Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLISA: Reasoning Segmentation via Large Language Model
Although perception systems have made remarkable advancements in recent years, they still rely on explicit human instruction to identify the target objects or categories before executing visual recognition tasks. Such systems lack the ability to actively reason and comprehend implicit user intentions. In this work, we propose a new segmentation task -- reasoning segmentation. The task is designed to output a segmentation mask given a complex and implicit query text. Furthermore, we establish a benchmark comprising over one thousand image-instruction pairs, incorporating intricate reasoning and world knowledge for evaluation purposes. Finally, we present LISA: large Language Instructed Segmentation Assistant, which inherits the language generation capabilities of the multi-modal Large Language Model (LLM) while also possessing the ability to produce segmentation masks. We expand the original vocabulary with a <SEG> token and propose the embedding-as-mask paradigm to unlock the segmentation capability. Remarkably, LISA can handle cases involving: 1) complex reasoning; 2) world knowledge; 3) explanatory answers; 4) multi-turn conversation. Also, it demonstrates robust zero-shot capability when trained exclusively on reasoning-free datasets. In addition, fine-tuning the model with merely 239 reasoning segmentation image-instruction pairs results in further performance enhancement. Experiments show our method not only unlocks new reasoning segmentation capabilities but also proves effective in both complex reasoning segmentation and standard referring segmentation tasks. Code, models, and demo are at https://github.com/dvlab-research/LISA.
TinySAM: Pushing the Envelope for Efficient Segment Anything Model
Recently segment anything model (SAM) has shown powerful segmentation capability and has drawn great attention in computer vision fields. Massive following works have developed various applications based on the pretrained SAM and achieved impressive performance on downstream vision tasks. However, SAM consists of heavy architectures and requires massive computational capacity, which hinders the further application of SAM on computation constrained edge devices. To this end, in this paper we propose a framework to obtain a tiny segment anything model (TinySAM) while maintaining the strong zero-shot performance. We first propose a full-stage knowledge distillation method with online hard prompt sampling strategy to distill a lightweight student model. We also adapt the post-training quantization to the promptable segmentation task and further reduce the computational cost. Moreover, a hierarchical segmenting everything strategy is proposed to accelerate the everything inference by 2times with almost no performance degradation. With all these proposed methods, our TinySAM leads to orders of magnitude computational reduction and pushes the envelope for efficient segment anything task. Extensive experiments on various zero-shot transfer tasks demonstrate the significantly advantageous performance of our TinySAM against counterpart methods. Pre-trained models and codes will be available at https://github.com/xinghaochen/TinySAM and https://gitee.com/mindspore/models/tree/master/research/cv/TinySAM.
GaussianProperty: Integrating Physical Properties to 3D Gaussians with LMMs
Estimating physical properties for visual data is a crucial task in computer vision, graphics, and robotics, underpinning applications such as augmented reality, physical simulation, and robotic grasping. However, this area remains under-explored due to the inherent ambiguities in physical property estimation. To address these challenges, we introduce GaussianProperty, a training-free framework that assigns physical properties of materials to 3D Gaussians. Specifically, we integrate the segmentation capability of SAM with the recognition capability of GPT-4V(ision) to formulate a global-local physical property reasoning module for 2D images. Then we project the physical properties from multi-view 2D images to 3D Gaussians using a voting strategy. We demonstrate that 3D Gaussians with physical property annotations enable applications in physics-based dynamic simulation and robotic grasping. For physics-based dynamic simulation, we leverage the Material Point Method (MPM) for realistic dynamic simulation. For robot grasping, we develop a grasping force prediction strategy that estimates a safe force range required for object grasping based on the estimated physical properties. Extensive experiments on material segmentation, physics-based dynamic simulation, and robotic grasping validate the effectiveness of our proposed method, highlighting its crucial role in understanding physical properties from visual data. Online demo, code, more cases and annotated datasets are available on https://Gaussian-Property.github.io{this https URL}.
CLIP as RNN: Segment Countless Visual Concepts without Training Endeavor
Existing open-vocabulary image segmentation methods require a fine-tuning step on mask annotations and/or image-text datasets. Mask labels are labor-intensive, which limits the number of categories in segmentation datasets. As a result, the open-vocabulary capacity of pre-trained VLMs is severely reduced after fine-tuning. However, without fine-tuning, VLMs trained under weak image-text supervision tend to make suboptimal mask predictions when there are text queries referring to non-existing concepts in the image. To alleviate these issues, we introduce a novel recurrent framework that progressively filters out irrelevant texts and enhances mask quality without training efforts. The recurrent unit is a two-stage segmenter built upon a VLM with frozen weights. Thus, our model retains the VLM's broad vocabulary space and strengthens its segmentation capability. Experimental results show that our method outperforms not only the training-free counterparts, but also those fine-tuned with millions of additional data samples, and sets new state-of-the-art records for both zero-shot semantic and referring image segmentation tasks. Specifically, we improve the current record by 28.8, 16.0, and 6.9 mIoU on Pascal VOC, COCO Object, and Pascal Context.
Medical SAM 2: Segment medical images as video via Segment Anything Model 2
In this paper, we introduce Medical SAM 2 (MedSAM-2), an advanced segmentation model that utilizes the SAM 2 framework to address both 2D and 3D medical image segmentation tasks. By adopting the philosophy of taking medical images as videos, MedSAM-2 not only applies to 3D medical images but also unlocks new One-prompt Segmentation capability. That allows users to provide a prompt for just one or a specific image targeting an object, after which the model can autonomously segment the same type of object in all subsequent images, regardless of temporal relationships between the images. We evaluated MedSAM-2 across a variety of medical imaging modalities, including abdominal organs, optic discs, brain tumors, thyroid nodules, and skin lesions, comparing it against state-of-the-art models in both traditional and interactive segmentation settings. Our findings show that MedSAM-2 not only surpasses existing models in performance but also exhibits superior generalization across a range of medical image segmentation tasks. Our code will be released at: https://github.com/MedicineToken/Medical-SAM2
3D Medical Image Segmentation based on multi-scale MPU-Net
The high cure rate of cancer is inextricably linked to physicians' accuracy in diagnosis and treatment, therefore a model that can accomplish high-precision tumor segmentation has become a necessity in many applications of the medical industry. It can effectively lower the rate of misdiagnosis while considerably lessening the burden on clinicians. However, fully automated target organ segmentation is problematic due to the irregular stereo structure of 3D volume organs. As a basic model for this class of real applications, U-Net excels. It can learn certain global and local features, but still lacks the capacity to grasp spatial long-range relationships and contextual information at multiple scales. This paper proposes a tumor segmentation model MPU-Net for patient volume CT images, which is inspired by Transformer with a global attention mechanism. By combining image serialization with the Position Attention Module, the model attempts to comprehend deeper contextual dependencies and accomplish precise positioning. Each layer of the decoder is also equipped with a multi-scale module and a cross-attention mechanism. The capability of feature extraction and integration at different levels has been enhanced, and the hybrid loss function developed in this study can better exploit high-resolution characteristic information. Moreover, the suggested architecture is tested and evaluated on the Liver Tumor Segmentation Challenge 2017 (LiTS 2017) dataset. Compared with the benchmark model U-Net, MPU-Net shows excellent segmentation results. The dice, accuracy, precision, specificity, IOU, and MCC metrics for the best model segmentation results are 92.17%, 99.08%, 91.91%, 99.52%, 85.91%, and 91.74%, respectively. Outstanding indicators in various aspects illustrate the exceptional performance of this framework in automatic medical image segmentation.
DOORS: Dataset fOr bOuldeRs Segmentation. Statistical properties and Blender setup
The capability to detect boulders on the surface of small bodies is beneficial for vision-based applications such as hazard detection during critical operations and navigation. This task is challenging due to the wide assortment of irregular shapes, the characteristics of the boulders population, and the rapid variability in the illumination conditions. Moreover, the lack of publicly available labeled datasets for these applications damps the research about data-driven algorithms. In this work, the authors provide a statistical characterization and setup used for the generation of two datasets about boulders on small bodies that are made publicly available.
SegLLM: Multi-round Reasoning Segmentation
We present SegLLM, a novel multi-round interactive reasoning segmentation model that enhances LLM-based segmentation by exploiting conversational memory of both visual and textual outputs. By leveraging a mask-aware multimodal LLM, SegLLM re-integrates previous segmentation results into its input stream, enabling it to reason about complex user intentions and segment objects in relation to previously identified entities, including positional, interactional, and hierarchical relationships, across multiple interactions. This capability allows SegLLM to respond to visual and text queries in a chat-like manner. Evaluated on the newly curated MRSeg benchmark, SegLLM outperforms existing methods in multi-round interactive reasoning segmentation by over 20%. Additionally, we observed that training on multi-round reasoning segmentation data enhances performance on standard single-round referring segmentation and localization tasks, resulting in a 5.5% increase in cIoU for referring expression segmentation and a 4.5% improvement in [email protected] for referring expression localization.
Segmentation-guided Layer-wise Image Vectorization with Gradient Fills
The widespread use of vector graphics creates a significant demand for vectorization methods. While recent learning-based techniques have shown their capability to create vector images of clear topology, filling these primitives with gradients remains a challenge. In this paper, we propose a segmentation-guided vectorization framework to convert raster images into concise vector graphics with radial gradient fills. With the guidance of an embedded gradient-aware segmentation subroutine, our approach progressively appends gradient-filled B\'ezier paths to the output, where primitive parameters are initiated with our newly designed initialization technique and are optimized to minimize our novel loss function. We build our method on a differentiable renderer with traditional segmentation algorithms to develop it as a model-free tool for raster-to-vector conversion. It is tested on various inputs to demonstrate its feasibility, independent of datasets, to synthesize vector graphics with improved visual quality and layer-wise topology compared to prior work.
VIN: Voxel-based Implicit Network for Joint 3D Object Detection and Segmentation for Lidars
A unified neural network structure is presented for joint 3D object detection and point cloud segmentation in this paper. We leverage rich supervision from both detection and segmentation labels rather than using just one of them. In addition, an extension based on single-stage object detectors is proposed based on the implicit function widely used in 3D scene and object understanding. The extension branch takes the final feature map from the object detection module as input, and produces an implicit function that generates semantic distribution for each point for its corresponding voxel center. We demonstrated the performance of our structure on nuScenes-lidarseg, a large-scale outdoor dataset. Our solution achieves competitive results against state-of-the-art methods in both 3D object detection and point cloud segmentation with little additional computation load compared with object detection solutions. The capability of efficient weakly supervision semantic segmentation of the proposed method is also validated by experiments.
SegViT: Semantic Segmentation with Plain Vision Transformers
We explore the capability of plain Vision Transformers (ViTs) for semantic segmentation and propose the SegVit. Previous ViT-based segmentation networks usually learn a pixel-level representation from the output of the ViT. Differently, we make use of the fundamental component -- attention mechanism, to generate masks for semantic segmentation. Specifically, we propose the Attention-to-Mask (ATM) module, in which the similarity maps between a set of learnable class tokens and the spatial feature maps are transferred to the segmentation masks. Experiments show that our proposed SegVit using the ATM module outperforms its counterparts using the plain ViT backbone on the ADE20K dataset and achieves new state-of-the-art performance on COCO-Stuff-10K and PASCAL-Context datasets. Furthermore, to reduce the computational cost of the ViT backbone, we propose query-based down-sampling (QD) and query-based up-sampling (QU) to build a Shrunk structure. With the proposed Shrunk structure, the model can save up to 40% computations while maintaining competitive performance.
DVIS++: Improved Decoupled Framework for Universal Video Segmentation
We present the Decoupled VIdeo Segmentation (DVIS) framework, a novel approach for the challenging task of universal video segmentation, including video instance segmentation (VIS), video semantic segmentation (VSS), and video panoptic segmentation (VPS). Unlike previous methods that model video segmentation in an end-to-end manner, our approach decouples video segmentation into three cascaded sub-tasks: segmentation, tracking, and refinement. This decoupling design allows for simpler and more effective modeling of the spatio-temporal representations of objects, especially in complex scenes and long videos. Accordingly, we introduce two novel components: the referring tracker and the temporal refiner. These components track objects frame by frame and model spatio-temporal representations based on pre-aligned features. To improve the tracking capability of DVIS, we propose a denoising training strategy and introduce contrastive learning, resulting in a more robust framework named DVIS++. Furthermore, we evaluate DVIS++ in various settings, including open vocabulary and using a frozen pre-trained backbone. By integrating CLIP with DVIS++, we present OV-DVIS++, the first open-vocabulary universal video segmentation framework. We conduct extensive experiments on six mainstream benchmarks, including the VIS, VSS, and VPS datasets. Using a unified architecture, DVIS++ significantly outperforms state-of-the-art specialized methods on these benchmarks in both close- and open-vocabulary settings. Code:~https://github.com/zhang-tao-whu/DVIS_Plus.
SegViTv2: Exploring Efficient and Continual Semantic Segmentation with Plain Vision Transformers
This paper investigates the capability of plain Vision Transformers (ViTs) for semantic segmentation using the encoder-decoder framework and introduces SegViTv2. In this study, we introduce a novel Attention-to-Mask (\atm) module to design a lightweight decoder effective for plain ViT. The proposed ATM converts the global attention map into semantic masks for high-quality segmentation results. Our decoder outperforms the popular decoder UPerNet using various ViT backbones while consuming only about 5% of the computational cost. For the encoder, we address the concern of the relatively high computational cost in the ViT-based encoders and propose a Shrunk++ structure that incorporates edge-aware query-based down-sampling (EQD) and query-based upsampling (QU) modules. The Shrunk++ structure reduces the computational cost of the encoder by up to 50% while maintaining competitive performance. Furthermore, we propose to adapt SegViT for continual semantic segmentation, demonstrating nearly zero forgetting of previously learned knowledge. Experiments show that our proposed SegViTv2 surpasses recent segmentation methods on three popular benchmarks including ADE20k, COCO-Stuff-10k and PASCAL-Context datasets. The code is available through the following link: https://github.com/zbwxp/SegVit.
LISA++: An Improved Baseline for Reasoning Segmentation with Large Language Model
While LISA effectively bridges the gap between segmentation and large language models to enable reasoning segmentation, it poses certain limitations: unable to distinguish different instances of the target region, and constrained by the pre-defined textual response formats. In this work, we introduce LISA++, an update to the existing LISA model, focusing on improving core functionalities while keeping the base architecture intact. The main enhancements in LISA++ include: 1) Enhanced Segmentation: The instance segmentation ability has been added, providing a more detailed scene analysis along with the existing multi-region semantic segmentation. 2) More Natural Conversation: Improved capability for multi-turn dialogue, with the ability to incorporate segmentation results directly into text responses, i.e., Segmentation in Dialogue (SiD). These improvements are achieved by curating the existing samples of generic segmentation datasets, aimed specifically at enhancing the segmentation and conversational skills without structural change and additional data sources. Comparative analysis with the original LISA model shows significant advancements in these areas, positioning LISA++ as a notable upgrade in visual understanding and interaction. LISA++'s adaptability and improved features highlight the versatility of the mask-as-embedding paradigm proposed by LISA, and the potential as a foundational model for diverse applications.
DINOv2-powered Few-Shot Semantic Segmentation: A Unified Framework via Cross-Model Distillation and 4D Correlation Mining
Few-shot semantic segmentation has gained increasing interest due to its generalization capability, i.e., segmenting pixels of novel classes requiring only a few annotated images. Prior work has focused on meta-learning for support-query matching, with extensive development in both prototype-based and aggregation-based methods. To address data scarcity, recent approaches have turned to foundation models to enhance representation transferability for novel class segmentation. Among them, a hybrid dual-modal framework including both DINOv2 and SAM has garnered attention due to their complementary capabilities. We wonder "can we build a unified model with knowledge from both foundation models?" To this end, we propose FS-DINO, with only DINOv2's encoder and a lightweight segmenter. The segmenter features a bottleneck adapter, a meta-visual prompt generator based on dense similarities and semantic embeddings, and a decoder. Through coarse-to-fine cross-model distillation, we effectively integrate SAM's knowledge into our lightweight segmenter, which can be further enhanced by 4D correlation mining on support-query pairs. Extensive experiments on COCO-20i, PASCAL-5i, and FSS-1000 demonstrate the effectiveness and superiority of our method.
Unveiling the Potential of Segment Anything Model 2 for RGB-Thermal Semantic Segmentation with Language Guidance
The perception capability of robotic systems relies on the richness of the dataset. Although Segment Anything Model 2 (SAM2), trained on large datasets, demonstrates strong perception potential in perception tasks, its inherent training paradigm prevents it from being suitable for RGB-T tasks. To address these challenges, we propose SHIFNet, a novel SAM2-driven Hybrid Interaction Paradigm that unlocks the potential of SAM2 with linguistic guidance for efficient RGB-Thermal perception. Our framework consists of two key components: (1) Semantic-Aware Cross-modal Fusion (SACF) module that dynamically balances modality contributions through text-guided affinity learning, overcoming SAM2's inherent RGB bias; (2) Heterogeneous Prompting Decoder (HPD) that enhances global semantic information through a semantic enhancement module and then combined with category embeddings to amplify cross-modal semantic consistency. With 32.27M trainable parameters, SHIFNet achieves state-of-the-art segmentation performance on public benchmarks, reaching 89.8% on PST900 and 67.8% on FMB, respectively. The framework facilitates the adaptation of pre-trained large models to RGB-T segmentation tasks, effectively mitigating the high costs associated with data collection while endowing robotic systems with comprehensive perception capabilities. The source code will be made publicly available at https://github.com/iAsakiT3T/SHIFNet.
Zero-Shot Surgical Tool Segmentation in Monocular Video Using Segment Anything Model 2
The Segment Anything Model 2 (SAM 2) is the latest generation foundation model for image and video segmentation. Trained on the expansive Segment Anything Video (SA-V) dataset, which comprises 35.5 million masks across 50.9K videos, SAM 2 advances its predecessor's capabilities by supporting zero-shot segmentation through various prompts (e.g., points, boxes, and masks). Its robust zero-shot performance and efficient memory usage make SAM 2 particularly appealing for surgical tool segmentation in videos, especially given the scarcity of labeled data and the diversity of surgical procedures. In this study, we evaluate the zero-shot video segmentation performance of the SAM 2 model across different types of surgeries, including endoscopy and microscopy. We also assess its performance on videos featuring single and multiple tools of varying lengths to demonstrate SAM 2's applicability and effectiveness in the surgical domain. We found that: 1) SAM 2 demonstrates a strong capability for segmenting various surgical videos; 2) When new tools enter the scene, additional prompts are necessary to maintain segmentation accuracy; and 3) Specific challenges inherent to surgical videos can impact the robustness of SAM 2.
Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities
Image modality is not perfect as it often fails in certain conditions, e.g., night and fast motion. This significantly limits the robustness and versatility of existing multi-modal (i.e., Image+X) semantic segmentation methods when confronting modality absence or failure, as often occurred in real-world applications. Inspired by the open-world learning capability of multi-modal vision-language models (MVLMs), we explore a new direction in learning the modality-agnostic representation via knowledge distillation (KD) from MVLMs. Intuitively, we propose Any2Seg, a novel framework that can achieve robust segmentation from any combination of modalities in any visual conditions. Specifically, we first introduce a novel language-guided semantic correlation distillation (LSCD) module to transfer both inter-modal and intra-modal semantic knowledge in the embedding space from MVLMs, e.g., LanguageBind. This enables us to minimize the modality gap and alleviate semantic ambiguity to combine any modalities in any visual conditions. Then, we introduce a modality-agnostic feature fusion (MFF) module that reweights the multi-modal features based on the inter-modal correlation and selects the fine-grained feature. This way, our Any2Seg finally yields an optimal modality-agnostic representation. Extensive experiments on two benchmarks with four modalities demonstrate that Any2Seg achieves the state-of-the-art under the multi-modal setting (+3.54 mIoU) and excels in the challenging modality-incomplete setting(+19.79 mIoU).
Leveraging Open-Vocabulary Diffusion to Camouflaged Instance Segmentation
Text-to-image diffusion techniques have shown exceptional capability of producing high-quality images from text descriptions. This indicates that there exists a strong correlation between the visual and textual domains. In addition, text-image discriminative models such as CLIP excel in image labelling from text prompts, thanks to the rich and diverse information available from open concepts. In this paper, we leverage these technical advances to solve a challenging problem in computer vision: camouflaged instance segmentation. Specifically, we propose a method built upon a state-of-the-art diffusion model, empowered by open-vocabulary to learn multi-scale textual-visual features for camouflaged object representations. Such cross-domain representations are desirable in segmenting camouflaged objects where visual cues are subtle to distinguish the objects from the background, especially in segmenting novel objects which are not seen in training. We also develop technically supportive components to effectively fuse cross-domain features and engage relevant features towards respective foreground objects. We validate our method and compare it with existing ones on several benchmark datasets of camouflaged instance segmentation and generic open-vocabulary instance segmentation. Experimental results confirm the advances of our method over existing ones. We will publish our code and pre-trained models to support future research.
InsMOS: Instance-Aware Moving Object Segmentation in LiDAR Data
Identifying moving objects is a crucial capability for autonomous navigation, consistent map generation, and future trajectory prediction of objects. In this paper, we propose a novel network that addresses the challenge of segmenting moving objects in 3D LiDAR scans. Our approach not only predicts point-wise moving labels but also detects instance information of main traffic participants. Such a design helps determine which instances are actually moving and which ones are temporarily static in the current scene. Our method exploits a sequence of point clouds as input and quantifies them into 4D voxels. We use 4D sparse convolutions to extract motion features from the 4D voxels and inject them into the current scan. Then, we extract spatio-temporal features from the current scan for instance detection and feature fusion. Finally, we design an upsample fusion module to output point-wise labels by fusing the spatio-temporal features and predicted instance information. We evaluated our approach on the LiDAR-MOS benchmark based on SemanticKITTI and achieved better moving object segmentation performance compared to state-of-the-art methods, demonstrating the effectiveness of our approach in integrating instance information for moving object segmentation. Furthermore, our method shows superior performance on the Apollo dataset with a pre-trained model on SemanticKITTI, indicating that our method generalizes well in different scenes.The code and pre-trained models of our method will be released at https://github.com/nubot-nudt/InsMOS.
