- Model Averaging and Double Machine Learning This paper discusses pairing double/debiased machine learning (DDML) with stacking, a model averaging method for combining multiple candidate learners, to estimate structural parameters. In addition to conventional stacking, we consider two stacking variants available for DDML: short-stacking exploits the cross-fitting step of DDML to substantially reduce the computational burden and pooled stacking enforces common stacking weights over cross-fitting folds. Using calibrated simulation studies and two applications estimating gender gaps in citations and wages, we show that DDML with stacking is more robust to partially unknown functional forms than common alternative approaches based on single pre-selected learners. We provide Stata and R software implementing our proposals. 4 authors · Jan 3, 2024
- Theoretical Guarantees of Learning Ensembling Strategies with Applications to Time Series Forecasting Ensembling is among the most popular tools in machine learning (ML) due to its effectiveness in minimizing variance and thus improving generalization. Most ensembling methods for black-box base learners fall under the umbrella of "stacked generalization," namely training an ML algorithm that takes the inferences from the base learners as input. While stacking has been widely applied in practice, its theoretical properties are poorly understood. In this paper, we prove a novel result, showing that choosing the best stacked generalization from a (finite or finite-dimensional) family of stacked generalizations based on cross-validated performance does not perform "much worse" than the oracle best. Our result strengthens and significantly extends the results in Van der Laan et al. (2007). Inspired by the theoretical analysis, we further propose a particular family of stacked generalizations in the context of probabilistic forecasting, each one with a different sensitivity for how much the ensemble weights are allowed to vary across items, timestamps in the forecast horizon, and quantiles. Experimental results demonstrate the performance gain of the proposed method. 5 authors · May 25, 2023
14 Deep Language Networks: Joint Prompt Training of Stacked LLMs using Variational Inference We view large language models (LLMs) as stochastic language layers in a network, where the learnable parameters are the natural language prompts at each layer. We stack two such layers, feeding the output of one layer to the next. We call the stacked architecture a Deep Language Network (DLN). We first show how to effectively perform prompt optimization for a 1-Layer language network (DLN-1). We then show how to train 2-layer DLNs (DLN-2), where two prompts must be learnt. We consider the output of the first layer as a latent variable to marginalize, and devise a variational inference algorithm for joint prompt training. A DLN-2 reaches higher performance than a single layer, sometimes comparable to few-shot GPT-4 even when each LLM in the network is smaller and less powerful. The DLN code is open source: https://github.com/microsoft/deep-language-networks . 9 authors · Jun 21, 2023
- Towards Faithful Explanations: Boosting Rationalization with Shortcuts Discovery The remarkable success in neural networks provokes the selective rationalization. It explains the prediction results by identifying a small subset of the inputs sufficient to support them. Since existing methods still suffer from adopting the shortcuts in data to compose rationales and limited large-scale annotated rationales by human, in this paper, we propose a Shortcuts-fused Selective Rationalization (SSR) method, which boosts the rationalization by discovering and exploiting potential shortcuts. Specifically, SSR first designs a shortcuts discovery approach to detect several potential shortcuts. Then, by introducing the identified shortcuts, we propose two strategies to mitigate the problem of utilizing shortcuts to compose rationales. Finally, we develop two data augmentations methods to close the gap in the number of annotated rationales. Extensive experimental results on real-world datasets clearly validate the effectiveness of our proposed method. 6 authors · Mar 12, 2024
- SkipPredict: When to Invest in Predictions for Scheduling In light of recent work on scheduling with predicted job sizes, we consider the effect of the cost of predictions in queueing systems, removing the assumption in prior research that predictions are external to the system's resources and/or cost-free. In particular, we introduce a novel approach to utilizing predictions, SkipPredict, designed to address their inherent cost. Rather than uniformly applying predictions to all jobs, we propose a tailored approach that categorizes jobs based on their prediction requirements. To achieve this, we employ one-bit "cheap predictions" to classify jobs as either short or long. SkipPredict prioritizes predicted short jobs over long jobs, and for the latter, SkipPredict applies a second round of more detailed "expensive predictions" to approximate Shortest Remaining Processing Time for these jobs. Our analysis takes into account the cost of prediction. We examine the effect of this cost for two distinct models. In the external cost model, predictions are generated by some external method without impacting job service times but incur a cost. In the server time cost model, predictions themselves require server processing time, and are scheduled on the same server as the jobs. 2 authors · Feb 5, 2024
