU7EV) FPGA as our target ECU architecture with integrated IDS capabilities. Our approach achieves significant improvements in latency (0.12 ms per-message processing latency) and inference energy consumption (0.25 mJ per inference) while achieving similar classification performance as state-of-the-art approaches in the literature. 3 authors · Jan 19, 2024