Segmentation variability and radiomics stability for predicting Triple-Negative Breast Cancer subtype using Magnetic Resonance Imaging
Most papers caution against using predictive models for disease stratification based on unselected radiomic features, as these features are affected by contouring variability. Instead, they advocate for the use of the Intraclass Correlation Coefficient (ICC) as a measure of stability for feature selection. However, the direct effect of segmentation variability on the predictive models is rarely studied. This study investigates the impact of segmentation variability on feature stability and predictive performance in radiomics-based prediction of Triple-Negative Breast Cancer (TNBC) subtype using Magnetic Resonance Imaging. A total of 244 images from the Duke dataset were used, with segmentation variability introduced through modifications of manual segmentations. For each mask, explainable radiomic features were selected using the Shapley Additive exPlanations method and used to train logistic regression models. Feature stability across segmentations was assessed via ICC, Pearson's correlation, and reliability scores quantifying the relationship between feature stability and segmentation variability. Results indicate that segmentation accuracy does not significantly impact predictive performance. While incorporating peritumoral information may reduce feature reproducibility, it does not diminish feature predictive capability. Moreover, feature selection in predictive models is not inherently tied to feature stability with respect to segmentation, suggesting that an overreliance on ICC or reliability scores for feature selection might exclude valuable predictive features.
Click-Gaussian: Interactive Segmentation to Any 3D Gaussians
Interactive segmentation of 3D Gaussians opens a great opportunity for real-time manipulation of 3D scenes thanks to the real-time rendering capability of 3D Gaussian Splatting. However, the current methods suffer from time-consuming post-processing to deal with noisy segmentation output. Also, they struggle to provide detailed segmentation, which is important for fine-grained manipulation of 3D scenes. In this study, we propose Click-Gaussian, which learns distinguishable feature fields of two-level granularity, facilitating segmentation without time-consuming post-processing. We delve into challenges stemming from inconsistently learned feature fields resulting from 2D segmentation obtained independently from a 3D scene. 3D segmentation accuracy deteriorates when 2D segmentation results across the views, primary cues for 3D segmentation, are in conflict. To overcome these issues, we propose Global Feature-guided Learning (GFL). GFL constructs the clusters of global feature candidates from noisy 2D segments across the views, which smooths out noises when training the features of 3D Gaussians. Our method runs in 10 ms per click, 15 to 130 times as fast as the previous methods, while also significantly improving segmentation accuracy. Our project page is available at https://seokhunchoi.github.io/Click-Gaussian
Open-vocabulary Semantic Segmentation with Frozen Vision-Language Models
When trained at a sufficient scale, self-supervised learning has exhibited a notable ability to solve a wide range of visual or language understanding tasks. In this paper, we investigate simple, yet effective approaches for adapting the pre-trained foundation models to the downstream task of interest, namely, open-vocabulary semantic segmentation. To this end, we make the following contributions: (i) we introduce Fusioner, with a lightweight, transformer-based fusion module, that pairs the frozen visual representation with language concept through a handful of image segmentation data. As a consequence, the model gains the capability of zero-shot transfer to segment novel categories; (ii) without loss of generality, we experiment on a broad range of self-supervised models that have been pre-trained with different schemes, e.g. visual-only models (MoCo v3, DINO), language-only models (BERT), visual-language model (CLIP), and show that, the proposed fusion approach is effective to any pair of visual and language models, even those pre-trained on a corpus of uni-modal data; (iii) we conduct thorough ablation studies to analyze the critical components in our proposed Fusioner, while evaluating on standard benchmarks, e.g. PASCAL-5i and COCO-20i , it surpasses existing state-of-the-art models by a large margin, despite only being trained on frozen visual and language features; (iv) to measure the model's robustness on learning visual-language correspondence, we further evaluate on synthetic dataset, named Mosaic-4, where images are constructed by mosaicking the samples from FSS-1000. Fusioner demonstrates superior performance over previous models.
TarViS: A Unified Approach for Target-based Video Segmentation
The general domain of video segmentation is currently fragmented into different tasks spanning multiple benchmarks. Despite rapid progress in the state-of-the-art, current methods are overwhelmingly task-specific and cannot conceptually generalize to other tasks. Inspired by recent approaches with multi-task capability, we propose TarViS: a novel, unified network architecture that can be applied to any task that requires segmenting a set of arbitrarily defined 'targets' in video. Our approach is flexible with respect to how tasks define these targets, since it models the latter as abstract 'queries' which are then used to predict pixel-precise target masks. A single TarViS model can be trained jointly on a collection of datasets spanning different tasks, and can hot-swap between tasks during inference without any task-specific retraining. To demonstrate its effectiveness, we apply TarViS to four different tasks, namely Video Instance Segmentation (VIS), Video Panoptic Segmentation (VPS), Video Object Segmentation (VOS) and Point Exemplar-guided Tracking (PET). Our unified, jointly trained model achieves state-of-the-art performance on 5/7 benchmarks spanning these four tasks, and competitive performance on the remaining two. Code and model weights are available at: https://github.com/Ali2500/TarViS
Benchmarking the Robustness of Instance Segmentation Models
This paper presents a comprehensive evaluation of instance segmentation models with respect to real-world image corruptions as well as out-of-domain image collections, e.g. images captured by a different set-up than the training dataset. The out-of-domain image evaluation shows the generalization capability of models, an essential aspect of real-world applications and an extensively studied topic of domain adaptation. These presented robustness and generalization evaluations are important when designing instance segmentation models for real-world applications and picking an off-the-shelf pretrained model to directly use for the task at hand. Specifically, this benchmark study includes state-of-the-art network architectures, network backbones, normalization layers, models trained starting from scratch versus pretrained networks, and the effect of multi-task training on robustness and generalization. Through this study, we gain several insights. For example, we find that group normalization enhances the robustness of networks across corruptions where the image contents stay the same but corruptions are added on top. On the other hand, batch normalization improves the generalization of the models across different datasets where statistics of image features change. We also find that single-stage detectors do not generalize well to larger image resolutions than their training size. On the other hand, multi-stage detectors can easily be used on images of different sizes. We hope that our comprehensive study will motivate the development of more robust and reliable instance segmentation models.
CC-SAM: SAM with Cross-feature Attention and Context for Ultrasound Image Segmentation
The Segment Anything Model (SAM) has achieved remarkable successes in the realm of natural image segmentation, but its deployment in the medical imaging sphere has encountered challenges. Specifically, the model struggles with medical images that feature low contrast, faint boundaries, intricate morphologies, and small-sized objects. To address these challenges and enhance SAM's performance in the medical domain, we introduce a comprehensive modification. Firstly, we incorporate a frozen Convolutional Neural Network (CNN) branch as an image encoder, which synergizes with SAM's original Vision Transformer (ViT) encoder through a novel variational attention fusion module. This integration bolsters the model's capability to capture local spatial information, which is often paramount in medical imagery. Moreover, to further optimize SAM for medical imaging, we introduce feature and position adapters within the ViT branch, refining the encoder's representations. We see that compared to current prompting strategies to fine-tune SAM for ultrasound medical segmentation, the use of text descriptions that serve as text prompts for SAM helps significantly improve the performance. Leveraging ChatGPT's natural language understanding capabilities, we generate prompts that offer contextual information and guidance to SAM, enabling it to better understand the nuances of ultrasound medical images and improve its segmentation accuracy. Our method, in its entirety, represents a significant stride towards making universal image segmentation models more adaptable and efficient in the medical domain.
Text Promptable Surgical Instrument Segmentation with Vision-Language Models
In this paper, we propose a novel text promptable surgical instrument segmentation approach to overcome challenges associated with diversity and differentiation of surgical instruments in minimally invasive surgeries. We redefine the task as text promptable, thereby enabling a more nuanced comprehension of surgical instruments and adaptability to new instrument types. Inspired by recent advancements in vision-language models, we leverage pretrained image and text encoders as our model backbone and design a text promptable mask decoder consisting of attention- and convolution-based prompting schemes for surgical instrument segmentation prediction. Our model leverages multiple text prompts for each surgical instrument through a new mixture of prompts mechanism, resulting in enhanced segmentation performance. Additionally, we introduce a hard instrument area reinforcement module to improve image feature comprehension and segmentation precision. Extensive experiments on EndoVis2017 and EndoVis2018 datasets demonstrate our model's superior performance and promising generalization capability. To our knowledge, this is the first implementation of a promptable approach to surgical instrument segmentation, offering significant potential for practical application in the field of robotic-assisted surgery.
Generative Medical Segmentation
Rapid advancements in medical image segmentation performance have been significantly driven by the development of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs). These models follow the discriminative pixel-wise classification learning paradigm and often have limited ability to generalize across diverse medical imaging datasets. In this manuscript, we introduce Generative Medical Segmentation (GMS), a novel approach leveraging a generative model to perform image segmentation. Concretely, GMS employs a robust pre-trained vision foundation model to extract latent representations for images and corresponding ground truth masks, followed by a model that learns a mapping function from the image to the mask in the latent space. Once trained, the model generates an estimated segmentation mask using the pre-trained vision foundation model to decode the predicted latent representation back into the image space. The design of GMS leads to fewer trainable parameters in the model which reduces the risk of overfitting and enhances its generalization capability. Our experimental analysis across five public datasets in different medical imaging domains demonstrates GMS outperforms existing discriminative and generative segmentation models. Furthermore, GMS is able to generalize well across datasets from different centers within the same imaging modality. Our experiments suggest GMS offers a scalable and effective solution for medical image segmentation. GMS implementation and trained model weights are available at https://github.com/King-HAW/GMS.
Collaborative Vision-Text Representation Optimizing for Open-Vocabulary Segmentation
Pre-trained vision-language models, e.g. CLIP, have been increasingly used to address the challenging Open-Vocabulary Segmentation (OVS) task, benefiting from their well-aligned vision-text embedding space. Typical solutions involve either freezing CLIP during training to unilaterally maintain its zero-shot capability, or fine-tuning CLIP vision encoder to achieve perceptual sensitivity to local regions. However, few of them incorporate vision-text collaborative optimization. Based on this, we propose the Content-Dependent Transfer to adaptively enhance each text embedding by interacting with the input image, which presents a parameter-efficient way to optimize the text representation. Besides, we additionally introduce a Representation Compensation strategy, reviewing the original CLIP-V representation as compensation to maintain the zero-shot capability of CLIP. In this way, the vision and text representation of CLIP are optimized collaboratively, enhancing the alignment of the vision-text feature space. To the best of our knowledge, we are the first to establish the collaborative vision-text optimizing mechanism within the OVS field. Extensive experiments demonstrate our method achieves superior performance on popular OVS benchmarks. In open-vocabulary semantic segmentation, our method outperforms the previous state-of-the-art approaches by +0.5, +2.3, +3.4, +0.4 and +1.1 mIoU, respectively on A-847, A-150, PC-459, PC-59 and PAS-20. Furthermore, in a panoptic setting on ADE20K, we achieve the performance of 27.1 PQ, 73.5 SQ, and 32.9 RQ. Code will be available at https://github.com/jiaosiyu1999/MAFT-Plus.git .
Style-Extracting Diffusion Models for Semi-Supervised Histopathology Segmentation
Deep learning-based image generation has seen significant advancements with diffusion models, notably improving the quality of generated images. Despite these developments, generating images with unseen characteristics beneficial for downstream tasks has received limited attention. To bridge this gap, we propose Style-Extracting Diffusion Models, featuring two conditioning mechanisms. Specifically, we utilize 1) a style conditioning mechanism which allows to inject style information of previously unseen images during image generation and 2) a content conditioning which can be targeted to a downstream task, e.g., layout for segmentation. We introduce a trainable style encoder to extract style information from images, and an aggregation block that merges style information from multiple style inputs. This architecture enables the generation of images with unseen styles in a zero-shot manner, by leveraging styles from unseen images, resulting in more diverse generations. In this work, we use the image layout as target condition and first show the capability of our method on a natural image dataset as a proof-of-concept. We further demonstrate its versatility in histopathology, where we combine prior knowledge about tissue composition and unannotated data to create diverse synthetic images with known layouts. This allows us to generate additional synthetic data to train a segmentation network in a semi-supervised fashion. We verify the added value of the generated images by showing improved segmentation results and lower performance variability between patients when synthetic images are included during segmentation training. Our code will be made publicly available at [LINK].
OpenSD: Unified Open-Vocabulary Segmentation and Detection
Recently, a few open-vocabulary methods have been proposed by employing a unified architecture to tackle generic segmentation and detection tasks. However, their performance still lags behind the task-specific models due to the conflict between different tasks, and their open-vocabulary capability is limited due to the inadequate use of CLIP. To address these challenges, we present a universal transformer-based framework, abbreviated as OpenSD, which utilizes the same architecture and network parameters to handle open-vocabulary segmentation and detection tasks. First, we introduce a decoder decoupled learning strategy to alleviate the semantic conflict between thing and staff categories so that each individual task can be learned more effectively under the same framework. Second, to better leverage CLIP for end-to-end segmentation and detection, we propose dual classifiers to handle the in-vocabulary domain and out-of-vocabulary domain, respectively. The text encoder is further trained to be region-aware for both thing and stuff categories through decoupled prompt learning, enabling them to filter out duplicated and low-quality predictions, which is important to end-to-end segmentation and detection. Extensive experiments are conducted on multiple datasets under various circumstances. The results demonstrate that OpenSD outperforms state-of-the-art open-vocabulary segmentation and detection methods in both closed- and open-vocabulary settings. Code is available at https://github.com/strongwolf/OpenSD
Meta Compositional Referring Expression Segmentation
Referring expression segmentation aims to segment an object described by a language expression from an image. Despite the recent progress on this task, existing models tackling this task may not be able to fully capture semantics and visual representations of individual concepts, which limits their generalization capability, especially when handling novel compositions of learned concepts. In this work, through the lens of meta learning, we propose a Meta Compositional Referring Expression Segmentation (MCRES) framework to enhance model compositional generalization performance. Specifically, to handle various levels of novel compositions, our framework first uses training data to construct a virtual training set and multiple virtual testing sets, where data samples in each virtual testing set contain a level of novel compositions w.r.t. the virtual training set. Then, following a novel meta optimization scheme to optimize the model to obtain good testing performance on the virtual testing sets after training on the virtual training set, our framework can effectively drive the model to better capture semantics and visual representations of individual concepts, and thus obtain robust generalization performance even when handling novel compositions. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our framework.
OpenAVS: Training-Free Open-Vocabulary Audio Visual Segmentation with Foundational Models
Audio-visual segmentation aims to separate sounding objects from videos by predicting pixel-level masks based on audio signals. Existing methods primarily concentrate on closed-set scenarios and direct audio-visual alignment and fusion, which limits their capability to generalize to new, unseen situations. In this paper, we propose OpenAVS, a novel training-free language-based approach that, for the first time, effectively aligns audio and visual modalities using text as a proxy for open-vocabulary Audio-Visual Segmentation (AVS). Equipped with multimedia foundation models, OpenAVS directly infers masks through 1) audio-to-text prompt generation, 2) LLM-guided prompt translation, and 3) text-to-visual sounding object segmentation. The objective of OpenAVS is to establish a simple yet flexible architecture that relies on the most appropriate foundation models by fully leveraging their capabilities to enable more effective knowledge transfer to the downstream AVS task. Moreover, we present a model-agnostic framework OpenAVS-ST that enables the integration of OpenAVS with any advanced supervised AVS model via pseudo-label based self-training. This approach enhances performance by effectively utilizing large-scale unlabeled data when available. Comprehensive experiments on three benchmark datasets demonstrate the superior performance of OpenAVS. It surpasses existing unsupervised, zero-shot, and few-shot AVS methods by a significant margin, achieving absolute performance gains of approximately 9.4% and 10.9% in mIoU and F-score, respectively, in challenging scenarios.
PARIS3D: Reasoning-based 3D Part Segmentation Using Large Multimodal Model
Recent advancements in 3D perception systems have significantly improved their ability to perform visual recognition tasks such as segmentation. However, these systems still heavily rely on explicit human instruction to identify target objects or categories, lacking the capability to actively reason and comprehend implicit user intentions. We introduce a novel segmentation task known as reasoning part segmentation for 3D objects, aiming to output a segmentation mask based on complex and implicit textual queries about specific parts of a 3D object. To facilitate evaluation and benchmarking, we present a large 3D dataset comprising over 60k instructions paired with corresponding ground-truth part segmentation annotations specifically curated for reasoning-based 3D part segmentation. We propose a model that is capable of segmenting parts of 3D objects based on implicit textual queries and generating natural language explanations corresponding to 3D object segmentation requests. Experiments show that our method achieves competitive performance to models that use explicit queries, with the additional abilities to identify part concepts, reason about them, and complement them with world knowledge. Our source code, dataset, and trained models are available at https://github.com/AmrinKareem/PARIS3D.
Unleashing the Power of Prompt-driven Nucleus Instance Segmentation
Nucleus instance segmentation in histology images is crucial for a broad spectrum of clinical applications. Current dominant algorithms rely on regression of nuclear proxy maps. Distinguishing nucleus instances from the estimated maps requires carefully curated post-processing, which is error-prone and parameter-sensitive. Recently, the Segment Anything Model (SAM) has earned huge attention in medical image segmentation, owing to its impressive generalization ability and promptable property. Nevertheless, its potential on nucleus instance segmentation remains largely underexplored. In this paper, we present a novel prompt-driven framework that consists of a nucleus prompter and SAM for automatic nucleus instance segmentation. Specifically, the prompter learns to generate a unique point prompt for each nucleus while the SAM is fine-tuned to output the corresponding mask for the prompted nucleus. Furthermore, we propose the inclusion of adjacent nuclei as negative prompts to enhance the model's capability to identify overlapping nuclei. Without complicated post-processing, our proposed method sets a new state-of-the-art performance on three challenging benchmarks. Code is available at github.com/windygoo/PromptNucSeg
Generalized Few-Shot Point Cloud Segmentation Via Geometric Words
Existing fully-supervised point cloud segmentation methods suffer in the dynamic testing environment with emerging new classes. Few-shot point cloud segmentation algorithms address this problem by learning to adapt to new classes at the sacrifice of segmentation accuracy for the base classes, which severely impedes its practicality. This largely motivates us to present the first attempt at a more practical paradigm of generalized few-shot point cloud segmentation, which requires the model to generalize to new categories with only a few support point clouds and simultaneously retain the capability to segment base classes. We propose the geometric words to represent geometric components shared between the base and novel classes, and incorporate them into a novel geometric-aware semantic representation to facilitate better generalization to the new classes without forgetting the old ones. Moreover, we introduce geometric prototypes to guide the segmentation with geometric prior knowledge. Extensive experiments on S3DIS and ScanNet consistently illustrate the superior performance of our method over baseline methods. Our code is available at: https://github.com/Pixie8888/GFS-3DSeg_GWs.
SimPLe: Similarity-Aware Propagation Learning for Weakly-Supervised Breast Cancer Segmentation in DCE-MRI
Breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays an important role in the screening and prognosis assessment of high-risk breast cancer. The segmentation of cancerous regions is essential useful for the subsequent analysis of breast MRI. To alleviate the annotation effort to train the segmentation networks, we propose a weakly-supervised strategy using extreme points as annotations for breast cancer segmentation. Without using any bells and whistles, our strategy focuses on fully exploiting the learning capability of the routine training procedure, i.e., the train - fine-tune - retrain process. The network first utilizes the pseudo-masks generated using the extreme points to train itself, by minimizing a contrastive loss, which encourages the network to learn more representative features for cancerous voxels. Then the trained network fine-tunes itself by using a similarity-aware propagation learning (SimPLe) strategy, which leverages feature similarity between unlabeled and positive voxels to propagate labels. Finally the network retrains itself by employing the pseudo-masks generated using previous fine-tuned network. The proposed method is evaluated on our collected DCE-MRI dataset containing 206 patients with biopsy-proven breast cancers. Experimental results demonstrate our method effectively fine-tunes the network by using the SimPLe strategy, and achieves a mean Dice value of 81%.
Weakly Supervised 3D Open-vocabulary Segmentation
Open-vocabulary segmentation of 3D scenes is a fundamental function of human perception and thus a crucial objective in computer vision research. However, this task is heavily impeded by the lack of large-scale and diverse 3D open-vocabulary segmentation datasets for training robust and generalizable models. Distilling knowledge from pre-trained 2D open-vocabulary segmentation models helps but it compromises the open-vocabulary feature as the 2D models are mostly finetuned with close-vocabulary datasets. We tackle the challenges in 3D open-vocabulary segmentation by exploiting pre-trained foundation models CLIP and DINO in a weakly supervised manner. Specifically, given only the open-vocabulary text descriptions of the objects in a scene, we distill the open-vocabulary multimodal knowledge and object reasoning capability of CLIP and DINO into a neural radiance field (NeRF), which effectively lifts 2D features into view-consistent 3D segmentation. A notable aspect of our approach is that it does not require any manual segmentation annotations for either the foundation models or the distillation process. Extensive experiments show that our method even outperforms fully supervised models trained with segmentation annotations in certain scenes, suggesting that 3D open-vocabulary segmentation can be effectively learned from 2D images and text-image pairs. Code is available at https://github.com/Kunhao-Liu/3D-OVS.
NExT-Chat: An LMM for Chat, Detection and Segmentation
The development of large language models (LLMs) has greatly advanced the field of multimodal understanding, leading to the emergence of large multimodal models (LMMs). In order to enhance the level of visual comprehension, recent studies have equipped LMMs with region-level understanding capabilities by representing object bounding box coordinates as a series of text sequences (pixel2seq). In this paper, we introduce a novel paradigm for object location modeling called pixel2emb method, where we ask the LMM to output the location embeddings and then decoded by different decoders. This paradigm allows for different location formats (such as bounding boxes and masks) to be used in multimodal conversations Furthermore, this kind of embedding based location modeling enables the utilization of existing practices in localization tasks, such as detection and segmentation. In scenarios with limited resources, our pixel2emb demonstrates superior performance compared to existing state-of-the-art (SOTA) approaches in both the location input and output tasks under fair comparison. Leveraging the proposed pixel2emb method, we train an LMM named NExT-Chat and demonstrate its capability of handling multiple tasks like visual grounding, region caption, and grounded reasoning.