- Plus Strategies are Exponentially Slower for Planted Optima of Random Height We compare the (1,lambda)-EA and the (1 + lambda)-EA on the recently introduced benchmark DisOM, which is the OneMax function with randomly planted local optima. Previous work showed that if all local optima have the same relative height, then the plus strategy never loses more than a factor O(nlog n) compared to the comma strategy. Here we show that even small random fluctuations in the heights of the local optima have a devastating effect for the plus strategy and lead to super-polynomial runtimes. On the other hand, due to their ability to escape local optima, comma strategies are unaffected by the height of the local optima and remain efficient. Our results hold for a broad class of possible distortions and show that the plus strategy, but not the comma strategy, is generally deceived by sparse unstructured fluctuations of a smooth landscape. 3 authors · Apr 15, 2024
28 Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training LLMs are computationally expensive to pre-train due to their large scale. Model growth emerges as a promising approach by leveraging smaller models to accelerate the training of larger ones. However, the viability of these model growth methods in efficient LLM pre-training remains underexplored. This work identifies three critical textit{O}bstacles: (O1) lack of comprehensive evaluation, (O2) untested viability for scaling, and (O3) lack of empirical guidelines. To tackle O1, we summarize existing approaches into four atomic growth operators and systematically evaluate them in a standardized LLM pre-training setting. Our findings reveal that a depthwise stacking operator, called G_{stack}, exhibits remarkable acceleration in training, leading to decreased loss and improved overall performance on eight standard NLP benchmarks compared to strong baselines. Motivated by these promising results, we conduct extensive experiments to delve deeper into G_{stack} to address O2 and O3. For O2 (untested scalability), our study shows that G_{stack} is scalable and consistently performs well, with experiments up to 7B LLMs after growth and pre-training LLMs with 750B tokens. For example, compared to a conventionally trained 7B model using 300B tokens, our G_{stack} model converges to the same loss with 194B tokens, resulting in a 54.6\% speedup. We further address O3 (lack of empirical guidelines) by formalizing guidelines to determine growth timing and growth factor for G_{stack}, making it practical in general LLM pre-training. We also provide in-depth discussions and comprehensive ablation studies of G_{stack}. Our code and pre-trained model are available at https://llm-stacking.github.io/{https://llm-stacking.github.io/}. 8 authors · May 24, 2024 1
- Stack Attention: Improving the Ability of Transformers to Model Hierarchical Patterns Attention, specifically scaled dot-product attention, has proven effective for natural language, but it does not have a mechanism for handling hierarchical patterns of arbitrary nesting depth, which limits its ability to recognize certain syntactic structures. To address this shortcoming, we propose stack attention: an attention operator that incorporates stacks, inspired by their theoretical connections to context-free languages (CFLs). We show that stack attention is analogous to standard attention, but with a latent model of syntax that requires no syntactic supervision. We propose two variants: one related to deterministic pushdown automata (PDAs) and one based on nondeterministic PDAs, which allows transformers to recognize arbitrary CFLs. We show that transformers with stack attention are very effective at learning CFLs that standard transformers struggle on, achieving strong results on a CFL with theoretically maximal parsing difficulty. We also show that stack attention is more effective at natural language modeling under a constrained parameter budget, and we include results on machine translation. 2 authors · Oct 2, 2023
9 Cascade Speculative Drafting for Even Faster LLM Inference Speculative decoding enhances the efficiency of large language models (LLMs) by leveraging a draft model to draft for a larger target model to review. However, drafting in speculative decoding involves slow autoregressive generation and generating tokens of different importance with the same time allocation. These two inefficiencies lead to its suboptimal performance. To address this issue, we introduce Cascade Speculative Drafting (CS. Drafting), a novel approach that employs two types of cascades. The Vertical Cascade eliminates autoregressive generation from neural models. The Horizontal Cascade constitutes efficient time allocation in drafting with its optimality supported by our theoretical analysis. Combining both cascades, our CS. Drafting algorithm has achieved up to 72 percent additional speedup over speculative decoding in our experiments while keeping the same output distribution. 6 authors · Dec 18, 2023 1
3 Fewer Truncations Improve Language Modeling In large language model training, input documents are typically concatenated together and then split into sequences of equal length to avoid padding tokens. Despite its efficiency, the concatenation approach compromises data integrity -- it inevitably breaks many documents into incomplete pieces, leading to excessive truncations that hinder the model from learning to compose logically coherent and factually consistent content that is grounded on the complete context. To address the issue, we propose Best-fit Packing, a scalable and efficient method that packs documents into training sequences through length-aware combinatorial optimization. Our method completely eliminates unnecessary truncations while retaining the same training efficiency as concatenation. Empirical results from both text and code pre-training show that our method achieves superior performance (e.g., relatively +4.7% on reading comprehension; +16.8% in context following; and +9.2% on program synthesis), and reduces closed-domain hallucination effectively by up to 58.3%. 7 authors · Apr 16, 2024
5 Stack-and-Delay: a new codebook pattern for music generation In language modeling based music generation, a generated waveform is represented by a sequence of hierarchical token stacks that can be decoded either in an auto-regressive manner or in parallel, depending on the codebook patterns. In particular, flattening the codebooks represents the highest quality decoding strategy, while being notoriously slow. To this end, we propose a novel stack-and-delay style of decoding strategy to improve upon the flat pattern decoding where generation speed is four times faster as opposed to vanilla flat decoding. This brings the inference time close to that of the delay decoding strategy, and allows for faster inference on GPU for small batch sizes. For the same inference efficiency budget as the delay pattern, we show that the proposed approach performs better in objective evaluations, almost closing the gap with the flat pattern in terms of quality. The results are corroborated by subjective evaluations which show that samples generated by the new model are slightly more often preferred to samples generated by the competing model given the same text prompts. 8 authors · Sep 15, 2023
1 Improving Length-Generalization in Transformers via Task Hinting It has been observed in recent years that transformers have problems with length generalization for certain types of reasoning and arithmetic tasks. In particular, the performance of a transformer model trained on tasks (say addition) up to a certain length (e.g., 5 digit numbers) drops sharply when applied to longer instances of the same problem. This work proposes an approach based on task hinting towards addressing length generalization. Our key idea is that while training the model on task-specific data, it is helpful to simultaneously train the model to solve a simpler but related auxiliary task as well. We study the classical sorting problem as a canonical example to evaluate our approach. We design a multitask training framework and show that task hinting significantly improve length generalization. For sorting we show that it is possible to train models on data consisting of sequences having length at most 20, and improve the test accuracy on sequences of length 100 from less than 1% (for standard training) to more than 92% (via task hinting). Our study uncovers several interesting aspects of length generalization. We observe that while several auxiliary tasks may seem natural a priori, their effectiveness in improving length generalization differs dramatically. We further use probing and visualization-based techniques to understand the internal mechanisms via which the model performs the task, and propose a theoretical construction consistent with the observed learning behaviors of the model. Based on our construction, we show that introducing a small number of length dependent parameters into the training procedure can further boost the performance on unseen lengths. Finally, we also show the efficacy of our task hinting based approach beyond sorting, giving hope that these techniques will be applicable in broader contexts. 2 authors · Oct 1, 2023
1 Beyond In-Distribution Success: Scaling Curves of CoT Granularity for Language Model Generalization Generalization to novel compound tasks under distribution shift is important for deploying transformer-based language models (LMs). This work investigates Chain-of-Thought (CoT) reasoning as a means to enhance OOD generalization. Through controlled experiments across several compound tasks, we reveal three key insights: (1) While QA-trained models achieve near-perfect in-distribution accuracy, their OOD performance degrades catastrophically, even with 10000k+ training examples; (2) the granularity of CoT data strongly correlates with generalization performance; finer-grained CoT data leads to better generalization; (3) CoT exhibits remarkable sample efficiency, matching QA performance with much less (even 80%) data. Theoretically, we demonstrate that compound tasks inherently permit shortcuts in Q-A data that misalign with true reasoning principles, while CoT forces internalization of valid dependency structures, and thus can achieve better generalization. Further, we show that transformer positional embeddings can amplify generalization by emphasizing subtask condition recurrence in long CoT sequences. Our combined theoretical and empirical analysis provides compelling evidence for CoT reasoning as a crucial training paradigm for enabling LM generalization under real-world distributional shifts for compound tasks. 7 authors · Feb 25