RadZero: Similarity-Based Cross-Attention for Explainable Vision-Language Alignment in Radiology with Zero-Shot Multi-Task Capability
Recent advancements in multi-modal models have significantly improved vision-language alignment in radiology. However, existing approaches struggle to effectively utilize complex radiology reports for learning, rely on low-resolution images, and offer limited interpretability in attention mechanisms. To address these challenges, we introduce RadZero, a novel similarity-based cross-attention framework for vision-language alignment in radiology with zero-shot multi-task capability. RadZero leverages large language models to extract minimal semantic sentences from radiology reports and employs a multi-positive contrastive learning strategy to effectively capture relationships between images and multiple relevant textual descriptions. It also utilizes a pre-trained vision encoder with additional trainable Transformer layers, allowing efficient high-resolution image processing. By computing similarity between text embeddings and local image patch features, RadZero enables zero-shot inference with similarity probability for classification and pixel-level cross-modal similarity maps for grounding and segmentation. Experimental results on public chest radiograph benchmarks show that RadZero outperforms state-of-the-art methods in zero-shot classification, grounding, and segmentation. Furthermore, cross-modal similarity map analysis highlights its potential for improving explainability in vision-language alignment. Additionally, qualitative evaluation demonstrates RadZero's capability for open-vocabulary semantic segmentation, further validating its effectiveness in medical imaging.
XMask3D: Cross-modal Mask Reasoning for Open Vocabulary 3D Semantic Segmentation
Existing methodologies in open vocabulary 3D semantic segmentation primarily concentrate on establishing a unified feature space encompassing 3D, 2D, and textual modalities. Nevertheless, traditional techniques such as global feature alignment or vision-language model distillation tend to impose only approximate correspondence, struggling notably with delineating fine-grained segmentation boundaries. To address this gap, we propose a more meticulous mask-level alignment between 3D features and the 2D-text embedding space through a cross-modal mask reasoning framework, XMask3D. In our approach, we developed a mask generator based on the denoising UNet from a pre-trained diffusion model, leveraging its capability for precise textual control over dense pixel representations and enhancing the open-world adaptability of the generated masks. We further integrate 3D global features as implicit conditions into the pre-trained 2D denoising UNet, enabling the generation of segmentation masks with additional 3D geometry awareness. Subsequently, the generated 2D masks are employed to align mask-level 3D representations with the vision-language feature space, thereby augmenting the open vocabulary capability of 3D geometry embeddings. Finally, we fuse complementary 2D and 3D mask features, resulting in competitive performance across multiple benchmarks for 3D open vocabulary semantic segmentation. Code is available at https://github.com/wangzy22/XMask3D.
U-Mamba: Enhancing Long-range Dependency for Biomedical Image Segmentation
Convolutional Neural Networks (CNNs) and Transformers have been the most popular architectures for biomedical image segmentation, but both of them have limited ability to handle long-range dependencies because of inherent locality or computational complexity. To address this challenge, we introduce U-Mamba, a general-purpose network for biomedical image segmentation. Inspired by the State Space Sequence Models (SSMs), a new family of deep sequence models known for their strong capability in handling long sequences, we design a hybrid CNN-SSM block that integrates the local feature extraction power of convolutional layers with the abilities of SSMs for capturing the long-range dependency. Moreover, U-Mamba enjoys a self-configuring mechanism, allowing it to automatically adapt to various datasets without manual intervention. We conduct extensive experiments on four diverse tasks, including the 3D abdominal organ segmentation in CT and MR images, instrument segmentation in endoscopy images, and cell segmentation in microscopy images. The results reveal that U-Mamba outperforms state-of-the-art CNN-based and Transformer-based segmentation networks across all tasks. This opens new avenues for efficient long-range dependency modeling in biomedical image analysis. The code, models, and data are publicly available at https://wanglab.ai/u-mamba.html.
Multi-Modal Continual Test-Time Adaptation for 3D Semantic Segmentation
Continual Test-Time Adaptation (CTTA) generalizes conventional Test-Time Adaptation (TTA) by assuming that the target domain is dynamic over time rather than stationary. In this paper, we explore Multi-Modal Continual Test-Time Adaptation (MM-CTTA) as a new extension of CTTA for 3D semantic segmentation. The key to MM-CTTA is to adaptively attend to the reliable modality while avoiding catastrophic forgetting during continual domain shifts, which is out of the capability of previous TTA or CTTA methods. To fulfill this gap, we propose an MM-CTTA method called Continual Cross-Modal Adaptive Clustering (CoMAC) that addresses this task from two perspectives. On one hand, we propose an adaptive dual-stage mechanism to generate reliable cross-modal predictions by attending to the reliable modality based on the class-wise feature-centroid distance in the latent space. On the other hand, to perform test-time adaptation without catastrophic forgetting, we design class-wise momentum queues that capture confident target features for adaptation while stochastically restoring pseudo-source features to revisit source knowledge. We further introduce two new benchmarks to facilitate the exploration of MM-CTTA in the future. Our experimental results show that our method achieves state-of-the-art performance on both benchmarks.
LSMS: Language-guided Scale-aware MedSegmentor for Medical Image Referring Segmentation
Conventional medical image segmentation methods have been found inadequate in facilitating physicians with the identification of specific lesions for diagnosis and treatment. Given the utility of text as an instructional format, we introduce a novel task termed Medical Image Referring Segmentation (MIRS), which requires segmenting specified lesions in images based on the given language expressions. Due to the varying object scales in medical images, MIRS demands robust vision-language modeling and comprehensive multi-scale interaction for precise localization and segmentation under linguistic guidance. However, existing medical image segmentation methods fall short in meeting these demands, resulting in insufficient segmentation accuracy. In response, we propose an approach named Language-guided Scale-aware MedSegmentor (LSMS), incorporating two appealing designs: (1)~a Scale-aware Vision-Language Attention module that leverages diverse convolutional kernels to acquire rich visual knowledge and interact closely with linguistic features, thereby enhancing lesion localization capability; (2)~a Full-Scale Decoder that globally models multi-modal features across various scales, capturing complementary information between scales to accurately outline lesion boundaries. Addressing the lack of suitable datasets for MIRS, we constructed a vision-language medical dataset called Reference Hepatic Lesion Segmentation (RefHL-Seg). This dataset comprises 2,283 abdominal CT slices from 231 cases, with corresponding textual annotations and segmentation masks for various liver lesions in images. We validated the performance of LSMS for MIRS and conventional medical image segmentation tasks across various datasets. Our LSMS consistently outperforms on all datasets with lower computational costs. The code and datasets will be released.
MambaMIM: Pre-training Mamba with State Space Token Interpolation and its Application to Medical Image Segmentation
Recently, the state space model Mamba has demonstrated efficient long-sequence modeling capabilities, particularly for addressing long-sequence visual tasks in 3D medical imaging. However, existing generative self-supervised learning methods have not yet fully unleashed Mamba's potential for handling long-range dependencies because they overlook the inherent causal properties of state space sequences in masked modeling. To address this challenge, we propose a general-purpose pre-training framework called MambaMIM, a masked image modeling method based on a novel TOKen-Interpolation strategy (TOKI) for the selective structure state space sequence, which learns causal relationships of state space within the masked sequence. Further, MambaMIM introduces a bottom-up 3D hybrid masking strategy to maintain a masking consistency across different architectures and can be used on any single or hybrid Mamba architecture to enhance its multi-scale and long-range representation capability. We pre-train MambaMIM on a large-scale dataset of 6.8K CT scans and evaluate its performance across eight public medical segmentation benchmarks. Extensive downstream experiments reveal the feasibility and advancement of using Mamba for medical image pre-training. In particular, when we apply the MambaMIM to a customized architecture that hybridizes MedNeXt and Vision Mamba, we consistently obtain the state-of-the-art segmentation performance. The code is available at: https://github.com/FengheTan9/MambaMIM.
Joint Modeling of Feature, Correspondence, and a Compressed Memory for Video Object Segmentation
Current prevailing Video Object Segmentation (VOS) methods usually perform dense matching between the current and reference frames after extracting their features. One on hand, the decoupled modeling restricts the targets information propagation only at high-level feature space. On the other hand, the pixel-wise matching leads to a lack of holistic understanding of the targets. To overcome these issues, we propose a unified VOS framework, coined as JointFormer, for joint modeling the three elements of feature, correspondence, and a compressed memory. The core design is the Joint Block, utilizing the flexibility of attention to simultaneously extract feature and propagate the targets information to the current tokens and the compressed memory token. This scheme allows to perform extensive information propagation and discriminative feature learning. To incorporate the long-term temporal targets information, we also devise a customized online updating mechanism for the compressed memory token, which can prompt the information flow along the temporal dimension and thus improve the global modeling capability. Under the design, our method achieves a new state-of-art performance on DAVIS 2017 val/test-dev (89.7% and 87.6%) and YouTube-VOS 2018/2019 val (87.0% and 87.0%) benchmarks, outperforming existing works by a large margin.
MedSyn: Text-guided Anatomy-aware Synthesis of High-Fidelity 3D CT Images
This paper introduces an innovative methodology for producing high-quality 3D lung CT images guided by textual information. While diffusion-based generative models are increasingly used in medical imaging, current state-of-the-art approaches are limited to low-resolution outputs and underutilize radiology reports' abundant information. The radiology reports can enhance the generation process by providing additional guidance and offering fine-grained control over the synthesis of images. Nevertheless, expanding text-guided generation to high-resolution 3D images poses significant memory and anatomical detail-preserving challenges. Addressing the memory issue, we introduce a hierarchical scheme that uses a modified UNet architecture. We start by synthesizing low-resolution images conditioned on the text, serving as a foundation for subsequent generators for complete volumetric data. To ensure the anatomical plausibility of the generated samples, we provide further guidance by generating vascular, airway, and lobular segmentation masks in conjunction with the CT images. The model demonstrates the capability to use textual input and segmentation tasks to generate synthesized images. The results of comparative assessments indicate that our approach exhibits superior performance compared to the most advanced models based on GAN and diffusion techniques, especially in accurately retaining crucial anatomical features such as fissure lines, airways, and vascular structures. This innovation introduces novel possibilities. This study focuses on two main objectives: (1) the development of a method for creating images based on textual prompts and anatomical components, and (2) the capability to generate new images conditioning on anatomical elements. The advancements in image generation can be applied to enhance numerous downstream tasks.
Semantically-aware Neural Radiance Fields for Visual Scene Understanding: A Comprehensive Review
This review thoroughly examines the role of semantically-aware Neural Radiance Fields (NeRFs) in visual scene understanding, covering an analysis of over 250 scholarly papers. It explores how NeRFs adeptly infer 3D representations for both stationary and dynamic objects in a scene. This capability is pivotal for generating high-quality new viewpoints, completing missing scene details (inpainting), conducting comprehensive scene segmentation (panoptic segmentation), predicting 3D bounding boxes, editing 3D scenes, and extracting object-centric 3D models. A significant aspect of this study is the application of semantic labels as viewpoint-invariant functions, which effectively map spatial coordinates to a spectrum of semantic labels, thus facilitating the recognition of distinct objects within the scene. Overall, this survey highlights the progression and diverse applications of semantically-aware neural radiance fields in the context of visual scene interpretation.
Towards Content-based Pixel Retrieval in Revisited Oxford and Paris
This paper introduces the first two pixel retrieval benchmarks. Pixel retrieval is segmented instance retrieval. Like semantic segmentation extends classification to the pixel level, pixel retrieval is an extension of image retrieval and offers information about which pixels are related to the query object. In addition to retrieving images for the given query, it helps users quickly identify the query object in true positive images and exclude false positive images by denoting the correlated pixels. Our user study results show pixel-level annotation can significantly improve the user experience. Compared with semantic and instance segmentation, pixel retrieval requires a fine-grained recognition capability for variable-granularity targets. To this end, we propose pixel retrieval benchmarks named PROxford and PRParis, which are based on the widely used image retrieval datasets, ROxford and RParis. Three professional annotators label 5,942 images with two rounds of double-checking and refinement. Furthermore, we conduct extensive experiments and analysis on the SOTA methods in image search, image matching, detection, segmentation, and dense matching using our pixel retrieval benchmarks. Results show that the pixel retrieval task is challenging to these approaches and distinctive from existing problems, suggesting that further research can advance the content-based pixel-retrieval and thus user search experience. The datasets can be downloaded from https://github.com/anguoyuan/Pixel_retrieval-Segmented_instance_retrieval{this link}.
DC-SAM: In-Context Segment Anything in Images and Videos via Dual Consistency
Given a single labeled example, in-context segmentation aims to segment corresponding objects. This setting, known as one-shot segmentation in few-shot learning, explores the segmentation model's generalization ability and has been applied to various vision tasks, including scene understanding and image/video editing. While recent Segment Anything Models have achieved state-of-the-art results in interactive segmentation, these approaches are not directly applicable to in-context segmentation. In this work, we propose the Dual Consistency SAM (DC-SAM) method based on prompt-tuning to adapt SAM and SAM2 for in-context segmentation of both images and videos. Our key insights are to enhance the features of the SAM's prompt encoder in segmentation by providing high-quality visual prompts. When generating a mask prior, we fuse the SAM features to better align the prompt encoder. Then, we design a cycle-consistent cross-attention on fused features and initial visual prompts. Next, a dual-branch design is provided by using the discriminative positive and negative prompts in the prompt encoder. Furthermore, we design a simple mask-tube training strategy to adopt our proposed dual consistency method into the mask tube. Although the proposed DC-SAM is primarily designed for images, it can be seamlessly extended to the video domain with the support of SAM2. Given the absence of in-context segmentation in the video domain, we manually curate and construct the first benchmark from existing video segmentation datasets, named In-Context Video Object Segmentation (IC-VOS), to better assess the in-context capability of the model. Extensive experiments demonstrate that our method achieves 55.5 (+1.4) mIoU on COCO-20i, 73.0 (+1.1) mIoU on PASCAL-5i, and a J&F score of 71.52 on the proposed IC-VOS benchmark. Our source code and benchmark are available at https://github.com/zaplm/DC-SAM.
SAM3D: Zero-Shot 3D Object Detection via Segment Anything Model
With the development of large language models, many remarkable linguistic systems like ChatGPT have thrived and achieved astonishing success on many tasks, showing the incredible power of foundation models. In the spirit of unleashing the capability of foundation models on vision tasks, the Segment Anything Model (SAM), a vision foundation model for image segmentation, has been proposed recently and presents strong zero-shot ability on many downstream 2D tasks. However, whether SAM can be adapted to 3D vision tasks has yet to be explored, especially 3D object detection. With this inspiration, we explore adapting the zero-shot ability of SAM to 3D object detection in this paper. We propose a SAM-powered BEV processing pipeline to detect objects and get promising results on the large-scale Waymo open dataset. As an early attempt, our method takes a step toward 3D object detection with vision foundation models and presents the opportunity to unleash their power on 3D vision tasks. The code is released at https://github.com/DYZhang09/SAM3D.
SegPoint: Segment Any Point Cloud via Large Language Model
Despite significant progress in 3D point cloud segmentation, existing methods primarily address specific tasks and depend on explicit instructions to identify targets, lacking the capability to infer and understand implicit user intentions in a unified framework. In this work, we propose a model, called SegPoint, that leverages the reasoning capabilities of a multi-modal Large Language Model (LLM) to produce point-wise segmentation masks across a diverse range of tasks: 1) 3D instruction segmentation, 2) 3D referring segmentation, 3) 3D semantic segmentation, and 4) 3D open-vocabulary semantic segmentation. To advance 3D instruction research, we introduce a new benchmark, Instruct3D, designed to evaluate segmentation performance from complex and implicit instructional texts, featuring 2,565 point cloud-instruction pairs. Our experimental results demonstrate that SegPoint achieves competitive performance on established benchmarks such as ScanRefer for referring segmentation and ScanNet for semantic segmentation, while delivering outstanding outcomes on the Instruct3D dataset. To our knowledge, SegPoint is the first model to address these varied segmentation tasks within a single framework, achieving satisfactory performance.
GeoPix: Multi-Modal Large Language Model for Pixel-level Image Understanding in Remote Sensing
Multi-modal large language models (MLLMs) have achieved remarkable success in image- and region-level remote sensing (RS) image understanding tasks, such as image captioning, visual question answering, and visual grounding. However, existing RS MLLMs lack the pixel-level dialogue capability, which involves responding to user instructions with segmentation masks for specific instances. In this paper, we propose GeoPix, a RS MLLM that extends image understanding capabilities to the pixel level. This is achieved by equipping the MLLM with a mask predictor, which transforms visual features from the vision encoder into masks conditioned on the LLM's segmentation token embeddings. To facilitate the segmentation of multi-scale objects in RS imagery, a class-wise learnable memory module is integrated into the mask predictor to capture and store class-wise geo-context at the instance level across the entire dataset. In addition, to address the absence of large-scale datasets for training pixel-level RS MLLMs, we construct the GeoPixInstruct dataset, comprising 65,463 images and 140,412 instances, with each instance annotated with text descriptions, bounding boxes, and masks. Furthermore, we develop a two-stage training strategy to balance the distinct requirements of text generation and masks prediction in multi-modal multi-task optimization. Extensive experiments verify the effectiveness and superiority of GeoPix in pixel-level segmentation tasks, while also maintaining competitive performance in image- and region-level benchmarks.
TM-TREK at SemEval-2024 Task 8: Towards LLM-Based Automatic Boundary Detection for Human-Machine Mixed Text
With the increasing prevalence of text generated by large language models (LLMs), there is a growing concern about distinguishing between LLM-generated and human-written texts in order to prevent the misuse of LLMs, such as the dissemination of misleading information and academic dishonesty. Previous research has primarily focused on classifying text as either entirely human-written or LLM-generated, neglecting the detection of mixed texts that contain both types of content. This paper explores LLMs' ability to identify boundaries in human-written and machine-generated mixed texts. We approach this task by transforming it into a token classification problem and regard the label turning point as the boundary. Notably, our ensemble model of LLMs achieved first place in the 'Human-Machine Mixed Text Detection' sub-task of the SemEval'24 Competition Task 8. Additionally, we investigate factors that influence the capability of LLMs in detecting boundaries within mixed texts, including the incorporation of extra layers on top of LLMs, combination of segmentation loss, and the impact of pretraining. Our findings aim to provide valuable insights for future research in this area.
EdgeTAM: On-Device Track Anything Model
On top of Segment Anything Model (SAM), SAM 2 further extends its capability from image to video inputs through a memory bank mechanism and obtains a remarkable performance compared with previous methods, making it a foundation model for video segmentation task. In this paper, we aim at making SAM 2 much more efficient so that it even runs on mobile devices while maintaining a comparable performance. Despite several works optimizing SAM for better efficiency, we find they are not sufficient for SAM 2 because they all focus on compressing the image encoder, while our benchmark shows that the newly introduced memory attention blocks are also the latency bottleneck. Given this observation, we propose EdgeTAM, which leverages a novel 2D Spatial Perceiver to reduce the computational cost. In particular, the proposed 2D Spatial Perceiver encodes the densely stored frame-level memories with a lightweight Transformer that contains a fixed set of learnable queries. Given that video segmentation is a dense prediction task, we find preserving the spatial structure of the memories is essential so that the queries are split into global-level and patch-level groups. We also propose a distillation pipeline that further improves the performance without inference overhead. As a result, EdgeTAM achieves 87.7, 70.0, 72.3, and 71.7 J&F on DAVIS 2017, MOSE, SA-V val, and SA-V test, while running at 16 FPS on iPhone 15 Pro Max.
Efficient Track Anything
Segment Anything Model 2 (SAM 2) has emerged as a powerful tool for video object segmentation and tracking anything. Key components of SAM 2 that drive the impressive video object segmentation performance include a large multistage image encoder for frame feature extraction and a memory mechanism that stores memory contexts from past frames to help current frame segmentation. The high computation complexity of multistage image encoder and memory module has limited its applications in real-world tasks, e.g., video object segmentation on mobile devices. To address this limitation, we propose EfficientTAMs, lightweight track anything models that produce high-quality results with low latency and model size. Our idea is based on revisiting the plain, nonhierarchical Vision Transformer (ViT) as an image encoder for video object segmentation, and introducing an efficient memory module, which reduces the complexity for both frame feature extraction and memory computation for current frame segmentation. We take vanilla lightweight ViTs and efficient memory module to build EfficientTAMs, and train the models on SA-1B and SA-V datasets for video object segmentation and track anything tasks. We evaluate on multiple video segmentation benchmarks including semi-supervised VOS and promptable video segmentation, and find that our proposed EfficientTAM with vanilla ViT perform comparably to SAM 2 model (HieraB+SAM 2) with ~2x speedup on A100 and ~2.4x parameter reduction. On segment anything image tasks, our EfficientTAMs also perform favorably over original SAM with ~20x speedup on A100 and ~20x parameter reduction. On mobile devices such as iPhone 15 Pro Max, our EfficientTAMs can run at ~10 FPS for performing video object segmentation with reasonable quality, highlighting the capability of small models for on-device video object segmentation applications.
Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model
The ability of large language models (LLMs) to process visual inputs has given rise to general-purpose vision systems, unifying various vision-language (VL) tasks by instruction tuning. However, due to the enormous diversity in input-output formats in the vision domain, existing general-purpose models fail to successfully integrate segmentation and multi-image inputs with coarse-level tasks into a single framework. In this work, we introduce VistaLLM, a powerful visual system that addresses coarse- and fine-grained VL tasks over single and multiple input images using a unified framework. VistaLLM utilizes an instruction-guided image tokenizer that filters global embeddings using task descriptions to extract compressed and refined features from numerous images. Moreover, VistaLLM employs a gradient-aware adaptive sampling technique to represent binary segmentation masks as sequences, significantly improving over previously used uniform sampling. To bolster the desired capability of VistaLLM, we curate CoinIt, a comprehensive coarse-to-fine instruction tuning dataset with 6.8M samples. We also address the lack of multi-image grounding datasets by introducing a novel task, AttCoSeg (Attribute-level Co-Segmentation), which boosts the model's reasoning and grounding capability over multiple input images. Extensive experiments on a wide range of V- and VL tasks demonstrate the effectiveness of VistaLLM by achieving consistent state-of-the-art performance over strong baselines across all downstream tasks. Our project page can be found at https://shramanpramanick.github.io/VistaLLM/.
Seg-R1: Segmentation Can Be Surprisingly Simple with Reinforcement Learning
We present Seg-R1, a preliminary exploration of using reinforcement learning (RL) to enhance the pixel-level understanding and reasoning capabilities of large multimodal models (LMMs). Starting with foreground segmentation tasks, specifically camouflaged object detection (COD) and salient object detection (SOD), our approach enables the LMM to generate point and bounding box prompts in the next-token fashion, which are then used to guide SAM2 in producing segmentation masks. We introduce Group Relative Policy Optimization (GRPO) into the segmentation domain, equipping the LMM with pixel-level comprehension through a carefully designed training strategy. Notably, Seg-R1 achieves remarkable performance with purely RL-based training, achieving .873 S-measure on COD10K without complex model modification. Moreover, we found that pure RL training demonstrates strong open-world generalization. Despite being trained solely on foreground segmentation image-mask pairs without text supervision, Seg-R1 achieves impressive zero-shot performance on referring segmentation and reasoning segmentation tasks, with 71.4 cIoU on RefCOCOg test and 56.7 gIoU on ReasonSeg test, outperforming models fully supervised on these datasets.
Zero-Shot Dual-Path Integration Framework for Open-Vocabulary 3D Instance Segmentation
Open-vocabulary 3D instance segmentation transcends traditional closed-vocabulary methods by enabling the identification of both previously seen and unseen objects in real-world scenarios. It leverages a dual-modality approach, utilizing both 3D point clouds and 2D multi-view images to generate class-agnostic object mask proposals. Previous efforts predominantly focused on enhancing 3D mask proposal models; consequently, the information that could come from 2D association to 3D was not fully exploited. This bias towards 3D data, while effective for familiar indoor objects, limits the system's adaptability to new and varied object types, where 2D models offer greater utility. Addressing this gap, we introduce Zero-Shot Dual-Path Integration Framework that equally values the contributions of both 3D and 2D modalities. Our framework comprises three components: 3D pathway, 2D pathway, and Dual-Path Integration. 3D pathway generates spatially accurate class-agnostic mask proposals of common indoor objects from 3D point cloud data using a pre-trained 3D model, while 2D pathway utilizes pre-trained open-vocabulary instance segmentation model to identify a diverse array of object proposals from multi-view RGB-D images. In Dual-Path Integration, our Conditional Integration process, which operates in two stages, filters and merges the proposals from both pathways adaptively. This process harmonizes output proposals to enhance segmentation capabilities. Our framework, utilizing pre-trained models in a zero-shot manner, is model-agnostic and demonstrates superior performance on both seen and unseen data, as evidenced by comprehensive evaluations on the ScanNet200 and qualitative results on ARKitScenes datasets.
S^4M: Boosting Semi-Supervised Instance Segmentation with SAM
Semi-supervised instance segmentation poses challenges due to limited labeled data, causing difficulties in accurately localizing distinct object instances. Current teacher-student frameworks still suffer from performance constraints due to unreliable pseudo-label quality stemming from limited labeled data. While the Segment Anything Model (SAM) offers robust segmentation capabilities at various granularities, directly applying SAM to this task introduces challenges such as class-agnostic predictions and potential over-segmentation. To address these complexities, we carefully integrate SAM into the semi-supervised instance segmentation framework, developing a novel distillation method that effectively captures the precise localization capabilities of SAM without compromising semantic recognition. Furthermore, we incorporate pseudo-label refinement as well as a specialized data augmentation with the refined pseudo-labels, resulting in superior performance. We establish state-of-the-art performance, and provide comprehensive experiments and ablation studies to validate the effectiveness of our proposed approach.
PRS-Med: Position Reasoning Segmentation with Vision-Language Model in Medical Imaging
Recent advancements in prompt-based medical image segmentation have enabled clinicians to identify tumors using simple input like bounding boxes or text prompts. However, existing methods face challenges when doctors need to interact through natural language or when position reasoning is required - understanding spatial relationships between anatomical structures and pathologies. We present PRS-Med, a framework that integrates vision-language models with segmentation capabilities to generate both accurate segmentation masks and corresponding spatial reasoning outputs. Additionally, we introduce the MMRS dataset (Multimodal Medical in Positional Reasoning Segmentation), which provides diverse, spatially-grounded question-answer pairs to address the lack of position reasoning data in medical imaging. PRS-Med demonstrates superior performance across six imaging modalities (CT, MRI, X-ray, ultrasound, endoscopy, RGB), significantly outperforming state-of-the-art methods in both segmentation accuracy and position reasoning. Our approach enables intuitive doctor-system interaction through natural language, facilitating more efficient diagnoses. Our dataset pipeline, model, and codebase will be released to foster further research in spatially-aware multimodal reasoning for medical applications.
ReferDINO: Referring Video Object Segmentation with Visual Grounding Foundations
Referring video object segmentation (RVOS) aims to segment target objects throughout a video based on a text description. Despite notable progress in recent years, current RVOS models remain struggle to handle complicated object descriptions due to their limited video-language understanding. To address this limitation, we present ReferDINO, an end-to-end RVOS model that inherits strong vision-language understanding from the pretrained visual grounding foundation models, and is further endowed with effective temporal understanding and object segmentation capabilities. In ReferDINO, we contribute three technical innovations for effectively adapting the foundation models to RVOS: 1) an object-consistent temporal enhancer that capitalizes on the pretrained object-text representations to enhance temporal understanding and object consistency; 2) a grounding-guided deformable mask decoder that integrates text and grounding conditions to generate accurate object masks; 3) a confidence-aware query pruning strategy that significantly improves the object decoding efficiency without compromising performance. We conduct extensive experiments on five public RVOS benchmarks to demonstrate that our proposed ReferDINO outperforms state-of-the-art methods significantly. Project page: https://isee-laboratory.github.io/ReferDINO
The Devil is in Temporal Token: High Quality Video Reasoning Segmentation
Existing methods for Video Reasoning Segmentation rely heavily on a single special token to represent the object in the keyframe or the entire video, inadequately capturing spatial complexity and inter-frame motion. To overcome these challenges, we propose VRS-HQ, an end-to-end video reasoning segmentation approach that leverages Multimodal Large Language Models (MLLMs) to inject rich spatiotemporal features into hierarchical tokens.Our key innovations include a Temporal Dynamic Aggregation (TDA) and a Token-driven Keyframe Selection (TKS). Specifically, we design frame-level <SEG> and temporal-level <TAK> tokens that utilize MLLM's autoregressive learning to effectively capture both local and global information. Subsequently, we apply a similarity-based weighted fusion and frame selection strategy, then utilize SAM2 to perform keyframe segmentation and propagation. To enhance keyframe localization accuracy, the TKS filters keyframes based on SAM2's occlusion scores during inference. VRS-HQ achieves state-of-the-art performance on ReVOS, surpassing VISA by 5.9%/12.5%/9.1% in J&F scores across the three subsets. These results highlight the strong temporal reasoning and segmentation capabilities of our method. Code and model weights will be released at VRS-HQ.
ProtoSAM: One-Shot Medical Image Segmentation With Foundational Models
This work introduces a new framework, ProtoSAM, for one-shot medical image segmentation. It combines the use of prototypical networks, known for few-shot segmentation, with SAM - a natural image foundation model. The method proposed creates an initial coarse segmentation mask using the ALPnet prototypical network, augmented with a DINOv2 encoder. Following the extraction of an initial mask, prompts are extracted, such as points and bounding boxes, which are then input into the Segment Anything Model (SAM). State-of-the-art results are shown on several medical image datasets and demonstrate automated segmentation capabilities using a single image example (one shot) with no need for fine-tuning of the foundation model. Our code is available at: https://github.com/levayz/ProtoSAM
EchoDFKD: Data-Free Knowledge Distillation for Cardiac Ultrasound Segmentation using Synthetic Data
The application of machine learning to medical ultrasound videos of the heart, i.e., echocardiography, has recently gained traction with the availability of large public datasets. Traditional supervised tasks, such as ejection fraction regression, are now making way for approaches focusing more on the latent structure of data distributions, as well as generative methods. We propose a model trained exclusively by knowledge distillation, either on real or synthetical data, involving retrieving masks suggested by a teacher model. We achieve state-of-the-art (SOTA) values on the task of identifying end-diastolic and end-systolic frames. By training the model only on synthetic data, it reaches segmentation capabilities close to the performance when trained on real data with a significantly reduced number of weights. A comparison with the 5 main existing methods shows that our method outperforms the others in most cases. We also present a new evaluation method that does not require human annotation and instead relies on a large auxiliary model. We show that this method produces scores consistent with those obtained from human annotations. Relying on the integrated knowledge from a vast amount of records, this method overcomes certain inherent limitations of human annotator labeling. Code: https://github.com/GregoirePetit/EchoDFKD
PanSt3R: Multi-view Consistent Panoptic Segmentation
Panoptic segmentation of 3D scenes, involving the segmentation and classification of object instances in a dense 3D reconstruction of a scene, is a challenging problem, especially when relying solely on unposed 2D images. Existing approaches typically leverage off-the-shelf models to extract per-frame 2D panoptic segmentations, before optimizing an implicit geometric representation (often based on NeRF) to integrate and fuse the 2D predictions. We argue that relying on 2D panoptic segmentation for a problem inherently 3D and multi-view is likely suboptimal as it fails to leverage the full potential of spatial relationships across views. In addition to requiring camera parameters, these approaches also necessitate computationally expensive test-time optimization for each scene. Instead, in this work, we propose a unified and integrated approach PanSt3R, which eliminates the need for test-time optimization by jointly predicting 3D geometry and multi-view panoptic segmentation in a single forward pass. Our approach builds upon recent advances in 3D reconstruction, specifically upon MUSt3R, a scalable multi-view version of DUSt3R, and enhances it with semantic awareness and multi-view panoptic segmentation capabilities. We additionally revisit the standard post-processing mask merging procedure and introduce a more principled approach for multi-view segmentation. We also introduce a simple method for generating novel-view predictions based on the predictions of PanSt3R and vanilla 3DGS. Overall, the proposed PanSt3R is conceptually simple, yet fast and scalable, and achieves state-of-the-art performance on several benchmarks, while being orders of magnitude faster than existing methods.
HiMTok: Learning Hierarchical Mask Tokens for Image Segmentation with Large Multimodal Model
The remarkable performance of large multimodal models (LMMs) has attracted significant interest from the image segmentation community. To align with the next-token-prediction paradigm, current LMM-driven segmentation methods either use object boundary points to represent masks or introduce special segmentation tokens, whose hidden states are decoded by a segmentation model requiring the original image as input. However, these approaches often suffer from inadequate mask representation and complex architectures, limiting the potential of LMMs. In this work, we propose the Hierarchical Mask Tokenizer (HiMTok), which represents segmentation masks with up to 32 tokens and eliminates the need for the original image during mask de-tokenization. HiMTok allows for compact and coarse-to-fine mask representations, aligning well with the LLM next-token-prediction paradigm and facilitating the direct acquisition of segmentation capabilities. We develop a 3-stage training recipe for progressive learning of segmentation and visual capabilities, featuring a hierarchical mask loss for effective coarse-to-fine learning. Additionally, we enable bidirectional information flow, allowing conversion between bounding boxes and mask tokens to fully leverage multi-task training potential. Extensive experiments demonstrate that our method achieves state-of-the-art performance across various segmentation tasks,while also enhancing visual grounding and maintaining overall visual understanding.
Segment Anything in High Quality
The recent Segment Anything Model (SAM) represents a big leap in scaling up segmentation models, allowing for powerful zero-shot capabilities and flexible prompting. Despite being trained with 1.1 billion masks, SAM's mask prediction quality falls short in many cases, particularly when dealing with objects that have intricate structures. We propose HQ-SAM, equipping SAM with the ability to accurately segment any object, while maintaining SAM's original promptable design, efficiency, and zero-shot generalizability. Our careful design reuses and preserves the pre-trained model weights of SAM, while only introducing minimal additional parameters and computation. We design a learnable High-Quality Output Token, which is injected into SAM's mask decoder and is responsible for predicting the high-quality mask. Instead of only applying it on mask-decoder features, we first fuse them with early and final ViT features for improved mask details. To train our introduced learnable parameters, we compose a dataset of 44K fine-grained masks from several sources. HQ-SAM is only trained on the introduced detaset of 44k masks, which takes only 4 hours on 8 GPUs. We show the efficacy of HQ-SAM in a suite of 9 diverse segmentation datasets across different downstream tasks, where 7 out of them are evaluated in a zero-shot transfer protocol. Our code and models will be released at https://github.com/SysCV/SAM-HQ.
Obj-NeRF: Extract Object NeRFs from Multi-view Images
Neural Radiance Fields (NeRFs) have demonstrated remarkable effectiveness in novel view synthesis within 3D environments. However, extracting a radiance field of one specific object from multi-view images encounters substantial challenges due to occlusion and background complexity, thereby presenting difficulties in downstream applications such as NeRF editing and 3D mesh extraction. To solve this problem, in this paper, we propose Obj-NeRF, a comprehensive pipeline that recovers the 3D geometry of a specific object from multi-view images using a single prompt. This method combines the 2D segmentation capabilities of the Segment Anything Model (SAM) in conjunction with the 3D reconstruction ability of NeRF. Specifically, we first obtain multi-view segmentation for the indicated object using SAM with a single prompt. Then, we use the segmentation images to supervise NeRF construction, integrating several effective techniques. Additionally, we construct a large object-level NeRF dataset containing diverse objects, which can be useful in various downstream tasks. To demonstrate the practicality of our method, we also apply Obj-NeRF to various applications, including object removal, rotation, replacement, and recoloring.
Emerging Properties in Self-Supervised Vision Transformers
In this paper, we question if self-supervised learning provides new properties to Vision Transformer (ViT) that stand out compared to convolutional networks (convnets). Beyond the fact that adapting self-supervised methods to this architecture works particularly well, we make the following observations: first, self-supervised ViT features contain explicit information about the semantic segmentation of an image, which does not emerge as clearly with supervised ViTs, nor with convnets. Second, these features are also excellent k-NN classifiers, reaching 78.3% top-1 on ImageNet with a small ViT. Our study also underlines the importance of momentum encoder, multi-crop training, and the use of small patches with ViTs. We implement our findings into a simple self-supervised method, called DINO, which we interpret as a form of self-distillation with no labels. We show the synergy between DINO and ViTs by achieving 80.1% top-1 on ImageNet in linear evaluation with ViT-Base.
ZIM: Zero-Shot Image Matting for Anything
The recent segmentation foundation model, Segment Anything Model (SAM), exhibits strong zero-shot segmentation capabilities, but it falls short in generating fine-grained precise masks. To address this limitation, we propose a novel zero-shot image matting model, called ZIM, with two key contributions: First, we develop a label converter that transforms segmentation labels into detailed matte labels, constructing the new SA1B-Matte dataset without costly manual annotations. Training SAM with this dataset enables it to generate precise matte masks while maintaining its zero-shot capability. Second, we design the zero-shot matting model equipped with a hierarchical pixel decoder to enhance mask representation, along with a prompt-aware masked attention mechanism to improve performance by enabling the model to focus on regions specified by visual prompts. We evaluate ZIM using the newly introduced MicroMat-3K test set, which contains high-quality micro-level matte labels. Experimental results show that ZIM outperforms existing methods in fine-grained mask generation and zero-shot generalization. Furthermore, we demonstrate the versatility of ZIM in various downstream tasks requiring precise masks, such as image inpainting and 3D NeRF. Our contributions provide a robust foundation for advancing zero-shot matting and its downstream applications across a wide range of computer vision tasks. The code is available at https://github.com/naver-ai/ZIM.
EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model
Segment Anything Model (SAM) has attracted widespread attention for its superior interactive segmentation capabilities with visual prompts while lacking further exploration of text prompts. In this paper, we empirically investigate what text prompt encoders (e.g., CLIP or LLM) are good for adapting SAM for referring expression segmentation and introduce the Early Vision-language Fusion-based SAM (EVF-SAM). EVF-SAM is a simple yet effective referring segmentation method which exploits multimodal prompts (i.e., image and text) and comprises a pre-trained vision-language model to generate referring prompts and a SAM model for segmentation. Surprisingly, we observe that: (1) multimodal prompts and (2) vision-language models with early fusion (e.g., BEIT-3) are beneficial for prompting SAM for accurate referring segmentation. Our experiments show that the proposed EVF-SAM based on BEIT-3 can obtain state-of-the-art performance on RefCOCO/+/g for referring expression segmentation and demonstrate the superiority of prompting SAM with early vision-language fusion. In addition, the proposed EVF-SAM with 1.32B parameters achieves remarkably higher performance while reducing nearly 82% of parameters compared to previous SAM methods based on large multimodal models.
Visual In-Context Prompting
In-context prompting in large language models (LLMs) has become a prevalent approach to improve zero-shot capabilities, but this idea is less explored in the vision domain. Existing visual prompting methods focus on referring segmentation to segment the most relevant object, falling short of addressing many generic vision tasks like open-set segmentation and detection. In this paper, we introduce a universal visual in-context prompting framework for both tasks. In particular, we build on top of an encoder-decoder architecture, and develop a versatile prompt encoder to support a variety of prompts like strokes, boxes, and points. We further enhance it to take an arbitrary number of reference image segments as the context. Our extensive explorations show that the proposed visual in-context prompting elicits extraordinary referring and generic segmentation capabilities to refer and detect, yielding competitive performance to close-set in-domain datasets and showing promising results on many open-set segmentation datasets. By joint training on COCO and SA-1B, our model achieves 57.7 PQ on COCO and 23.2 PQ on ADE20K. Code will be available at https://github.com/UX-Decoder/DINOv.
AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt Encoder
The recently introduced Segment Anything Model (SAM) combines a clever architecture and large quantities of training data to obtain remarkable image segmentation capabilities. However, it fails to reproduce such results for Out-Of-Distribution (OOD) domains such as medical images. Moreover, while SAM is conditioned on either a mask or a set of points, it may be desirable to have a fully automatic solution. In this work, we replace SAM's conditioning with an encoder that operates on the same input image. By adding this encoder and without further fine-tuning SAM, we obtain state-of-the-art results on multiple medical images and video benchmarks. This new encoder is trained via gradients provided by a frozen SAM. For inspecting the knowledge within it, and providing a lightweight segmentation solution, we also learn to decode it into a mask by a shallow deconvolution network.
RobustSAM: Segment Anything Robustly on Degraded Images
Segment Anything Model (SAM) has emerged as a transformative approach in image segmentation, acclaimed for its robust zero-shot segmentation capabilities and flexible prompting system. Nonetheless, its performance is challenged by images with degraded quality. Addressing this limitation, we propose the Robust Segment Anything Model (RobustSAM), which enhances SAM's performance on low-quality images while preserving its promptability and zero-shot generalization. Our method leverages the pre-trained SAM model with only marginal parameter increments and computational requirements. The additional parameters of RobustSAM can be optimized within 30 hours on eight GPUs, demonstrating its feasibility and practicality for typical research laboratories. We also introduce the Robust-Seg dataset, a collection of 688K image-mask pairs with different degradations designed to train and evaluate our model optimally. Extensive experiments across various segmentation tasks and datasets confirm RobustSAM's superior performance, especially under zero-shot conditions, underscoring its potential for extensive real-world application. Additionally, our method has been shown to effectively improve the performance of SAM-based downstream tasks such as single image dehazing and deblurring.
AM-RADIO: Agglomerative Model -- Reduce All Domains Into One
A handful of visual foundation models (VFMs) have recently emerged as the backbones for numerous downstream tasks. VFMs like CLIP, DINOv2, SAM are trained with distinct objectives, exhibiting unique characteristics for various downstream tasks. We find that despite their conceptual differences, these models can be effectively merged into a unified model through multi-teacher distillation. We name this approach AM-RADIO (Agglomerative Model -- Reduce All Domains Into One). This integrative approach not only surpasses the performance of individual teacher models but also amalgamates their distinctive features, such as zero-shot vision-language comprehension, detailed pixel-level understanding, and open vocabulary segmentation capabilities. In pursuit of the most hardware-efficient backbone, we evaluated numerous architectures in our multi-teacher distillation pipeline using the same training recipe. This led to the development of a novel architecture (E-RADIO) that exceeds the performance of its predecessors and is at least 7x faster than the teacher models. Our comprehensive benchmarking process covers downstream tasks including ImageNet classification, ADE20k semantic segmentation, COCO object detection and LLaVa-1.5 framework. Code: https://github.com/NVlabs/RADIO
Fine-tuning Whisper on Low-Resource Languages for Real-World Applications
This paper presents a new approach to fine-tuning OpenAI's Whisper model for low-resource languages by introducing a novel data generation method that converts sentence-level data into a long-form corpus, using Swiss German as a case study. Non-sentence-level data, which could improve the performance of long-form audio, is difficult to obtain and often restricted by copyright laws. Our method bridges this gap by transforming more accessible sentence-level data into a format that preserves the model's ability to handle long-form audio and perform segmentation without requiring non-sentence-level data. Our data generation process improves performance in several real-world applications and leads to the development of a new state-of-the-art speech-to-text (STT) model for Swiss German. We compare our model with a non-fine-tuned Whisper and our previous state-of-the-art Swiss German STT models, where our new model achieves higher BLEU scores. Our results also indicate that the proposed method is adaptable to other low-resource languages, supported by written guidance and code that allows the creation of fine-tuned Whisper models, which keep segmentation capabilities and allow the transcription of longer audio files using only sentence-level data with high quality.
Convolution Meets LoRA: Parameter Efficient Finetuning for Segment Anything Model
The Segment Anything Model (SAM) stands as a foundational framework for image segmentation. While it exhibits remarkable zero-shot generalization in typical scenarios, its advantage diminishes when applied to specialized domains like medical imagery and remote sensing. To address this limitation, this paper introduces Conv-LoRA, a simple yet effective parameter-efficient fine-tuning approach. By integrating ultra-lightweight convolutional parameters into Low-Rank Adaptation (LoRA), Conv-LoRA can inject image-related inductive biases into the plain ViT encoder, further reinforcing SAM's local prior assumption. Notably, Conv-LoRA not only preserves SAM's extensive segmentation knowledge but also revives its capacity of learning high-level image semantics, which is constrained by SAM's foreground-background segmentation pretraining. Comprehensive experimentation across diverse benchmarks spanning multiple domains underscores Conv-LoRA's superiority in adapting SAM to real-world semantic segmentation tasks.