- Designing Efficient Pair-Trading Strategies Using Cointegration for the Indian Stock Market A pair-trading strategy is an approach that utilizes the fluctuations between prices of a pair of stocks in a short-term time frame, while in the long-term the pair may exhibit a strong association and co-movement pattern. When the prices of the stocks exhibit significant divergence, the shares of the stock that gains in price are sold (a short strategy) while the shares of the other stock whose price falls are bought (a long strategy). This paper presents a cointegration-based approach that identifies stocks listed in the five sectors of the National Stock Exchange (NSE) of India for designing efficient pair-trading portfolios. Based on the stock prices from Jan 1, 2018, to Dec 31, 2020, the cointegrated stocks are identified and the pairs are formed. The pair-trading portfolios are evaluated on their annual returns for the year 2021. The results show that the pairs of stocks from the auto and the realty sectors, in general, yielded the highest returns among the five sectors studied in the work. However, two among the five pairs from the information technology (IT) sector are found to have yielded negative returns. 1 authors · Nov 13, 2022
- Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models During inference for transformer-based large language models (LLM), prefilling is the computation of the key-value (KV) cache for input tokens in the prompt prior to autoregressive generation. For longer input prompt lengths, prefilling will incur a significant overhead on decoding time. In this work, we highlight the following pitfall of prefilling: for batches containing high-varying prompt lengths, significant computation is wasted by the standard practice of padding sequences to the maximum length. As LLMs increasingly support longer context lengths, potentially up to 10 million tokens, variations in prompt lengths within a batch become more pronounced. To address this, we propose Prepacking, a simple yet effective method to optimize prefilling computation. To avoid redundant computation on pad tokens, prepacking combines prompts of varying lengths into a sequence and packs multiple sequences into a compact batch using a bin-packing algorithm. It then modifies the attention mask and positional encoding to compute multiple prefilled KV-caches for multiple prompts within a single sequence. On standard curated dataset containing prompts with varying lengths, we obtain a significant speed and memory efficiency improvements as compared to the default padding-based prefilling computation within Huggingface across a range of base model configurations and inference serving scenarios. 4 authors · Apr 15, 2024
- Are Long-LLMs A Necessity For Long-Context Tasks? The learning and deployment of long-LLMs remains a challenging problem despite recent progresses. In this work, we argue that the long-LLMs are not a necessity to solve long-context tasks, as common long-context tasks are short-context solvable, i.e. they can be solved by purely working with oracle short-contexts within the long-context tasks' inputs. On top of this argument, we propose a framework called LC-Boost (Long-Context Bootstrapper), which enables a short-LLM to address the long-context tasks in a bootstrapping manner. In our framework, the short-LLM prompts itself to reason for two critical decisions: 1) how to access to the appropriate part of context within the input, 2) how to make effective use of the accessed context. By adaptively accessing and utilizing the context based on the presented tasks, LC-Boost can serve as a general framework to handle diversified long-context processing problems. We comprehensively evaluate different types of tasks from popular long-context benchmarks, where LC-Boost is able to achieve a substantially improved performance with a much smaller consumption of resource. 7 authors · May 24, 2024
- SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration Speculative decoding (SD) has emerged as a widely used paradigm to accelerate the inference of large language models (LLMs) without compromising generation quality. It works by first employing a compact model to draft multiple tokens efficiently and then using the target LLM to verify them in parallel. While this technique has achieved notable speedups, most existing approaches necessitate either additional parameters or extensive training to construct effective draft models, thereby restricting their applicability across different LLMs and tasks. To address this limitation, we explore a novel plug-and-play SD solution with layer-skipping, which skips intermediate layers of the target LLM as the compact draft model. Our analysis reveals that LLMs exhibit great potential for self-acceleration through layer sparsity and the task-specific nature of this sparsity. Building on these insights, we introduce SWIFT, an on-the-fly self-speculative decoding algorithm that adaptively selects intermediate layers of LLMs to skip during inference. SWIFT does not require auxiliary models or additional training, making it a plug-and-play solution for accelerating LLM inference across diverse input data streams. Our extensive experiments across a wide range of models and downstream tasks demonstrate that SWIFT can achieve over a 1.3x-1.6x speedup while preserving the original distribution of the generated text. 5 authors · Oct 9, 2024