Segment Anything
We introduce the Segment Anything (SA) project: a new task, model, and dataset for image segmentation. Using our efficient model in a data collection loop, we built the largest segmentation dataset to date (by far), with over 1 billion masks on 11M licensed and privacy respecting images. The model is designed and trained to be promptable, so it can transfer zero-shot to new image distributions and tasks. We evaluate its capabilities on numerous tasks and find that its zero-shot performance is impressive -- often competitive with or even superior to prior fully supervised results. We are releasing the Segment Anything Model (SAM) and corresponding dataset (SA-1B) of 1B masks and 11M images at https://segment-anything.com to foster research into foundation models for computer vision.
Benchmarking Human and Automated Prompting in the Segment Anything Model
The remarkable capabilities of the Segment Anything Model (SAM) for tackling image segmentation tasks in an intuitive and interactive manner has sparked interest in the design of effective visual prompts. Such interest has led to the creation of automated point prompt selection strategies, typically motivated from a feature extraction perspective. However, there is still very little understanding of how appropriate these automated visual prompting strategies are, particularly when compared to humans, across diverse image domains. Additionally, the performance benefits of including such automated visual prompting strategies within the finetuning process of SAM also remains unexplored, as does the effect of interpretable factors like distance between the prompt points on segmentation performance. To bridge these gaps, we leverage a recently released visual prompting dataset, PointPrompt, and introduce a number of benchmarking tasks that provide an array of opportunities to improve the understanding of the way human prompts differ from automated ones and what underlying factors make for effective visual prompts. We demonstrate that the resulting segmentation scores obtained by humans are approximately 29% higher than those given by automated strategies and identify potential features that are indicative of prompting performance with R^2 scores over 0.5. Additionally, we demonstrate that performance when using automated methods can be improved by up to 68% via a finetuning approach. Overall, our experiments not only showcase the existing gap between human prompts and automated methods, but also highlight potential avenues through which this gap can be leveraged to improve effective visual prompt design. Further details along with the dataset links and codes are available at https://github.com/olivesgatech/PointPrompt
Fast Segment Anything
The recently proposed segment anything model (SAM) has made a significant influence in many computer vision tasks. It is becoming a foundation step for many high-level tasks, like image segmentation, image caption, and image editing. However, its huge computation costs prevent it from wider applications in industry scenarios. The computation mainly comes from the Transformer architecture at high-resolution inputs. In this paper, we propose a speed-up alternative method for this fundamental task with comparable performance. By reformulating the task as segments-generation and prompting, we find that a regular CNN detector with an instance segmentation branch can also accomplish this task well. Specifically, we convert this task to the well-studied instance segmentation task and directly train the existing instance segmentation method using only 1/50 of the SA-1B dataset published by SAM authors. With our method, we achieve a comparable performance with the SAM method at 50 times higher run-time speed. We give sufficient experimental results to demonstrate its effectiveness. The codes and demos will be released at https://github.com/CASIA-IVA-Lab/FastSAM.
USE: Universal Segment Embeddings for Open-Vocabulary Image Segmentation
The open-vocabulary image segmentation task involves partitioning images into semantically meaningful segments and classifying them with flexible text-defined categories. The recent vision-based foundation models such as the Segment Anything Model (SAM) have shown superior performance in generating class-agnostic image segments. The main challenge in open-vocabulary image segmentation now lies in accurately classifying these segments into text-defined categories. In this paper, we introduce the Universal Segment Embedding (USE) framework to address this challenge. This framework is comprised of two key components: 1) a data pipeline designed to efficiently curate a large amount of segment-text pairs at various granularities, and 2) a universal segment embedding model that enables precise segment classification into a vast range of text-defined categories. The USE model can not only help open-vocabulary image segmentation but also facilitate other downstream tasks (e.g., querying and ranking). Through comprehensive experimental studies on semantic segmentation and part segmentation benchmarks, we demonstrate that the USE framework outperforms state-of-the-art open-vocabulary segmentation methods.
SAM 2: Segment Anything in Images and Videos
We present Segment Anything Model 2 (SAM 2), a foundation model towards solving promptable visual segmentation in images and videos. We build a data engine, which improves model and data via user interaction, to collect the largest video segmentation dataset to date. Our model is a simple transformer architecture with streaming memory for real-time video processing. SAM 2 trained on our data provides strong performance across a wide range of tasks. In video segmentation, we observe better accuracy, using 3x fewer interactions than prior approaches. In image segmentation, our model is more accurate and 6x faster than the Segment Anything Model (SAM). We believe that our data, model, and insights will serve as a significant milestone for video segmentation and related perception tasks. We are releasing a version of our model, the dataset and an interactive demo.
IAM: Enhancing RGB-D Instance Segmentation with New Benchmarks
Image segmentation is a vital task for providing human assistance and enhancing autonomy in our daily lives. In particular, RGB-D segmentation-leveraging both visual and depth cues-has attracted increasing attention as it promises richer scene understanding than RGB-only methods. However, most existing efforts have primarily focused on semantic segmentation and thus leave a critical gap. There is a relative scarcity of instance-level RGB-D segmentation datasets, which restricts current methods to broad category distinctions rather than fully capturing the fine-grained details required for recognizing individual objects. To bridge this gap, we introduce three RGB-D instance segmentation benchmarks, distinguished at the instance level. These datasets are versatile, supporting a wide range of applications from indoor navigation to robotic manipulation. In addition, we present an extensive evaluation of various baseline models on these benchmarks. This comprehensive analysis identifies both their strengths and shortcomings, guiding future work toward more robust, generalizable solutions. Finally, we propose a simple yet effective method for RGB-D data integration. Extensive evaluations affirm the effectiveness of our approach, offering a robust framework for advancing toward more nuanced scene understanding.
SMITE: Segment Me In TimE
Segmenting an object in a video presents significant challenges. Each pixel must be accurately labelled, and these labels must remain consistent across frames. The difficulty increases when the segmentation is with arbitrary granularity, meaning the number of segments can vary arbitrarily, and masks are defined based on only one or a few sample images. In this paper, we address this issue by employing a pre-trained text to image diffusion model supplemented with an additional tracking mechanism. We demonstrate that our approach can effectively manage various segmentation scenarios and outperforms state-of-the-art alternatives.
UGainS: Uncertainty Guided Anomaly Instance Segmentation
A single unexpected object on the road can cause an accident or may lead to injuries. To prevent this, we need a reliable mechanism for finding anomalous objects on the road. This task, called anomaly segmentation, can be a stepping stone to safe and reliable autonomous driving. Current approaches tackle anomaly segmentation by assigning an anomaly score to each pixel and by grouping anomalous regions using simple heuristics. However, pixel grouping is a limiting factor when it comes to evaluating the segmentation performance of individual anomalous objects. To address the issue of grouping multiple anomaly instances into one, we propose an approach that produces accurate anomaly instance masks. Our approach centers on an out-of-distribution segmentation model for identifying uncertain regions and a strong generalist segmentation model for anomaly instances segmentation. We investigate ways to use uncertain regions to guide such a segmentation model to perform segmentation of anomalous instances. By incorporating strong object priors from a generalist model we additionally improve the per-pixel anomaly segmentation performance. Our approach outperforms current pixel-level anomaly segmentation methods, achieving an AP of 80.08% and 88.98% on the Fishyscapes Lost and Found and the RoadAnomaly validation sets respectively. Project page: https://vision.rwth-aachen.de/ugains
Moving Object Segmentation: All You Need Is SAM (and Flow)
The objective of this paper is motion segmentation -- discovering and segmenting the moving objects in a video. This is a much studied area with numerous careful,and sometimes complex, approaches and training schemes including: self-supervised learning, learning from synthetic datasets, object-centric representations, amodal representations, and many more. Our interest in this paper is to determine if the Segment Anything model (SAM) can contribute to this task. We investigate two models for combining SAM with optical flow that harness the segmentation power of SAM with the ability of flow to discover and group moving objects. In the first model, we adapt SAM to take optical flow, rather than RGB, as an input. In the second, SAM takes RGB as an input, and flow is used as a segmentation prompt. These surprisingly simple methods, without any further modifications, outperform all previous approaches by a considerable margin in both single and multi-object benchmarks. We also extend these frame-level segmentations to sequence-level segmentations that maintain object identity. Again, this simple model outperforms previous methods on multiple video object segmentation benchmarks.
Adapting the Segment Anything Model During Usage in Novel Situations
The interactive segmentation task consists in the creation of object segmentation masks based on user interactions. The most common way to guide a model towards producing a correct segmentation consists in clicks on the object and background. The recently published Segment Anything Model (SAM) supports a generalized version of the interactive segmentation problem and has been trained on an object segmentation dataset which contains 1.1B masks. Though being trained extensively and with the explicit purpose of serving as a foundation model, we show significant limitations of SAM when being applied for interactive segmentation on novel domains or object types. On the used datasets, SAM displays a failure rate FR_{30}@90 of up to 72.6 %. Since we still want such foundation models to be immediately applicable, we present a framework that can adapt SAM during immediate usage. For this we will leverage the user interactions and masks, which are constructed during the interactive segmentation process. We use this information to generate pseudo-labels, which we use to compute a loss function and optimize a part of the SAM model. The presented method causes a relative reduction of up to 48.1 % in the FR_{20}@85 and 46.6 % in the FR_{30}@90 metrics.
Image Segmentation Using Text and Image Prompts
Image segmentation is usually addressed by training a model for a fixed set of object classes. Incorporating additional classes or more complex queries later is expensive as it requires re-training the model on a dataset that encompasses these expressions. Here we propose a system that can generate image segmentations based on arbitrary prompts at test time. A prompt can be either a text or an image. This approach enables us to create a unified model (trained once) for three common segmentation tasks, which come with distinct challenges: referring expression segmentation, zero-shot segmentation and one-shot segmentation. We build upon the CLIP model as a backbone which we extend with a transformer-based decoder that enables dense prediction. After training on an extended version of the PhraseCut dataset, our system generates a binary segmentation map for an image based on a free-text prompt or on an additional image expressing the query. We analyze different variants of the latter image-based prompts in detail. This novel hybrid input allows for dynamic adaptation not only to the three segmentation tasks mentioned above, but to any binary segmentation task where a text or image query can be formulated. Finally, we find our system to adapt well to generalized queries involving affordances or properties. Code is available at https://eckerlab.org/code/clipseg.
Multi-Modal Prototypes for Open-World Semantic Segmentation
In semantic segmentation, generalizing a visual system to both seen categories and novel categories at inference time has always been practically valuable yet challenging. To enable such functionality, existing methods mainly rely on either providing several support demonstrations from the visual aspect or characterizing the informative clues from the textual aspect (e.g., the class names). Nevertheless, both two lines neglect the complementary intrinsic of low-level visual and high-level language information, while the explorations that consider visual and textual modalities as a whole to promote predictions are still limited. To close this gap, we propose to encompass textual and visual clues as multi-modal prototypes to allow more comprehensive support for open-world semantic segmentation, and build a novel prototype-based segmentation framework to realize this promise. To be specific, unlike the straightforward combination of bi-modal clues, we decompose the high-level language information as multi-aspect prototypes and aggregate the low-level visual information as more semantic prototypes, on basis of which, a fine-grained complementary fusion makes the multi-modal prototypes more powerful and accurate to promote the prediction. Based on an elastic mask prediction module that permits any number and form of prototype inputs, we are able to solve the zero-shot, few-shot and generalized counterpart tasks in one architecture. Extensive experiments on both PASCAL-5^i and COCO-20^i datasets show the consistent superiority of the proposed method compared with the previous state-of-the-art approaches, and a range of ablation studies thoroughly dissects each component in our framework both quantitatively and qualitatively that verify their effectiveness.
Hierarchical Open-vocabulary Universal Image Segmentation
Open-vocabulary image segmentation aims to partition an image into semantic regions according to arbitrary text descriptions. However, complex visual scenes can be naturally decomposed into simpler parts and abstracted at multiple levels of granularity, introducing inherent segmentation ambiguity. Unlike existing methods that typically sidestep this ambiguity and treat it as an external factor, our approach actively incorporates a hierarchical representation encompassing different semantic-levels into the learning process. We propose a decoupled text-image fusion mechanism and representation learning modules for both "things" and "stuff". Additionally, we systematically examine the differences that exist in the textual and visual features between these types of categories. Our resulting model, named HIPIE, tackles HIerarchical, oPen-vocabulary, and unIvErsal segmentation tasks within a unified framework. Benchmarked on over 40 datasets, e.g., ADE20K, COCO, Pascal-VOC Part, RefCOCO/RefCOCOg, ODinW and SeginW, HIPIE achieves the state-of-the-art results at various levels of image comprehension, including semantic-level (e.g., semantic segmentation), instance-level (e.g., panoptic/referring segmentation and object detection), as well as part-level (e.g., part/subpart segmentation) tasks. Our code is released at https://github.com/berkeley-hipie/HIPIE.
Shatter and Gather: Learning Referring Image Segmentation with Text Supervision
Referring image segmentation, the task of segmenting any arbitrary entities described in free-form texts, opens up a variety of vision applications. However, manual labeling of training data for this task is prohibitively costly, leading to lack of labeled data for training. We address this issue by a weakly supervised learning approach using text descriptions of training images as the only source of supervision. To this end, we first present a new model that discovers semantic entities in input image and then combines such entities relevant to text query to predict the mask of the referent. We also present a new loss function that allows the model to be trained without any further supervision. Our method was evaluated on four public benchmarks for referring image segmentation, where it clearly outperformed the existing method for the same task and recent open-vocabulary segmentation models on all the benchmarks.
TETRIS: Towards Exploring the Robustness of Interactive Segmentation
Interactive segmentation methods rely on user inputs to iteratively update the selection mask. A click specifying the object of interest is arguably the most simple and intuitive interaction type, and thereby the most common choice for interactive segmentation. However, user clicking patterns in the interactive segmentation context remain unexplored. Accordingly, interactive segmentation evaluation strategies rely more on intuition and common sense rather than empirical studies (e.g., assuming that users tend to click in the center of the area with the largest error). In this work, we conduct a real user study to investigate real user clicking patterns. This study reveals that the intuitive assumption made in the common evaluation strategy may not hold. As a result, interactive segmentation models may show high scores in the standard benchmarks, but it does not imply that they would perform well in a real world scenario. To assess the applicability of interactive segmentation methods, we propose a novel evaluation strategy providing a more comprehensive analysis of a model's performance. To this end, we propose a methodology for finding extreme user inputs by a direct optimization in a white-box adversarial attack on the interactive segmentation model. Based on the performance with such adversarial user inputs, we assess the robustness of interactive segmentation models w.r.t click positions. Besides, we introduce a novel benchmark for measuring the robustness of interactive segmentation, and report the results of an extensive evaluation of dozens of models.
SortedAP: Rethinking evaluation metrics for instance segmentation
Designing metrics for evaluating instance segmentation revolves around comprehensively considering object detection and segmentation accuracy. However, other important properties, such as sensitivity, continuity, and equality, are overlooked in the current study. In this paper, we reveal that most existing metrics have a limited resolution of segmentation quality. They are only conditionally sensitive to the change of masks or false predictions. For certain metrics, the score can change drastically in a narrow range which could provide a misleading indication of the quality gap between results. Therefore, we propose a new metric called sortedAP, which strictly decreases with both object- and pixel-level imperfections and has an uninterrupted penalization scale over the entire domain. We provide the evaluation toolkit and experiment code at https://www.github.com/looooongChen/sortedAP.
LISAT: Language-Instructed Segmentation Assistant for Satellite Imagery
Segmentation models can recognize a pre-defined set of objects in images. However, models that can reason over complex user queries that implicitly refer to multiple objects of interest are still in their infancy. Recent advances in reasoning segmentation--generating segmentation masks from complex, implicit query text--demonstrate that vision-language models can operate across an open domain and produce reasonable outputs. However, our experiments show that such models struggle with complex remote-sensing imagery. In this work, we introduce LISAt, a vision-language model designed to describe complex remote-sensing scenes, answer questions about them, and segment objects of interest. We trained LISAt on a new curated geospatial reasoning-segmentation dataset, GRES, with 27,615 annotations over 9,205 images, and a multimodal pretraining dataset, PreGRES, containing over 1 million question-answer pairs. LISAt outperforms existing geospatial foundation models such as RS-GPT4V by over 10.04 % (BLEU-4) on remote-sensing description tasks, and surpasses state-of-the-art open-domain models on reasoning segmentation tasks by 143.36 % (gIoU). Our model, datasets, and code are available at https://lisat-bair.github.io/LISAt/
OMG-LLaVA: Bridging Image-level, Object-level, Pixel-level Reasoning and Understanding
Current universal segmentation methods demonstrate strong capabilities in pixel-level image and video understanding. However, they lack reasoning abilities and cannot be controlled via text instructions. In contrast, large vision-language multimodal models exhibit powerful vision-based conversation and reasoning capabilities but lack pixel-level understanding and have difficulty accepting visual prompts for flexible user interaction. This paper proposes OMG-LLaVA, a new and elegant framework combining powerful pixel-level vision understanding with reasoning abilities. It can accept various visual and text prompts for flexible user interaction. Specifically, we use a universal segmentation method as the visual encoder, integrating image information, perception priors, and visual prompts into visual tokens provided to the LLM. The LLM is responsible for understanding the user's text instructions and providing text responses and pixel-level segmentation results based on the visual information. We propose perception prior embedding to better integrate perception priors with image features. OMG-LLaVA achieves image-level, object-level, and pixel-level reasoning and understanding in a single model, matching or surpassing the performance of specialized methods on multiple benchmarks. Rather than using LLM to connect each specialist, our work aims at end-to-end training on one encoder, one decoder, and one LLM. The code and model have been released for further research.
MSI: Maximize Support-Set Information for Few-Shot Segmentation
FSS(Few-shot segmentation) aims to segment a target class using a small number of labeled images (support set). To extract the information relevant to target class, a dominant approach in best performing FSS methods removes background features using a support mask. We observe that this feature excision through a limiting support mask introduces an information bottleneck in several challenging FSS cases, e.g., for small targets and/or inaccurate target boundaries. To this end, we present a novel method (MSI), which maximizes the support-set information by exploiting two complementary sources of features to generate super correlation maps. We validate the effectiveness of our approach by instantiating it into three recent and strong FSS methods. Experimental results on several publicly available FSS benchmarks show that our proposed method consistently improves the performance by visible margins and leads to faster convergence. Our code and models will be publicly released.
Semantic-SAM: Segment and Recognize Anything at Any Granularity
In this paper, we introduce Semantic-SAM, a universal image segmentation model to enable segment and recognize anything at any desired granularity. Our model offers two key advantages: semantic-awareness and granularity-abundance. To achieve semantic-awareness, we consolidate multiple datasets across three granularities and introduce decoupled classification for objects and parts. This allows our model to capture rich semantic information. For the multi-granularity capability, we propose a multi-choice learning scheme during training, enabling each click to generate masks at multiple levels that correspond to multiple ground-truth masks. Notably, this work represents the first attempt to jointly train a model on SA-1B, generic, and part segmentation datasets. Experimental results and visualizations demonstrate that our model successfully achieves semantic-awareness and granularity-abundance. Furthermore, combining SA-1B training with other segmentation tasks, such as panoptic and part segmentation, leads to performance improvements. We will provide code and a demo for further exploration and evaluation.
OMG-Seg: Is One Model Good Enough For All Segmentation?
In this work, we address various segmentation tasks, each traditionally tackled by distinct or partially unified models. We propose OMG-Seg, One Model that is Good enough to efficiently and effectively handle all the segmentation tasks, including image semantic, instance, and panoptic segmentation, as well as their video counterparts, open vocabulary settings, prompt-driven, interactive segmentation like SAM, and video object segmentation. To our knowledge, this is the first model to handle all these tasks in one model and achieve satisfactory performance. We show that OMG-Seg, a transformer-based encoder-decoder architecture with task-specific queries and outputs, can support over ten distinct segmentation tasks and yet significantly reduce computational and parameter overhead across various tasks and datasets. We rigorously evaluate the inter-task influences and correlations during co-training. Code and models are available at https://github.com/lxtGH/OMG-Seg.
Multi-interactive Feature Learning and a Full-time Multi-modality Benchmark for Image Fusion and Segmentation
Multi-modality image fusion and segmentation play a vital role in autonomous driving and robotic operation. Early efforts focus on boosting the performance for only one task, e.g., fusion or segmentation, making it hard to reach~`Best of Both Worlds'. To overcome this issue, in this paper, we propose a Multi-interactive Feature learning architecture for image fusion and Segmentation, namely SegMiF, and exploit dual-task correlation to promote the performance of both tasks. The SegMiF is of a cascade structure, containing a fusion sub-network and a commonly used segmentation sub-network. By slickly bridging intermediate features between two components, the knowledge learned from the segmentation task can effectively assist the fusion task. Also, the benefited fusion network supports the segmentation one to perform more pretentiously. Besides, a hierarchical interactive attention block is established to ensure fine-grained mapping of all the vital information between two tasks, so that the modality/semantic features can be fully mutual-interactive. In addition, a dynamic weight factor is introduced to automatically adjust the corresponding weights of each task, which can balance the interactive feature correspondence and break through the limitation of laborious tuning. Furthermore, we construct a smart multi-wave binocular imaging system and collect a full-time multi-modality benchmark with 15 annotated pixel-level categories for image fusion and segmentation. Extensive experiments on several public datasets and our benchmark demonstrate that the proposed method outputs visually appealing fused images and perform averagely 7.66% higher segmentation mIoU in the real-world scene than the state-of-the-art approaches. The source code and benchmark are available at https://github.com/JinyuanLiu-CV/SegMiF.