- DeepStack: Deeply Stacking Visual Tokens is Surprisingly Simple and Effective for LMMs Most large multimodal models (LMMs) are implemented by feeding visual tokens as a sequence into the first layer of a large language model (LLM). The resulting architecture is simple but significantly increases computation and memory costs, as it has to handle a large number of additional tokens in its input layer. This paper presents a new architecture DeepStack for LMMs. Considering N layers in the language and vision transformer of LMMs, we stack the visual tokens into N groups and feed each group to its aligned transformer layer from bottom to top. Surprisingly, this simple method greatly enhances the power of LMMs to model interactions among visual tokens across layers but with minimal additional cost. We apply DeepStack to both language and vision transformer in LMMs, and validate the effectiveness of DeepStack LMMs with extensive empirical results. Using the same context length, our DeepStack 7B and 13B parameters surpass their counterparts by 2.7 and 2.9 on average across 9 benchmarks, respectively. Using only one-fifth of the context length, DeepStack rivals closely to the counterparts that use the full context length. These gains are particularly pronounced on high-resolution tasks, e.g., 4.2, 11.0, and 4.0 improvements on TextVQA, DocVQA, and InfoVQA compared to LLaVA-1.5-7B, respectively. We further apply DeepStack to vision transformer layers, which brings us a similar amount of improvements, 3.8 on average compared with LLaVA-1.5-7B. 7 authors · Jun 6, 2024
63 ShortGPT: Layers in Large Language Models are More Redundant Than You Expect As Large Language Models (LLMs) continue to advance in performance, their size has escalated significantly, with current LLMs containing billions or even trillions of parameters. However, in this study, we discovered that many layers of LLMs exhibit high similarity, and some layers play a negligible role in network functionality. Based on this observation, we define a metric called Block Influence (BI) to gauge the significance of each layer in LLMs. We then propose a straightforward pruning approach: layer removal, in which we directly delete the redundant layers in LLMs based on their BI scores. Experiments demonstrate that our method, which we call ShortGPT, significantly outperforms previous state-of-the-art (SOTA) methods in model pruning. Moreover, ShortGPT is orthogonal to quantization-like methods, enabling further reduction in parameters and computation. The ability to achieve better results through simple layer removal, as opposed to more complex pruning techniques, suggests a high degree of redundancy in the model architecture. 8 authors · Mar 6, 2024 21
- Empowering Character-level Text Infilling by Eliminating Sub-Tokens In infilling tasks, sub-tokens, representing instances where a complete token is segmented into two parts, often emerge at the boundaries of prefixes, middles, and suffixes. Traditional methods focused on training models at the token level, leading to sub-optimal performance in character-level infilling tasks during the inference stage. Alternately, some approaches considered character-level infilling, but they relied on predicting sub-tokens in inference, yet this strategy diminished ability in character-level infilling tasks due to the large perplexity of the model on sub-tokens. In this paper, we introduce FIM-SE, which stands for Fill-In-the-Middle with both Starting and Ending character constraints. The proposed method addresses character-level infilling tasks by utilizing a line-level format to avoid predicting any sub-token in inference. In addition, we incorporate two special tokens to signify the rest of the incomplete lines, thereby enhancing generation guidance. Extensive experiments demonstrate that our proposed approach surpasses previous methods, offering a significant advantage. Code is available at https://github.com/SenseLLM/FIM-SE. 4 authors · May 27, 2024
- Long Context Alignment with Short Instructions and Synthesized Positions Effectively handling instructions with extremely long context remains a challenge for Large Language Models (LLMs), typically necessitating high-quality long data and substantial computational resources. This paper introduces Step-Skipping Alignment (SkipAlign), a new technique designed to enhance the long-context capabilities of LLMs in the phase of alignment without the need for additional efforts beyond training with original data length. SkipAlign is developed on the premise that long-range dependencies are fundamental to enhancing an LLM's capacity of long context. Departing from merely expanding the length of input samples, SkipAlign synthesizes long-range dependencies from the aspect of positions indices. This is achieved by the strategic insertion of skipped positions within instruction-following samples, which utilizes the semantic structure of the data to effectively expand the context. Through extensive experiments on base models with a variety of context window sizes, SkipAlign demonstrates its effectiveness across a spectrum of long-context tasks. Particularly noteworthy is that with a careful selection of the base model and alignment datasets, SkipAlign with only 6B parameters achieves it's best performance and comparable with strong baselines like GPT-3.5-Turbo-16K on LongBench. 6 authors · May 6, 2024