InterFormer: Real-time Interactive Image Segmentation
Interactive image segmentation enables annotators to efficiently perform pixel-level annotation for segmentation tasks. However, the existing interactive segmentation pipeline suffers from inefficient computations of interactive models because of the following two issues. First, annotators' later click is based on models' feedback of annotators' former click. This serial interaction is unable to utilize model's parallelism capabilities. Second, in each interaction step, the model handles the invariant image along with the sparse variable clicks, resulting in a process that's highly repetitive and redundant. For efficient computations, we propose a method named InterFormer that follows a new pipeline to address these issues. InterFormer extracts and preprocesses the computationally time-consuming part i.e. image processing from the existing process. Specifically, InterFormer employs a large vision transformer (ViT) on high-performance devices to preprocess images in parallel, and then uses a lightweight module called interactive multi-head self attention (I-MSA) for interactive segmentation. Furthermore, the I-MSA module's deployment on low-power devices extends the practical application of interactive segmentation. The I-MSA module utilizes the preprocessed features to efficiently response to the annotator inputs in real-time. The experiments on several datasets demonstrate the effectiveness of InterFormer, which outperforms previous interactive segmentation models in terms of computational efficiency and segmentation quality, achieve real-time high-quality interactive segmentation on CPU-only devices. The code is available at https://github.com/YouHuang67/InterFormer.
Deformable Attentive Visual Enhancement for Referring Segmentation Using Vision-Language Model
Image segmentation is a fundamental task in computer vision, aimed at partitioning an image into semantically meaningful regions. Referring image segmentation extends this task by using natural language expressions to localize specific objects, requiring effective integration of visual and linguistic information. In this work, we propose SegVLM, a vision-language model that incorporates architectural improvements to enhance segmentation accuracy and cross-modal alignment. The model integrates squeeze-and-excitation (SE) blocks for dynamic feature recalibration, deformable convolutions for geometric adaptability, and residual connections for deep feature learning. We also introduce a novel referring-aware fusion (RAF) loss that balances region-level alignment, boundary precision, and class imbalance. Extensive experiments and ablation studies demonstrate that each component contributes to consistent performance improvements. SegVLM also shows strong generalization across diverse datasets and referring expression scenarios.
Zero Shot Context-Based Object Segmentation using SLIP (SAM+CLIP)
We present SLIP (SAM+CLIP), an enhanced architecture for zero-shot object segmentation. SLIP combines the Segment Anything Model (SAM) kirillov2023segment with the Contrastive Language-Image Pretraining (CLIP) radford2021learning. By incorporating text prompts into SAM using CLIP, SLIP enables object segmentation without prior training on specific classes or categories. We fine-tune CLIP on a Pokemon dataset, allowing it to learn meaningful image-text representations. SLIP demonstrates the ability to recognize and segment objects in images based on contextual information from text prompts, expanding the capabilities of SAM for versatile object segmentation. Our experiments demonstrate the effectiveness of the SLIP architecture in segmenting objects in images based on textual cues. The integration of CLIP's text-image understanding capabilities into SAM expands the capabilities of the original architecture and enables more versatile and context-aware object segmentation.
Towards Training-free Open-world Segmentation via Image Prompt Foundation Models
The realm of computer vision has witnessed a paradigm shift with the advent of foundational models, mirroring the transformative influence of large language models in the domain of natural language processing. This paper delves into the exploration of open-world segmentation, presenting a novel approach called Image Prompt Segmentation (IPSeg) that harnesses the power of vision foundational models. IPSeg lies the principle of a training-free paradigm, which capitalizes on image prompt techniques. Specifically, IPSeg utilizes a single image containing a subjective visual concept as a flexible prompt to query vision foundation models like DINOv2 and Stable Diffusion. Our approach extracts robust features for the prompt image and input image, then matches the input representations to the prompt representations via a novel feature interaction module to generate point prompts highlighting target objects in the input image. The generated point prompts are further utilized to guide the Segment Anything Model to segment the target object in the input image. The proposed method stands out by eliminating the need for exhaustive training sessions, thereby offering a more efficient and scalable solution. Experiments on COCO, PASCAL VOC, and other datasets demonstrate IPSeg's efficacy for flexible open-world segmentation using intuitive image prompts. This work pioneers tapping foundation models for open-world understanding through visual concepts conveyed in images.
MCP-MedSAM: A Powerful Lightweight Medical Segment Anything Model Trained with a Single GPU in Just One Day
Medical image segmentation involves partitioning medical images into meaningful regions, with a focus on identifying anatomical structures and lesions. It has broad applications in healthcare, and deep learning methods have enabled significant advancements in automating this process. Recently, the introduction of the Segmentation Anything Model (SAM), the first foundation model for segmentation task, has prompted researchers to adapt it for the medical domain to improve performance across various tasks. However, SAM's large model size and high GPU requirements hinder its scalability and development in the medical domain. In this work, we propose MCP-MedSAM, a powerful and lightweight medical SAM model designed to be trainable on a single A100 GPU with 40GB of memory within one day while delivering superior segmentation performance. Recognizing the significant internal differences between modalities and the need for direct segmentation target information within bounding boxes, we introduce two kinds of prompts: the modality prompt and the content prompt. After passing through the prompt encoder, their embedding representations can further improve the segmentation performance by incorporating more relevant information without adding significant training overhead. Additionally, we adopt an effective modality-based data sampling strategy to address data imbalance between modalities, ensuring more balanced performance across all modalities. Our method was trained and evaluated using a large-scale challenge dataset, compared to top-ranking methods on the challenge leaderboard, MCP-MedSAM achieved superior performance while requiring only one day of training on a single GPU. The code is publicly available at blue{https://github.com/dong845/MCP-MedSAM}.}
Regional Multi-scale Approach for Visually Pleasing Explanations of Deep Neural Networks
Recently, many methods to interpret and visualize deep neural network predictions have been proposed and significant progress has been made. However, a more class-discriminative and visually pleasing explanation is required. Thus, this paper proposes a region-based approach that estimates feature importance in terms of appropriately segmented regions. By fusing the saliency maps generated from multi-scale segmentations, a more class-discriminative and visually pleasing map is obtained. We incorporate this regional multi-scale concept into a prediction difference method that is model-agnostic. An input image is segmented in several scales using the super-pixel method, and exclusion of a region is simulated by sampling a normal distribution constructed using the boundary prior. The experimental results demonstrate that the regional multi-scale method produces much more class-discriminative and visually pleasing saliency maps.
DynaMITe: Dynamic Query Bootstrapping for Multi-object Interactive Segmentation Transformer
Most state-of-the-art instance segmentation methods rely on large amounts of pixel-precise ground-truth annotations for training, which are expensive to create. Interactive segmentation networks help generate such annotations based on an image and the corresponding user interactions such as clicks. Existing methods for this task can only process a single instance at a time and each user interaction requires a full forward pass through the entire deep network. We introduce a more efficient approach, called DynaMITe, in which we represent user interactions as spatio-temporal queries to a Transformer decoder with a potential to segment multiple object instances in a single iteration. Our architecture also alleviates any need to re-compute image features during refinement, and requires fewer interactions for segmenting multiple instances in a single image when compared to other methods. DynaMITe achieves state-of-the-art results on multiple existing interactive segmentation benchmarks, and also on the new multi-instance benchmark that we propose in this paper.
Interactive segmentation of medical images through fully convolutional neural networks
Image segmentation plays an essential role in medicine for both diagnostic and interventional tasks. Segmentation approaches are either manual, semi-automated or fully-automated. Manual segmentation offers full control over the quality of the results, but is tedious, time consuming and prone to operator bias. Fully automated methods require no human effort, but often deliver sub-optimal results without providing users with the means to make corrections. Semi-automated approaches keep users in control of the results by providing means for interaction, but the main challenge is to offer a good trade-off between precision and required interaction. In this paper we present a deep learning (DL) based semi-automated segmentation approach that aims to be a "smart" interactive tool for region of interest delineation in medical images. We demonstrate its use for segmenting multiple organs on computed tomography (CT) of the abdomen. Our approach solves some of the most pressing clinical challenges: (i) it requires only one to a few user clicks to deliver excellent 2D segmentations in a fast and reliable fashion; (ii) it can generalize to previously unseen structures and "corner cases"; (iii) it delivers results that can be corrected quickly in a smart and intuitive way up to an arbitrary degree of precision chosen by the user and (iv) ensures high accuracy. We present our approach and compare it to other techniques and previous work to show the advantages brought by our method.
Segment Everything Everywhere All at Once
In this work, we present SEEM, a promptable and interactive model for segmenting everything everywhere all at once in an image, as shown in Fig.1. In SEEM, we propose a novel decoding mechanism that enables diverse prompting for all types of segmentation tasks, aiming at a universal segmentation interface that behaves like large language models (LLMs). More specifically, SEEM is designed with four desiderata: i) Versatility. We introduce a new visual prompt to unify different spatial queries including points, boxes, scribbles and masks, which can further generalize to a different referring image; ii) Compositionality. We learn a joint visual-semantic space between text and visual prompts, which facilitates the dynamic composition of two prompt types required for various segmentation tasks; iii) Interactivity. We further incorporate learnable memory prompts into the decoder to retain segmentation history through mask-guided cross-attention from decoder to image features; and iv) Semantic-awareness. We use a text encoder to encode text queries and mask labels into the same semantic space for open-vocabulary segmentation. We conduct a comprehensive empirical study to validate the effectiveness of SEEM across diverse segmentation tasks. Notably, our single SEEM model achieves competitive performance across interactive segmentation, generic segmentation, referring segmentation, and video object segmentation on 9 datasets with minimum 1/100 supervision. Furthermore, SEEM showcases a remarkable capacity for generalization to novel prompts or their combinations, rendering it a readily universal image segmentation interface.
MeshSegmenter: Zero-Shot Mesh Semantic Segmentation via Texture Synthesis
We present MeshSegmenter, a simple yet effective framework designed for zero-shot 3D semantic segmentation. This model successfully extends the powerful capabilities of 2D segmentation models to 3D meshes, delivering accurate 3D segmentation across diverse meshes and segment descriptions. Specifically, our model leverages the Segment Anything Model (SAM) model to segment the target regions from images rendered from the 3D shape. In light of the importance of the texture for segmentation, we also leverage the pretrained stable diffusion model to generate images with textures from 3D shape, and leverage SAM to segment the target regions from images with textures. Textures supplement the shape for segmentation and facilitate accurate 3D segmentation even in geometrically non-prominent areas, such as segmenting a car door within a car mesh. To achieve the 3D segments, we render 2D images from different views and conduct segmentation for both textured and untextured images. Lastly, we develop a multi-view revoting scheme that integrates 2D segmentation results and confidence scores from various views onto the 3D mesh, ensuring the 3D consistency of segmentation results and eliminating inaccuracies from specific perspectives. Through these innovations, MeshSegmenter offers stable and reliable 3D segmentation results both quantitatively and qualitatively, highlighting its potential as a transformative tool in the field of 3D zero-shot segmentation. The code is available at https://github.com/zimingzhong/MeshSegmenter.
The revenge of BiSeNet: Efficient Multi-Task Image Segmentation
Recent advancements in image segmentation have focused on enhancing the efficiency of the models to meet the demands of real-time applications, especially on edge devices. However, existing research has primarily concentrated on single-task settings, especially on semantic segmentation, leading to redundant efforts and specialized architectures for different tasks. To address this limitation, we propose a novel architecture for efficient multi-task image segmentation, capable of handling various segmentation tasks without sacrificing efficiency or accuracy. We introduce BiSeNetFormer, that leverages the efficiency of two-stream semantic segmentation architectures and it extends them into a mask classification framework. Our approach maintains the efficient spatial and context paths to capture detailed and semantic information, respectively, while leveraging an efficient transformed-based segmentation head that computes the binary masks and class probabilities. By seamlessly supporting multiple tasks, namely semantic and panoptic segmentation, BiSeNetFormer offers a versatile solution for multi-task segmentation. We evaluate our approach on popular datasets, Cityscapes and ADE20K, demonstrating impressive inference speeds while maintaining competitive accuracy compared to state-of-the-art architectures. Our results indicate that BiSeNetFormer represents a significant advancement towards fast, efficient, and multi-task segmentation networks, bridging the gap between model efficiency and task adaptability.
SAMWISE: Infusing wisdom in SAM2 for Text-Driven Video Segmentation
Referring Video Object Segmentation (RVOS) relies on natural language expressions to segment an object in a video clip. Existing methods restrict reasoning either to independent short clips, losing global context, or process the entire video offline, impairing their application in a streaming fashion. In this work, we aim to surpass these limitations and design an RVOS method capable of effectively operating in streaming-like scenarios while retaining contextual information from past frames. We build upon the Segment-Anything 2 (SAM2) model, that provides robust segmentation and tracking capabilities and is naturally suited for streaming processing. We make SAM2 wiser, by empowering it with natural language understanding and explicit temporal modeling at the feature extraction stage, without fine-tuning its weights, and without outsourcing modality interaction to external models. To this end, we introduce a novel adapter module that injects temporal information and multi-modal cues in the feature extraction process. We further reveal the phenomenon of tracking bias in SAM2 and propose a learnable module to adjust its tracking focus when the current frame features suggest a new object more aligned with the caption. Our proposed method, SAMWISE, achieves state-of-the-art across various benchmarks, by adding a negligible overhead of just 4.2 M parameters. The code is available at https://github.com/ClaudiaCuttano/SAMWISE
MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation
Reasoning segmentation aims to segment target objects in complex scenes based on human intent and spatial reasoning. While recent multimodal large language models (MLLMs) have demonstrated impressive 2D image reasoning segmentation, adapting these capabilities to 3D scenes remains underexplored. In this paper, we introduce MLLM-For3D, a simple yet effective framework that transfers knowledge from 2D MLLMs to 3D scene understanding. Specifically, we utilize MLLMs to generate multi-view pseudo segmentation masks and corresponding text embeddings, then unproject 2D masks into 3D space and align them with the text embeddings. The primary challenge lies in the absence of 3D context and spatial consistency across multiple views, causing the model to hallucinate objects that do not exist and fail to target objects consistently. Training the 3D model with such irrelevant objects leads to performance degradation. To address this, we introduce a spatial consistency strategy to enforce that segmentation masks remain coherent in the 3D space, effectively capturing the geometry of the scene. Moreover, we develop a Token-for-Query approach for multimodal semantic alignment, enabling consistent identification of the same object across different views. Extensive evaluations on various challenging indoor scene benchmarks demonstrate that, even without any labeled 3D training data, MLLM-For3D outperforms existing 3D reasoning segmentation methods, effectively interpreting user intent, understanding 3D scenes, and reasoning about spatial relationships.
UniRef++: Segment Every Reference Object in Spatial and Temporal Spaces
The reference-based object segmentation tasks, namely referring image segmentation (RIS), few-shot image segmentation (FSS), referring video object segmentation (RVOS), and video object segmentation (VOS), aim to segment a specific object by utilizing either language or annotated masks as references. Despite significant progress in each respective field, current methods are task-specifically designed and developed in different directions, which hinders the activation of multi-task capabilities for these tasks. In this work, we end the current fragmented situation and propose UniRef++ to unify the four reference-based object segmentation tasks with a single architecture. At the heart of our approach is the proposed UniFusion module which performs multiway-fusion for handling different tasks with respect to their specified references. And a unified Transformer architecture is then adopted for achieving instance-level segmentation. With the unified designs, UniRef++ can be jointly trained on a broad range of benchmarks and can flexibly complete multiple tasks at run-time by specifying the corresponding references. We evaluate our unified models on various benchmarks. Extensive experimental results indicate that our proposed UniRef++ achieves state-of-the-art performance on RIS and RVOS, and performs competitively on FSS and VOS with a parameter-shared network. Moreover, we showcase that the proposed UniFusion module could be easily incorporated into the current advanced foundation model SAM and obtain satisfactory results with parameter-efficient finetuning. Codes and models are available at https://github.com/FoundationVision/UniRef.
SqueezeSAM: User friendly mobile interactive segmentation
Segment Anything Model (SAM) is a foundation model for interactive segmentation, and it has catalyzed major advances in generative AI, computational photography, and medical imaging. This model takes in an arbitrary user input and provides segmentation masks of the corresponding objects. It is our goal to develop a version of SAM that is appropriate for use in a photography app. The original SAM model has a few challenges in this setting. First, original SAM a 600 million parameter based on ViT-H, and its high computational cost and large model size that are not suitable for todays mobile hardware. We address this by proposing the SqueezeSAM model architecture, which is 50x faster and 100x smaller than SAM. Next, when a user takes a photo on their phone, it might not occur to them to click on the image and get a mask. Our solution is to use salient object detection to generate the first few clicks. This produces an initial segmentation mask that the user can interactively edit. Finally, when a user clicks on an object, they typically expect all related pieces of the object to be segmented. For instance, if a user clicks on a person t-shirt in a photo, they expect the whole person to be segmented, but SAM typically segments just the t-shirt. We address this with a new data augmentation scheme, and the end result is that if the user clicks on a person holding a basketball, the person and the basketball are all segmented together.
Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation
Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, task-generic promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images. In this paper, we utilize hallucinations to mine task-related information from images and verify its accuracy for enhancing precision of the generated prompts. Specifically, we introduce an iterative Prompt-Mask Cycle generation framework (ProMaC) with a prompt generator and a mask generator.The prompt generator uses a multi-scale chain of thought prompting, initially exploring hallucinations for extracting extended contextual knowledge on a test image.These hallucinations are then reduced to formulate precise instance-specific prompts, directing the mask generator to produce masks that are consistent with task semantics by mask semantic alignment. The generated masks iteratively induce the prompt generator to focus more on task-relevant image areas and reduce irrelevant hallucinations, resulting jointly in better prompts and masks. Experiments on 5 benchmarks demonstrate the effectiveness of ProMaC. Code given in https://lwpyh.github.io/ProMaC/.
FreeSeg: Unified, Universal and Open-Vocabulary Image Segmentation
Recently, open-vocabulary learning has emerged to accomplish segmentation for arbitrary categories of text-based descriptions, which popularizes the segmentation system to more general-purpose application scenarios. However, existing methods devote to designing specialized architectures or parameters for specific segmentation tasks. These customized design paradigms lead to fragmentation between various segmentation tasks, thus hindering the uniformity of segmentation models. Hence in this paper, we propose FreeSeg, a generic framework to accomplish Unified, Universal and Open-Vocabulary Image Segmentation. FreeSeg optimizes an all-in-one network via one-shot training and employs the same architecture and parameters to handle diverse segmentation tasks seamlessly in the inference procedure. Additionally, adaptive prompt learning facilitates the unified model to capture task-aware and category-sensitive concepts, improving model robustness in multi-task and varied scenarios. Extensive experimental results demonstrate that FreeSeg establishes new state-of-the-art results in performance and generalization on three segmentation tasks, which outperforms the best task-specific architectures by a large margin: 5.5% mIoU on semantic segmentation, 17.6% mAP on instance segmentation, 20.1% PQ on panoptic segmentation for the unseen class on COCO.
Boosting Semantic Segmentation from the Perspective of Explicit Class Embeddings
Semantic segmentation is a computer vision task that associates a label with each pixel in an image. Modern approaches tend to introduce class embeddings into semantic segmentation for deeply utilizing category semantics, and regard supervised class masks as final predictions. In this paper, we explore the mechanism of class embeddings and have an insight that more explicit and meaningful class embeddings can be generated based on class masks purposely. Following this observation, we propose ECENet, a new segmentation paradigm, in which class embeddings are obtained and enhanced explicitly during interacting with multi-stage image features. Based on this, we revisit the traditional decoding process and explore inverted information flow between segmentation masks and class embeddings. Furthermore, to ensure the discriminability and informativity of features from backbone, we propose a Feature Reconstruction module, which combines intrinsic and diverse branches together to ensure the concurrence of diversity and redundancy in features. Experiments show that our ECENet outperforms its counterparts on the ADE20K dataset with much less computational cost and achieves new state-of-the-art results on PASCAL-Context dataset. The code will be released at https://gitee.com/mindspore/models and https://github.com/Carol-lyh/ECENet.
HyperSeg: Towards Universal Visual Segmentation with Large Language Model
This paper aims to address universal segmentation for image and video perception with the strong reasoning ability empowered by Visual Large Language Models (VLLMs). Despite significant progress in current unified segmentation methods, limitations in adaptation to both image and video scenarios, as well as the complex reasoning segmentation, make it difficult for them to handle various challenging instructions and achieve an accurate understanding of fine-grained vision-language correlations. We propose HyperSeg, the first VLLM-based universal segmentation model for pixel-level image and video perception, encompassing generic segmentation tasks and more complex reasoning perception tasks requiring powerful reasoning abilities and world knowledge. Besides, to fully leverage the recognition capabilities of VLLMs and the fine-grained visual information, HyperSeg incorporates hybrid entity recognition and fine-grained visual perceiver modules for various segmentation tasks. Combined with the temporal adapter, HyperSeg achieves a comprehensive understanding of temporal information. Experimental results validate the effectiveness of our insights in resolving universal image and video segmentation tasks, including the more complex reasoning perception tasks. Our code is available.
SAM3D: Segment Anything Model in Volumetric Medical Images
Image segmentation remains a pivotal component in medical image analysis, aiding in the extraction of critical information for precise diagnostic practices. With the advent of deep learning, automated image segmentation methods have risen to prominence, showcasing exceptional proficiency in processing medical imagery. Motivated by the Segment Anything Model (SAM)-a foundational model renowned for its remarkable precision and robust generalization capabilities in segmenting 2D natural images-we introduce SAM3D, an innovative adaptation tailored for 3D volumetric medical image analysis. Unlike current SAM-based methods that segment volumetric data by converting the volume into separate 2D slices for individual analysis, our SAM3D model processes the entire 3D volume image in a unified approach. Extensive experiments are conducted on multiple medical image datasets to demonstrate that our network attains competitive results compared with other state-of-the-art methods in 3D medical segmentation tasks while being significantly efficient in terms of parameters. Code and checkpoints are available at https://github.com/UARK-AICV/SAM3D.
Show or Tell? A Benchmark To Evaluate Visual and Textual Prompts in Semantic Segmentation
Prompt engineering has shown remarkable success with large language models, yet its systematic exploration in computer vision remains limited. In semantic segmentation, both textual and visual prompts offer distinct advantages: textual prompts through open-vocabulary methods allow segmentation of arbitrary categories, while visual reference prompts provide intuitive reference examples. However, existing benchmarks evaluate these modalities in isolation, without direct comparison under identical conditions. We present Show or Tell (SoT), a novel benchmark specifically designed to evaluate both visual and textual prompts for semantic segmentation across 14 datasets spanning 7 diverse domains (common scenes, urban, food, waste, parts, tools, and land-cover). We evaluate 5 open-vocabulary methods and 4 visual reference prompt approaches, adapting the latter to handle multi-class segmentation through a confidence-based mask merging strategy. Our extensive experiments reveal that open-vocabulary methods excel with common concepts easily described by text but struggle with complex domains like tools, while visual reference prompt methods achieve good average results but exhibit high variability depending on the input prompt. Through comprehensive quantitative and qualitative analysis, we identify the strengths and weaknesses of both prompting modalities, providing valuable insights to guide future research in vision foundation models for segmentation tasks.
SeeBel: Seeing is Believing
Semantic Segmentation is a significant research field in Computer Vision. Despite being a widely studied subject area, many visualization tools do not exist that capture segmentation quality and dataset statistics such as a class imbalance in the same view. While the significance of discovering and introspecting the correlation between dataset statistics and AI model performance for dense prediction computer vision tasks such as semantic segmentation is well established in the computer vision literature, to the best of our knowledge, no visualization tools have been proposed to view and analyze the aforementioned tasks. Our project aims to bridge this gap by proposing three visualizations that enable users to compare dataset statistics and AI performance for segmenting all images, a single image in the dataset, explore the AI model's attention on image regions once trained and browse the quality of masks predicted by AI for any selected (by user) number of objects under the same tool. Our project tries to further increase the interpretability of the trained AI model for segmentation by visualizing its image attention weights. For visualization, we use Scatterplot and Heatmap to encode correlation and features, respectively. We further propose to conduct surveys on real users to study the efficacy of our visualization tool in computer vision and AI domain. The full system can be accessed at https://github.com/dipta007/SeeBel
Segmenting Known Objects and Unseen Unknowns without Prior Knowledge
Panoptic segmentation methods assign a known class to each pixel given in input. Even for state-of-the-art approaches, this inevitably enforces decisions that systematically lead to wrong predictions for objects outside the training categories. However, robustness against out-of-distribution samples and corner cases is crucial in safety-critical settings to avoid dangerous consequences. Since real-world datasets cannot contain enough data points to adequately sample the long tail of the underlying distribution, models must be able to deal with unseen and unknown scenarios as well. Previous methods targeted this by re-identifying already-seen unlabeled objects. In this work, we propose the necessary step to extend segmentation with a new setting which we term holistic segmentation. Holistic segmentation aims to identify and separate objects of unseen, unknown categories into instances without any prior knowledge about them while performing panoptic segmentation of known classes. We tackle this new problem with U3HS, which finds unknowns as highly uncertain regions and clusters their corresponding instance-aware embeddings into individual objects. By doing so, for the first time in panoptic segmentation with unknown objects, our U3HS is trained without unknown categories, reducing assumptions and leaving the settings as unconstrained as in real-life scenarios. Extensive experiments on public data from MS COCO, Cityscapes, and Lost&Found demonstrate the effectiveness of U3HS for this new, challenging, and assumptions-free setting called holistic segmentation. Project page: https://holisticseg.github.io.
WPS-SAM: Towards Weakly-Supervised Part Segmentation with Foundation Models
Segmenting and recognizing diverse object parts is crucial in computer vision and robotics. Despite significant progress in object segmentation, part-level segmentation remains underexplored due to complex boundaries and scarce annotated data. To address this, we propose a novel Weakly-supervised Part Segmentation (WPS) setting and an approach called WPS-SAM, built on the large-scale pre-trained vision foundation model, Segment Anything Model (SAM). WPS-SAM is an end-to-end framework designed to extract prompt tokens directly from images and perform pixel-level segmentation of part regions. During its training phase, it only uses weakly supervised labels in the form of bounding boxes or points. Extensive experiments demonstrate that, through exploiting the rich knowledge embedded in pre-trained foundation models, WPS-SAM outperforms other segmentation models trained with pixel-level strong annotations. Specifically, WPS-SAM achieves 68.93% mIOU and 79.53% mACC on the PartImageNet dataset, surpassing state-of-the-art fully supervised methods by approximately 4% in terms of mIOU.
Exploring Transfer Learning in Medical Image Segmentation using Vision-Language Models
Medical image segmentation allows quantifying target structure size and shape, aiding in disease diagnosis, prognosis, surgery planning, and comprehension.Building upon recent advancements in foundation Vision-Language Models (VLMs) from natural image-text pairs, several studies have proposed adapting them to Vision-Language Segmentation Models (VLSMs) that allow using language text as an additional input to segmentation models. Introducing auxiliary information via text with human-in-the-loop prompting during inference opens up unique opportunities, such as open vocabulary segmentation and potentially more robust segmentation models against out-of-distribution data. Although transfer learning from natural to medical images has been explored for image-only segmentation models, the joint representation of vision-language in segmentation problems remains underexplored. This study introduces the first systematic study on transferring VLSMs to 2D medical images, using carefully curated 11 datasets encompassing diverse modalities and insightful language prompts and experiments. Our findings demonstrate that although VLSMs show competitive performance compared to image-only models for segmentation after finetuning in limited medical image datasets, not all VLSMs utilize the additional information from language prompts, with image features playing a dominant role. While VLSMs exhibit enhanced performance in handling pooled datasets with diverse modalities and show potential robustness to domain shifts compared to conventional segmentation models, our results suggest that novel approaches are required to enable VLSMs to leverage the various auxiliary information available through language prompts. The code and datasets are available at https://github.com/naamiinepal/medvlsm.
INT: Instance-Specific Negative Mining for Task-Generic Promptable Segmentation
Task-generic promptable image segmentation aims to achieve segmentation of diverse samples under a single task description by utilizing only one task-generic prompt. Current methods leverage the generalization capabilities of Vision-Language Models (VLMs) to infer instance-specific prompts from these task-generic prompts in order to guide the segmentation process. However, when VLMs struggle to generalise to some image instances, predicting instance-specific prompts becomes poor. To solve this problem, we introduce Instance-specific Negative Mining for Task-Generic Promptable Segmentation (INT). The key idea of INT is to adaptively reduce the influence of irrelevant (negative) prior knowledge whilst to increase the use the most plausible prior knowledge, selected by negative mining with higher contrast, in order to optimise instance-specific prompts generation. Specifically, INT consists of two components: (1) instance-specific prompt generation, which progressively fliters out incorrect information in prompt generation; (2) semantic mask generation, which ensures each image instance segmentation matches correctly the semantics of the instance-specific prompts. INT is validated on six datasets, including camouflaged objects and medical images, demonstrating its effectiveness, robustness and scalability.
Part-aware Prompted Segment Anything Model for Adaptive Segmentation
Precision medicine, such as patient-adaptive treatments assisted by medical image analysis, poses new challenges for segmentation algorithms in adapting to new patients, due to the large variability across different patients and the limited availability of annotated data for each patient. In this work, we propose a data-efficient segmentation algorithm, namely Part-aware Prompted Segment Anything Model (P^2SAM). Without any model fine-tuning, P^2SAM enables seamless adaptation to any new patients relying only on one-shot patient-specific data. We introduce a novel part-aware prompt mechanism to select multiple-point prompts based on the part-level features of the one-shot data, which can be extensively integrated into different promptable segmentation models, such as SAM and SAM 2. Moreover, to determine the optimal number of parts for each specific case, we propose a distribution-guided retrieval approach that further enhances the robustness of the part-aware prompt mechanism. P^2SAM improves the performance by +8.0% and +2.0% mean Dice score for two different patient-adaptive segmentation applications, respectively. In addition, P^2SAM also exhibits impressive generalizability in other adaptive segmentation tasks in the natural image domain, e.g., +6.4% mIoU within personalized object segmentation task. The code is available at: https://github.com/Zch0414/p2sam
Zero-guidance Segmentation Using Zero Segment Labels
CLIP has enabled new and exciting joint vision-language applications, one of which is open-vocabulary segmentation, which can locate any segment given an arbitrary text query. In our research, we ask whether it is possible to discover semantic segments without any user guidance in the form of text queries or predefined classes, and label them using natural language automatically? We propose a novel problem zero-guidance segmentation and the first baseline that leverages two pre-trained generalist models, DINO and CLIP, to solve this problem without any fine-tuning or segmentation dataset. The general idea is to first segment an image into small over-segments, encode them into CLIP's visual-language space, translate them into text labels, and merge semantically similar segments together. The key challenge, however, is how to encode a visual segment into a segment-specific embedding that balances global and local context information, both useful for recognition. Our main contribution is a novel attention-masking technique that balances the two contexts by analyzing the attention layers inside CLIP. We also introduce several metrics for the evaluation of this new task. With CLIP's innate knowledge, our method can precisely locate the Mona Lisa painting among a museum crowd. Project page: https://zero-guide-seg.github.io/.
OV-PARTS: Towards Open-Vocabulary Part Segmentation
Segmenting and recognizing diverse object parts is a crucial ability in applications spanning various computer vision and robotic tasks. While significant progress has been made in object-level Open-Vocabulary Semantic Segmentation (OVSS), i.e., segmenting objects with arbitrary text, the corresponding part-level research poses additional challenges. Firstly, part segmentation inherently involves intricate boundaries, while limited annotated data compounds the challenge. Secondly, part segmentation introduces an open granularity challenge due to the diverse and often ambiguous definitions of parts in the open world. Furthermore, the large-scale vision and language models, which play a key role in the open vocabulary setting, struggle to recognize parts as effectively as objects. To comprehensively investigate and tackle these challenges, we propose an Open-Vocabulary Part Segmentation (OV-PARTS) benchmark. OV-PARTS includes refined versions of two publicly available datasets: Pascal-Part-116 and ADE20K-Part-234. And it covers three specific tasks: Generalized Zero-Shot Part Segmentation, Cross-Dataset Part Segmentation, and Few-Shot Part Segmentation, providing insights into analogical reasoning, open granularity and few-shot adapting abilities of models. Moreover, we analyze and adapt two prevailing paradigms of existing object-level OVSS methods for OV-PARTS. Extensive experimental analysis is conducted to inspire future research in leveraging foundational models for OV-PARTS. The code and dataset are available at https://github.com/OpenRobotLab/OV_PARTS.
Learning to Generate Training Datasets for Robust Semantic Segmentation
Semantic segmentation methods have advanced significantly. Still, their robustness to real-world perturbations and object types not seen during training remains a challenge, particularly in safety-critical applications. We propose a novel approach to improve the robustness of semantic segmentation techniques by leveraging the synergy between label-to-image generators and image-to-label segmentation models. Specifically, we design Robusta, a novel robust conditional generative adversarial network to generate realistic and plausible perturbed images that can be used to train reliable segmentation models. We conduct in-depth studies of the proposed generative model, assess the performance and robustness of the downstream segmentation network, and demonstrate that our approach can significantly enhance the robustness in the face of real-world perturbations, distribution shifts, and out-of-distribution samples. Our results suggest that this approach could be valuable in safety-critical applications, where the reliability of perception modules such as semantic segmentation is of utmost importance and comes with a limited computational budget in inference. We release our code at https://github.com/ENSTA-U2IS/robusta.
SegGPT: Segmenting Everything In Context
We present SegGPT, a generalist model for segmenting everything in context. We unify various segmentation tasks into a generalist in-context learning framework that accommodates different kinds of segmentation data by transforming them into the same format of images. The training of SegGPT is formulated as an in-context coloring problem with random color mapping for each data sample. The objective is to accomplish diverse tasks according to the context, rather than relying on specific colors. After training, SegGPT can perform arbitrary segmentation tasks in images or videos via in-context inference, such as object instance, stuff, part, contour, and text. SegGPT is evaluated on a broad range of tasks, including few-shot semantic segmentation, video object segmentation, semantic segmentation, and panoptic segmentation. Our results show strong capabilities in segmenting in-domain and out-of-domain targets, either qualitatively or quantitatively.
Spatially Guiding Unsupervised Semantic Segmentation Through Depth-Informed Feature Distillation and Sampling
Traditionally, training neural networks to perform semantic segmentation required expensive human-made annotations. But more recently, advances in the field of unsupervised learning have made significant progress on this issue and towards closing the gap to supervised algorithms. To achieve this, semantic knowledge is distilled by learning to correlate randomly sampled features from images across an entire dataset. In this work, we build upon these advances by incorporating information about the structure of the scene into the training process through the use of depth information. We achieve this by (1) learning depth-feature correlation by spatially correlate the feature maps with the depth maps to induce knowledge about the structure of the scene and (2) implementing farthest-point sampling to more effectively select relevant features by utilizing 3D sampling techniques on depth information of the scene. Finally, we demonstrate the effectiveness of our technical contributions through extensive experimentation and present significant improvements in performance across multiple benchmark datasets.
OoDIS: Anomaly Instance Segmentation Benchmark
Autonomous vehicles require a precise understanding of their environment to navigate safely. Reliable identification of unknown objects, especially those that are absent during training, such as wild animals, is critical due to their potential to cause serious accidents. Significant progress in semantic segmentation of anomalies has been driven by the availability of out-of-distribution (OOD) benchmarks. However, a comprehensive understanding of scene dynamics requires the segmentation of individual objects, and thus the segmentation of instances is essential. Development in this area has been lagging, largely due to the lack of dedicated benchmarks. To address this gap, we have extended the most commonly used anomaly segmentation benchmarks to include the instance segmentation task. Our evaluation of anomaly instance segmentation methods shows that this challenge remains an unsolved problem. The benchmark website and the competition page can be found at: https://vision.rwth-aachen.de/oodis .
Unsupervised Part Discovery by Unsupervised Disentanglement
We address the problem of discovering part segmentations of articulated objects without supervision. In contrast to keypoints, part segmentations provide information about part localizations on the level of individual pixels. Capturing both locations and semantics, they are an attractive target for supervised learning approaches. However, large annotation costs limit the scalability of supervised algorithms to other object categories than humans. Unsupervised approaches potentially allow to use much more data at a lower cost. Most existing unsupervised approaches focus on learning abstract representations to be refined with supervision into the final representation. Our approach leverages a generative model consisting of two disentangled representations for an object's shape and appearance and a latent variable for the part segmentation. From a single image, the trained model infers a semantic part segmentation map. In experiments, we compare our approach to previous state-of-the-art approaches and observe significant gains in segmentation accuracy and shape consistency. Our work demonstrates the feasibility to discover semantic part segmentations without supervision.
GraCo: Granularity-Controllable Interactive Segmentation
Interactive Segmentation (IS) segments specific objects or parts in the image according to user input. Current IS pipelines fall into two categories: single-granularity output and multi-granularity output. The latter aims to alleviate the spatial ambiguity present in the former. However, the multi-granularity output pipeline suffers from limited interaction flexibility and produces redundant results. In this work, we introduce Granularity-Controllable Interactive Segmentation (GraCo), a novel approach that allows precise control of prediction granularity by introducing additional parameters to input. This enhances the customization of the interactive system and eliminates redundancy while resolving ambiguity. Nevertheless, the exorbitant cost of annotating multi-granularity masks and the lack of available datasets with granularity annotations make it difficult for models to acquire the necessary guidance to control output granularity. To address this problem, we design an any-granularity mask generator that exploits the semantic property of the pre-trained IS model to automatically generate abundant mask-granularity pairs without requiring additional manual annotation. Based on these pairs, we propose a granularity-controllable learning strategy that efficiently imparts the granularity controllability to the IS model. Extensive experiments on intricate scenarios at object and part levels demonstrate that our GraCo has significant advantages over previous methods. This highlights the potential of GraCo to be a flexible annotation tool, capable of adapting to diverse segmentation scenarios. The project page: https://zhao-yian.github.io/GraCo.
Color Recognition in Challenging Lighting Environments: CNN Approach
Light plays a vital role in vision either human or machine vision, the perceived color is always based on the lighting conditions of the surroundings. Researchers are working to enhance the color detection techniques for the application of computer vision. They have implemented proposed several methods using different color detection approaches but still, there is a gap that can be filled. To address this issue, a color detection method, which is based on a Convolutional Neural Network (CNN), is proposed. Firstly, image segmentation is performed using the edge detection segmentation technique to specify the object and then the segmented object is fed to the Convolutional Neural Network trained to detect the color of an object in different lighting conditions. It is experimentally verified that our method can substantially enhance the robustness of color detection in different lighting conditions, and our method performed better results than existing methods.
Open-world Semantic Segmentation via Contrasting and Clustering Vision-Language Embedding
To bridge the gap between supervised semantic segmentation and real-world applications that acquires one model to recognize arbitrary new concepts, recent zero-shot segmentation attracts a lot of attention by exploring the relationships between unseen and seen object categories, yet requiring large amounts of densely-annotated data with diverse base classes. In this paper, we propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations, by purely exploiting the image-caption data that naturally exist on the Internet. Our method, Vision-language-driven Semantic Segmentation (ViL-Seg), employs an image and a text encoder to generate visual and text embeddings for the image-caption data, with two core components that endow its segmentation ability: First, the image encoder is jointly trained with a vision-based contrasting and a cross-modal contrasting, which encourage the visual embeddings to preserve both fine-grained semantics and high-level category information that are crucial for the segmentation task. Furthermore, an online clustering head is devised over the image encoder, which allows to dynamically segment the visual embeddings into distinct semantic groups such that they can be classified by comparing with various text embeddings to complete our segmentation pipeline. Experiments show that without using any data with dense annotations, our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.
SegAgent: Exploring Pixel Understanding Capabilities in MLLMs by Imitating Human Annotator Trajectories
While MLLMs have demonstrated adequate image understanding capabilities, they still struggle with pixel-level comprehension, limiting their practical applications. Current evaluation tasks like VQA and visual grounding remain too coarse to assess fine-grained pixel comprehension accurately. Though segmentation is foundational for pixel-level understanding, existing methods often require MLLMs to generate implicit tokens, decoded through external pixel decoders. This approach disrupts the MLLM's text output space, potentially compromising language capabilities and reducing flexibility and extensibility, while failing to reflect the model's intrinsic pixel-level understanding. Thus, we introduce the Human-Like Mask Annotation Task (HLMAT), a new paradigm where MLLMs mimic human annotators using interactive segmentation tools. Modeling segmentation as a multi-step Markov Decision Process, HLMAT enables MLLMs to iteratively generate text-based click points, achieving high-quality masks without architectural changes or implicit tokens. Through this setup, we develop SegAgent, a model fine-tuned on human-like annotation trajectories, which achieves performance comparable to state-of-the-art (SOTA) methods and supports additional tasks like mask refinement and annotation filtering. HLMAT provides a protocol for assessing fine-grained pixel understanding in MLLMs and introduces a vision-centric, multi-step decision-making task that facilitates exploration of MLLMs' visual reasoning abilities. Our adaptations of policy improvement method StaR and PRM-guided tree search further enhance model robustness in complex segmentation tasks, laying a foundation for future advancements in fine-grained visual perception and multi-step decision-making for MLLMs.
Beyond mAP: Towards better evaluation of instance segmentation
Correctness of instance segmentation constitutes counting the number of objects, correctly localizing all predictions and classifying each localized prediction. Average Precision is the de-facto metric used to measure all these constituents of segmentation. However, this metric does not penalize duplicate predictions in the high-recall range, and cannot distinguish instances that are localized correctly but categorized incorrectly. This weakness has inadvertently led to network designs that achieve significant gains in AP but also introduce a large number of false positives. We therefore cannot rely on AP to choose a model that provides an optimal tradeoff between false positives and high recall. To resolve this dilemma, we review alternative metrics in the literature and propose two new measures to explicitly measure the amount of both spatial and categorical duplicate predictions. We also propose a Semantic Sorting and NMS module to remove these duplicates based on a pixel occupancy matching scheme. Experiments show that modern segmentation networks have significant gains in AP, but also contain a considerable amount of duplicates. Our Semantic Sorting and NMS can be added as a plug-and-play module to mitigate hedged predictions and preserve AP.
Tokenize Anything via Prompting
We present a unified, promptable model capable of simultaneously segmenting, recognizing, and captioning anything. Unlike SAM, we aim to build a versatile region representation in the wild via visual prompting. To achieve this, we train a generalizable model with massive segmentation masks, e.g., SA-1B masks, and semantic priors from a pre-trained CLIP model with 5 billion parameters. Specifically, we construct a promptable image decoder by adding a semantic token to each mask token. The semantic token is responsible for learning the semantic priors in a predefined concept space. Through joint optimization of segmentation on mask tokens and concept prediction on semantic tokens, our model exhibits strong regional recognition and localization capabilities. For example, an additional 38M-parameter causal text decoder trained from scratch sets a new record with a CIDEr score of 150.7 on the Visual Genome region captioning task. We believe this model can be a versatile region-level image tokenizer, capable of encoding general-purpose region context for a broad range of perception tasks. Code and models are available at https://github.com/baaivision/tokenize-anything.
SegMAN: Omni-scale Context Modeling with State Space Models and Local Attention for Semantic Segmentation
High-quality semantic segmentation relies on three key capabilities: global context modeling, local detail encoding, and multi-scale feature extraction. However, recent methods struggle to possess all these capabilities simultaneously. Hence, we aim to empower segmentation networks to simultaneously carry out efficient global context modeling, high-quality local detail encoding, and rich multi-scale feature representation for varying input resolutions. In this paper, we introduce SegMAN, a novel linear-time model comprising a hybrid feature encoder dubbed SegMAN Encoder, and a decoder based on state space models. Specifically, the SegMAN Encoder synergistically integrates sliding local attention with dynamic state space models, enabling highly efficient global context modeling while preserving fine-grained local details. Meanwhile, the MMSCopE module in our decoder enhances multi-scale context feature extraction and adaptively scales with the input resolution. Our SegMAN-B Encoder achieves 85.1% ImageNet-1k accuracy (+1.5% over VMamba-S with fewer parameters). When paired with our decoder, the full SegMAN-B model achieves 52.6% mIoU on ADE20K (+1.6% over SegNeXt-L with 15% fewer GFLOPs), 83.8% mIoU on Cityscapes (+2.1% over SegFormer-B3 with half the GFLOPs), and 1.6% higher mIoU than VWFormer-B3 on COCO-Stuff with lower GFLOPs. Our code is available at https://github.com/yunxiangfu2001/SegMAN.