20 BitStack: Fine-Grained Size Control for Compressed Large Language Models in Variable Memory Environments Large language models (LLMs) have revolutionized numerous applications, yet their deployment remains challenged by memory constraints on local devices. While scaling laws have enhanced LLM capabilities, the primary bottleneck has shifted from capability to availability, emphasizing the need for efficient memory management. Traditional compression methods, such as quantization, often require predefined compression ratios and separate compression processes for each setting, complicating deployment in variable memory environments. In this paper, we introduce BitStack, a novel, training-free weight compression approach that enables megabyte-level trade-offs between memory usage and model performance. By leveraging weight decomposition, BitStack can dynamically adjust the model size with minimal transmission between running memory and storage devices. Our approach iteratively decomposes weight matrices while considering the significance of each parameter, resulting in an approximately 1-bit per parameter residual block in each decomposition iteration. These blocks are sorted and stacked in storage as basic transmission units, with different quantities loaded based on current memory availability. Extensive experiments across a wide range of tasks demonstrate that, despite offering fine-grained size control, BitStack consistently matches or surpasses strong quantization baselines, particularly at extreme compression ratios. To the best of our knowledge, this is the first decomposition-based method that effectively bridges the gap to practical compression techniques like quantization. Code is available at https://github.com/xinghaow99/BitStack. 6 authors · Oct 31, 2024 6
1 Model Fusion via Optimal Transport Combining different models is a widely used paradigm in machine learning applications. While the most common approach is to form an ensemble of models and average their individual predictions, this approach is often rendered infeasible by given resource constraints in terms of memory and computation, which grow linearly with the number of models. We present a layer-wise model fusion algorithm for neural networks that utilizes optimal transport to (soft-) align neurons across the models before averaging their associated parameters. We show that this can successfully yield "one-shot" knowledge transfer (i.e, without requiring any retraining) between neural networks trained on heterogeneous non-i.i.d. data. In both i.i.d. and non-i.i.d. settings , we illustrate that our approach significantly outperforms vanilla averaging, as well as how it can serve as an efficient replacement for the ensemble with moderate fine-tuning, for standard convolutional networks (like VGG11), residual networks (like ResNet18), and multi-layer perceptrons on CIFAR10, CIFAR100, and MNIST. Finally, our approach also provides a principled way to combine the parameters of neural networks with different widths, and we explore its application for model compression. The code is available at the following link, https://github.com/sidak/otfusion. 2 authors · Oct 12, 2019
25 Accelerating LLM Inference with Staged Speculative Decoding Recent advances with large language models (LLM) illustrate their diverse capabilities. We propose a novel algorithm, staged speculative decoding, to accelerate LLM inference in small-batch, on-device scenarios. We address the low arithmetic intensity of small-batch inference by improving upon previous work in speculative decoding. First, we restructure the speculative batch as a tree, which reduces generation costs and increases the expected tokens per batch. Second, we add a second stage of speculative decoding. Taken together, we reduce single-batch decoding latency by 3.16x with a 762M parameter GPT-2-L model while perfectly preserving output quality. 2 authors · Aug 8, 2023 4
- Spurious Feature Diversification Improves Out-of-distribution Generalization Generalization to out-of-distribution (OOD) data is a critical challenge in machine learning. Ensemble-based methods, like weight space ensembles that interpolate model parameters, have been shown to achieve superior OOD performance. However, the underlying mechanism for their effectiveness remains unclear. In this study, we closely examine WiSE-FT, a popular weight space ensemble method that interpolates between a pre-trained and a fine-tuned model. We observe an unexpected phenomenon, in which WiSE-FT successfully corrects many cases where each individual model makes incorrect predictions, which contributes significantly to its OOD effectiveness. To gain further insights, we conduct theoretical analysis in a multi-class setting with a large number of spurious features. Our analysis predicts the above phenomenon and it further shows that ensemble-based models reduce prediction errors in the OOD settings by utilizing a more diverse set of spurious features. Contrary to the conventional wisdom that focuses on learning invariant features for better OOD performance, our findings suggest that incorporating a large number of diverse spurious features weakens their individual contributions, leading to improved overall OOD generalization performance. Empirically we demonstrate the effectiveness of utilizing diverse spurious features on a MultiColorMNIST dataset, and our experimental results are consistent with the theoretical analysis. Building upon the new theoretical insights into the efficacy of ensemble methods, we further identify an issue of WiSE-FT caused by the overconfidence of fine-tuned models in OOD situations. This overconfidence magnifies the fine-tuned model's incorrect prediction, leading to deteriorated OOD ensemble performance. To remedy this problem, we propose a novel method called BAlaNced averaGing (BANG), which significantly enhances the OOD performance of WiSE-FT. 8 authors · Sep 29, 2023
- Long-Range Tasks Using Short-Context LLMs: Incremental Reasoning With Structured Memories Long-range tasks require reasoning over long inputs. Existing solutions either need large compute budgets, training data, access to model weights, or use complex, task-specific approaches. We present PRISM, which alleviates these concerns by processing information as a stream of chunks, maintaining a structured in-context memory specified by a typed hierarchy schema. This approach demonstrates superior performance to baselines on diverse tasks while using at least 4x smaller contexts than long-context models. Moreover, PRISM is token-efficient. By producing short outputs and efficiently leveraging key-value (KV) caches, it achieves up to 54% cost reduction when compared to alternative short-context approaches. The method also scales down to tiny information chunks (e.g., 500 tokens) without increasing the number of tokens encoded or sacrificing quality. Furthermore, we show that it is possible to generate schemas to generalize our approach to new tasks with minimal effort. 5 authors · Dec 25, 2024
- Agglomerative Token Clustering We present Agglomerative Token Clustering (ATC), a novel token merging method that consistently outperforms previous token merging and pruning methods across image classification, image synthesis, and object detection & segmentation tasks. ATC merges clusters through bottom-up hierarchical clustering, without the introduction of extra learnable parameters. We find that ATC achieves state-of-the-art performance across all tasks, and can even perform on par with prior state-of-the-art when applied off-the-shelf, i.e. without fine-tuning. ATC is particularly effective when applied with low keep rates, where only a small fraction of tokens are kept and retaining task performance is especially difficult. 4 authors · Sep 18, 2024
- S3D: A Simple and Cost-Effective Self-Speculative Decoding Scheme for Low-Memory GPUs Speculative decoding (SD) has attracted a significant amount of research attention due to the substantial speedup it can achieve for LLM inference. However, despite the high speedups they offer, speculative decoding methods often achieve optimal performance on high-end devices or with a substantial GPU memory overhead. Given limited memory and the necessity of quantization, a high-performing model on a high-end GPU can slow down by up to 7 times. To this end, we propose Skippy Simultaneous Speculative Decoding (or S3D), a cost-effective self-speculative SD method based on simultaneous multi-token decoding and mid-layer skipping. When compared against recent effective open-source SD systems, our method has achieved one of the top performance-memory ratios while requiring minimal architecture changes and training data. Leveraging our memory efficiency, we created a smaller yet more effective SD model based on Phi-3. It is 1.4 to 2 times faster than the quantized EAGLE model and operates in half-precision while using less VRAM. 2 authors · May 30, 2024 1
- Monotonic Location Attention for Length Generalization We explore different ways to utilize position-based cross-attention in seq2seq networks to enable length generalization in algorithmic tasks. We show that a simple approach of interpolating the original and reversed encoded representations combined with relative attention allows near-perfect length generalization for both forward and reverse lookup tasks or copy tasks that had been generally hard to tackle. We also devise harder diagnostic tasks where the relative distance of the ideal attention position varies with timestep. In such settings, the simple interpolation trick with relative attention is not sufficient. We introduce novel variants of location attention building on top of Dubois et al. (2020) to address the new diagnostic tasks. We also show the benefits of our approaches for length generalization in SCAN (Lake & Baroni, 2018) and CFQ (Keysers et al., 2020). Our code is available on GitHub. 2 authors · May 31, 2023
1 Learning Factored Representations in a Deep Mixture of Experts Mixtures of Experts combine the outputs of several "expert" networks, each of which specializes in a different part of the input space. This is achieved by training a "gating" network that maps each input to a distribution over the experts. Such models show promise for building larger networks that are still cheap to compute at test time, and more parallelizable at training time. In this this work, we extend the Mixture of Experts to a stacked model, the Deep Mixture of Experts, with multiple sets of gating and experts. This exponentially increases the number of effective experts by associating each input with a combination of experts at each layer, yet maintains a modest model size. On a randomly translated version of the MNIST dataset, we find that the Deep Mixture of Experts automatically learns to develop location-dependent ("where") experts at the first layer, and class-specific ("what") experts at the second layer. In addition, we see that the different combinations are in use when the model is applied to a dataset of speech monophones. These demonstrate effective use of all expert combinations. 3 authors · Dec 16, 2013