Bootstrapping Objectness from Videos by Relaxed Common Fate and Visual Grouping
We study learning object segmentation from unlabeled videos. Humans can easily segment moving objects without knowing what they are. The Gestalt law of common fate, i.e., what move at the same speed belong together, has inspired unsupervised object discovery based on motion segmentation. However, common fate is not a reliable indicator of objectness: Parts of an articulated / deformable object may not move at the same speed, whereas shadows / reflections of an object always move with it but are not part of it. Our insight is to bootstrap objectness by first learning image features from relaxed common fate and then refining them based on visual appearance grouping within the image itself and across images statistically. Specifically, we learn an image segmenter first in the loop of approximating optical flow with constant segment flow plus small within-segment residual flow, and then by refining it for more coherent appearance and statistical figure-ground relevance. On unsupervised video object segmentation, using only ResNet and convolutional heads, our model surpasses the state-of-the-art by absolute gains of 7/9/5% on DAVIS16 / STv2 / FBMS59 respectively, demonstrating the effectiveness of our ideas. Our code is publicly available.
U-DIADS-Bib: a full and few-shot pixel-precise dataset for document layout analysis of ancient manuscripts
Document Layout Analysis, which is the task of identifying different semantic regions inside of a document page, is a subject of great interest for both computer scientists and humanities scholars as it represents a fundamental step towards further analysis tasks for the former and a powerful tool to improve and facilitate the study of the documents for the latter. However, many of the works currently present in the literature, especially when it comes to the available datasets, fail to meet the needs of both worlds and, in particular, tend to lean towards the needs and common practices of the computer science side, leading to resources that are not representative of the humanities real needs. For this reason, the present paper introduces U-DIADS-Bib, a novel, pixel-precise, non-overlapping and noiseless document layout analysis dataset developed in close collaboration between specialists in the fields of computer vision and humanities. Furthermore, we propose a novel, computer-aided, segmentation pipeline in order to alleviate the burden represented by the time-consuming process of manual annotation, necessary for the generation of the ground truth segmentation maps. Finally, we present a standardized few-shot version of the dataset (U-DIADS-BibFS), with the aim of encouraging the development of models and solutions able to address this task with as few samples as possible, which would allow for more effective use in a real-world scenario, where collecting a large number of segmentations is not always feasible.
Segmentation is All You Need
Region proposal mechanisms are essential for existing deep learning approaches to object detection in images. Although they can generally achieve a good detection performance under normal circumstances, their recall in a scene with extreme cases is unacceptably low. This is mainly because bounding box annotations contain much environment noise information, and non-maximum suppression (NMS) is required to select target boxes. Therefore, in this paper, we propose the first anchor-free and NMS-free object detection model called weakly supervised multimodal annotation segmentation (WSMA-Seg), which utilizes segmentation models to achieve an accurate and robust object detection without NMS. In WSMA-Seg, multimodal annotations are proposed to achieve an instance-aware segmentation using weakly supervised bounding boxes; we also develop a run-data-based following algorithm to trace contours of objects. In addition, we propose a multi-scale pooling segmentation (MSP-Seg) as the underlying segmentation model of WSMA-Seg to achieve a more accurate segmentation and to enhance the detection accuracy of WSMA-Seg. Experimental results on multiple datasets show that the proposed WSMA-Seg approach outperforms the state-of-the-art detectors.
Point-SAM: Promptable 3D Segmentation Model for Point Clouds
The development of 2D foundation models for image segmentation has been significantly advanced by the Segment Anything Model (SAM). However, achieving similar success in 3D models remains a challenge due to issues such as non-unified data formats, lightweight models, and the scarcity of labeled data with diverse masks. To this end, we propose a 3D promptable segmentation model (Point-SAM) focusing on point clouds. Our approach utilizes a transformer-based method, extending SAM to the 3D domain. We leverage part-level and object-level annotations and introduce a data engine to generate pseudo labels from SAM, thereby distilling 2D knowledge into our 3D model. Our model outperforms state-of-the-art models on several indoor and outdoor benchmarks and demonstrates a variety of applications, such as 3D annotation. Codes and demo can be found at https://github.com/zyc00/Point-SAM.
ITACLIP: Boosting Training-Free Semantic Segmentation with Image, Text, and Architectural Enhancements
Recent advances in foundational Vision Language Models (VLMs) have reshaped the evaluation paradigm in computer vision tasks. These foundational models, especially CLIP, have accelerated research in open-vocabulary computer vision tasks, including Open-Vocabulary Semantic Segmentation (OVSS). Although the initial results are promising, the dense prediction capabilities of VLMs still require further improvement. In this study, we enhance the semantic segmentation performance of CLIP by introducing new modules and modifications: 1) architectural changes in the last layer of ViT and the incorporation of attention maps from the middle layers with the last layer, 2) Image Engineering: applying data augmentations to enrich input image representations, and 3) using Large Language Models (LLMs) to generate definitions and synonyms for each class name to leverage CLIP's open-vocabulary capabilities. Our training-free method, ITACLIP, outperforms current state-of-the-art approaches on segmentation benchmarks such as COCO-Stuff, COCO-Object, Pascal Context, and Pascal VOC. Our code is available at https://github.com/m-arda-aydn/ITACLIP.
Harnessing Vision Foundation Models for High-Performance, Training-Free Open Vocabulary Segmentation
While Contrastive Language-Image Pre-training (CLIP) has advanced open-vocabulary predictions, its performance on semantic segmentation remains suboptimal. This shortfall primarily stems from its spatial-invariant semantic features and constrained resolution. While previous adaptations addressed spatial invariance semantic by modifying the self-attention in CLIP's image encoder, the issue of limited resolution remains unexplored. Different from previous segment-then-splice methods that segment sub-images via a sliding window and splice the results, we introduce a splice-then-segment paradigm that incorporates Segment-Anything Model (SAM) to tackle the resolution issue since SAM excels at extracting fine-grained semantic correlations from high-resolution images. Specifically, we introduce Trident, a training-free framework that first splices features extracted by CLIP and DINO from sub-images, then leverages SAM's encoder to create a correlation matrix for global aggregation, enabling a broadened receptive field for effective segmentation. Besides, we propose a refinement strategy for CLIP's coarse segmentation outputs by transforming them into prompts for SAM, further enhancing the segmentation performance. Trident achieves a significant improvement in the mIoU across eight benchmarks compared with the current SOTA, increasing from 44.4 to 48.6.Code is available at https://github.com/YuHengsss/Trident.
SAM Fails to Segment Anything? -- SAM-Adapter: Adapting SAM in Underperformed Scenes: Camouflage, Shadow, Medical Image Segmentation, and More
The emergence of large models, also known as foundation models, has brought significant advancements to AI research. One such model is Segment Anything (SAM), which is designed for image segmentation tasks. However, as with other foundation models, our experimental findings suggest that SAM may fail or perform poorly in certain segmentation tasks, such as shadow detection and camouflaged object detection (concealed object detection). This study first paves the way for applying the large pre-trained image segmentation model SAM to these downstream tasks, even in situations where SAM performs poorly. Rather than fine-tuning the SAM network, we propose SAM-Adapter, which incorporates domain-specific information or visual prompts into the segmentation network by using simple yet effective adapters. By integrating task-specific knowledge with general knowledge learnt by the large model, SAM-Adapter can significantly elevate the performance of SAM in challenging tasks as shown in extensive experiments. We can even outperform task-specific network models and achieve state-of-the-art performance in the task we tested: camouflaged object detection, shadow detection. We also tested polyp segmentation (medical image segmentation) and achieves better results. We believe our work opens up opportunities for utilizing SAM in downstream tasks, with potential applications in various fields, including medical image processing, agriculture, remote sensing, and more.
SAS: Segment Any 3D Scene with Integrated 2D Priors
The open vocabulary capability of 3D models is increasingly valued, as traditional methods with models trained with fixed categories fail to recognize unseen objects in complex dynamic 3D scenes. In this paper, we propose a simple yet effective approach, SAS, to integrate the open vocabulary capability of multiple 2D models and migrate it to 3D domain. Specifically, we first propose Model Alignment via Text to map different 2D models into the same embedding space using text as a bridge. Then, we propose Annotation-Free Model Capability Construction to explicitly quantify the 2D model's capability of recognizing different categories using diffusion models. Following this, point cloud features from different 2D models are fused with the guide of constructed model capabilities. Finally, the integrated 2D open vocabulary capability is transferred to 3D domain through feature distillation. SAS outperforms previous methods by a large margin across multiple datasets, including ScanNet v2, Matterport3D, and nuScenes, while its generalizability is further validated on downstream tasks, e.g., gaussian segmentation and instance segmentation.
Efficient Transformer Encoders for Mask2Former-style models
Vision transformer based models bring significant improvements for image segmentation tasks. Although these architectures offer powerful capabilities irrespective of specific segmentation tasks, their use of computational resources can be taxing on deployed devices. One way to overcome this challenge is by adapting the computation level to the specific needs of the input image rather than the current one-size-fits-all approach. To this end, we introduce ECO-M2F or EffiCient TransfOrmer Encoders for Mask2Former-style models. Noting that the encoder module of M2F-style models incur high resource-intensive computations, ECO-M2F provides a strategy to self-select the number of hidden layers in the encoder, conditioned on the input image. To enable this self-selection ability for providing a balance between performance and computational efficiency, we present a three step recipe. The first step is to train the parent architecture to enable early exiting from the encoder. The second step is to create an derived dataset of the ideal number of encoder layers required for each training example. The third step is to use the aforementioned derived dataset to train a gating network that predicts the number of encoder layers to be used, conditioned on the input image. Additionally, to change the computational-accuracy tradeoff, only steps two and three need to be repeated which significantly reduces retraining time. Experiments on the public datasets show that the proposed approach reduces expected encoder computational cost while maintaining performance, adapts to various user compute resources, is flexible in architecture configurations, and can be extended beyond the segmentation task to object detection.
Test-Time Optimization for Domain Adaptive Open Vocabulary Segmentation
We present Seg-TTO, a novel framework for zero-shot, open-vocabulary semantic segmentation (OVSS), designed to excel in specialized domain tasks. While current open vocabulary approaches show impressive performance on standard segmentation benchmarks under zero-shot settings, they fall short of supervised counterparts on highly domain-specific datasets. We focus on segmentation-specific test-time optimization to address this gap. Segmentation requires an understanding of multiple concepts within a single image while retaining the locality and spatial structure of representations. We propose a novel self-supervised objective adhering to these requirements and use it to align the model parameters with input images at test time. In the textual modality, we learn multiple embeddings for each category to capture diverse concepts within an image, while in the visual modality, we calculate pixel-level losses followed by embedding aggregation operations specific to preserving spatial structure. Our resulting framework termed Seg-TTO is a plug-in-play module. We integrate Seg-TTO with three state-of-the-art OVSS approaches and evaluate across 22 challenging OVSS tasks covering a range of specialized domains. Our Seg-TTO demonstrates clear performance improvements across these establishing new state-of-the-art. Code: https://github.com/UlinduP/SegTTO.
ConnNet: A Long-Range Relation-Aware Pixel-Connectivity Network for Salient Segmentation
Salient segmentation aims to segment out attention-grabbing regions, a critical yet challenging task and the foundation of many high-level computer vision applications. It requires semantic-aware grouping of pixels into salient regions and benefits from the utilization of global multi-scale contexts to achieve good local reasoning. Previous works often address it as two-class segmentation problems utilizing complicated multi-step procedures including refinement networks and complex graphical models. We argue that semantic salient segmentation can instead be effectively resolved by reformulating it as a simple yet intuitive pixel-pair based connectivity prediction task. Following the intuition that salient objects can be naturally grouped via semantic-aware connectivity between neighboring pixels, we propose a pure Connectivity Net (ConnNet). ConnNet predicts connectivity probabilities of each pixel with its neighboring pixels by leveraging multi-level cascade contexts embedded in the image and long-range pixel relations. We investigate our approach on two tasks, namely salient object segmentation and salient instance-level segmentation, and illustrate that consistent improvements can be obtained by modeling these tasks as connectivity instead of binary segmentation tasks for a variety of network architectures. We achieve state-of-the-art performance, outperforming or being comparable to existing approaches while reducing inference time due to our less complex approach.
SA-Med2D-20M Dataset: Segment Anything in 2D Medical Imaging with 20 Million masks
Segment Anything Model (SAM) has achieved impressive results for natural image segmentation with input prompts such as points and bounding boxes. Its success largely owes to massive labeled training data. However, directly applying SAM to medical image segmentation cannot perform well because SAM lacks medical knowledge -- it does not use medical images for training. To incorporate medical knowledge into SAM, we introduce SA-Med2D-20M, a large-scale segmentation dataset of 2D medical images built upon numerous public and private datasets. It consists of 4.6 million 2D medical images and 19.7 million corresponding masks, covering almost the whole body and showing significant diversity. This paper describes all the datasets collected in SA-Med2D-20M and details how to process these datasets. Furthermore, comprehensive statistics of SA-Med2D-20M are presented to facilitate the better use of our dataset, which can help the researchers build medical vision foundation models or apply their models to downstream medical applications. We hope that the large scale and diversity of SA-Med2D-20M can be leveraged to develop medical artificial intelligence for enhancing diagnosis, medical image analysis, knowledge sharing, and education. The data with the redistribution license is publicly available at https://github.com/OpenGVLab/SAM-Med2D.
Segment Anyword: Mask Prompt Inversion for Open-Set Grounded Segmentation
Open-set image segmentation poses a significant challenge because existing methods often demand extensive training or fine-tuning and generally struggle to segment unified objects consistently across diverse text reference expressions. Motivated by this, we propose Segment Anyword, a novel training-free visual concept prompt learning approach for open-set language grounded segmentation that relies on token-level cross-attention maps from a frozen diffusion model to produce segmentation surrogates or mask prompts, which are then refined into targeted object masks. Initial prompts typically lack coherence and consistency as the complexity of the image-text increases, resulting in suboptimal mask fragments. To tackle this issue, we further introduce a novel linguistic-guided visual prompt regularization that binds and clusters visual prompts based on sentence dependency and syntactic structural information, enabling the extraction of robust, noise-tolerant mask prompts, and significant improvements in segmentation accuracy. The proposed approach is effective, generalizes across different open-set segmentation tasks, and achieves state-of-the-art results of 52.5 (+6.8 relative) mIoU on Pascal Context 59, 67.73 (+25.73 relative) cIoU on gRefCOCO, and 67.4 (+1.1 relative to fine-tuned methods) mIoU on GranDf, which is the most complex open-set grounded segmentation task in the field.
TextBite: A Historical Czech Document Dataset for Logical Page Segmentation
Logical page segmentation is an important step in document analysis, enabling better semantic representations, information retrieval, and text understanding. Previous approaches define logical segmentation either through text or geometric objects, relying on OCR or precise geometry. To avoid the need for OCR, we define the task purely as segmentation in the image domain. Furthermore, to ensure the evaluation remains unaffected by geometrical variations that do not impact text segmentation, we propose to use only foreground text pixels in the evaluation metric and disregard all background pixels. To support research in logical document segmentation, we introduce TextBite, a dataset of historical Czech documents spanning the 18th to 20th centuries, featuring diverse layouts from newspapers, dictionaries, and handwritten records. The dataset comprises 8,449 page images with 78,863 annotated segments of logically and thematically coherent text. We propose a set of baseline methods combining text region detection and relation prediction. The dataset, baselines and evaluation framework can be accessed at https://github.com/DCGM/textbite-dataset.
ASAM: Boosting Segment Anything Model with Adversarial Tuning
In the evolving landscape of computer vision, foundation models have emerged as pivotal tools, exhibiting exceptional adaptability to a myriad of tasks. Among these, the Segment Anything Model (SAM) by Meta AI has distinguished itself in image segmentation. However, SAM, like its counterparts, encounters limitations in specific niche applications, prompting a quest for enhancement strategies that do not compromise its inherent capabilities. This paper introduces ASAM, a novel methodology that amplifies SAM's performance through adversarial tuning. We harness the potential of natural adversarial examples, inspired by their successful implementation in natural language processing. By utilizing a stable diffusion model, we augment a subset (1%) of the SA-1B dataset, generating adversarial instances that are more representative of natural variations rather than conventional imperceptible perturbations. Our approach maintains the photorealism of adversarial examples and ensures alignment with original mask annotations, thereby preserving the integrity of the segmentation task. The fine-tuned ASAM demonstrates significant improvements across a diverse range of segmentation tasks without necessitating additional data or architectural modifications. The results of our extensive evaluations confirm that ASAM establishes new benchmarks in segmentation tasks, thereby contributing to the advancement of foundational models in computer vision. Our project page is in https://asam2024.github.io/.
Segment anything model 2: an application to 2D and 3D medical images
Segment Anything Model (SAM) has gained significant attention because of its ability to segment a variety of objects in images given a prompt. The recently developed SAM 2 has extended this ability to video inputs. This opens an opportunity to apply SAM to 3D images, one of the fundamental tasks in the medical imaging field. In this paper, we provide an extensive evaluation of SAM 2's ability to segment both 2D and 3D medical images. We collect 18 medical imaging datasets, including common 3D modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) as well as 2D modalities such as X-ray and ultrasound. We consider two evaluation pipelines of SAM 2: (1) multi-frame 3D segmentation, where prompts are provided to one or multiple slice(s) selected from the volume, and (2) single-frame 2D segmentation, where prompts are provided to each slice. The former is only applicable to 3D modalities, while the latter applies to both 2D and 3D modalities. We learn that SAM 2 exhibits similar performance as SAM under single-frame 2D segmentation, and has variable performance under multi-frame 3D segmentation depending on the choices of slices to annotate, the direction of the propagation, the predictions utilized during the propagation, etc.
CPP-Net: Context-aware Polygon Proposal Network for Nucleus Segmentation
Nucleus segmentation is a challenging task due to the crowded distribution and blurry boundaries of nuclei. Recent approaches represent nuclei by means of polygons to differentiate between touching and overlapping nuclei and have accordingly achieved promising performance. Each polygon is represented by a set of centroid-to-boundary distances, which are in turn predicted by features of the centroid pixel for a single nucleus. However, using the centroid pixel alone does not provide sufficient contextual information for robust prediction and thus degrades the segmentation accuracy. To handle this problem, we propose a Context-aware Polygon Proposal Network (CPP-Net) for nucleus segmentation. First, we sample a point set rather than one single pixel within each cell for distance prediction. This strategy substantially enhances contextual information and thereby improves the robustness of the prediction. Second, we propose a Confidence-based Weighting Module, which adaptively fuses the predictions from the sampled point set. Third, we introduce a novel Shape-Aware Perceptual (SAP) loss that constrains the shape of the predicted polygons. Here, the SAP loss is based on an additional network that is pre-trained by means of mapping the centroid probability map and the pixel-to-boundary distance maps to a different nucleus representation. Extensive experiments justify the effectiveness of each component in the proposed CPP-Net. Finally, CPP-Net is found to achieve state-of-the-art performance on three publicly available databases, namely DSB2018, BBBC06, and PanNuke. Code of this paper is available at \url{https://github.com/csccsccsccsc/cpp-net
Panoptic Segmentation
We propose and study a task we name panoptic segmentation (PS). Panoptic segmentation unifies the typically distinct tasks of semantic segmentation (assign a class label to each pixel) and instance segmentation (detect and segment each object instance). The proposed task requires generating a coherent scene segmentation that is rich and complete, an important step toward real-world vision systems. While early work in computer vision addressed related image/scene parsing tasks, these are not currently popular, possibly due to lack of appropriate metrics or associated recognition challenges. To address this, we propose a novel panoptic quality (PQ) metric that captures performance for all classes (stuff and things) in an interpretable and unified manner. Using the proposed metric, we perform a rigorous study of both human and machine performance for PS on three existing datasets, revealing interesting insights about the task. The aim of our work is to revive the interest of the community in a more unified view of image segmentation.
MulModSeg: Enhancing Unpaired Multi-Modal Medical Image Segmentation with Modality-Conditioned Text Embedding and Alternating Training
In the diverse field of medical imaging, automatic segmentation has numerous applications and must handle a wide variety of input domains, such as different types of Computed Tomography (CT) scans and Magnetic Resonance (MR) images. This heterogeneity challenges automatic segmentation algorithms to maintain consistent performance across different modalities due to the requirement for spatially aligned and paired images. Typically, segmentation models are trained using a single modality, which limits their ability to generalize to other types of input data without employing transfer learning techniques. Additionally, leveraging complementary information from different modalities to enhance segmentation precision often necessitates substantial modifications to popular encoder-decoder designs, such as introducing multiple branched encoding or decoding paths for each modality. In this work, we propose a simple Multi-Modal Segmentation (MulModSeg) strategy to enhance medical image segmentation across multiple modalities, specifically CT and MR. It incorporates two key designs: a modality-conditioned text embedding framework via a frozen text encoder that adds modality awareness to existing segmentation frameworks without significant structural modifications or computational overhead, and an alternating training procedure that facilitates the integration of essential features from unpaired CT and MR inputs. Through extensive experiments with both Fully Convolutional Network and Transformer-based backbones, MulModSeg consistently outperforms previous methods in segmenting abdominal multi-organ and cardiac substructures for both CT and MR modalities. The code is available in this {https://github.com/ChengyinLee/MulModSeg_2024{link}}.
BPKD: Boundary Privileged Knowledge Distillation For Semantic Segmentation
Current knowledge distillation approaches in semantic segmentation tend to adopt a holistic approach that treats all spatial locations equally. However, for dense prediction, students' predictions on edge regions are highly uncertain due to contextual information leakage, requiring higher spatial sensitivity knowledge than the body regions. To address this challenge, this paper proposes a novel approach called boundary-privileged knowledge distillation (BPKD). BPKD distills the knowledge of the teacher model's body and edges separately to the compact student model. Specifically, we employ two distinct loss functions: (i) edge loss, which aims to distinguish between ambiguous classes at the pixel level in edge regions; (ii) body loss, which utilizes shape constraints and selectively attends to the inner-semantic regions. Our experiments demonstrate that the proposed BPKD method provides extensive refinements and aggregation for edge and body regions. Additionally, the method achieves state-of-the-art distillation performance for semantic segmentation on three popular benchmark datasets, highlighting its effectiveness and generalization ability. BPKD shows consistent improvements across a diverse array of lightweight segmentation structures, including both CNNs and transformers, underscoring its architecture-agnostic adaptability. The code is available at https://github.com/AkideLiu/BPKD.
Set-of-Mark Prompting Unleashes Extraordinary Visual Grounding in GPT-4V
We present Set-of-Mark (SoM), a new visual prompting method, to unleash the visual grounding abilities of large multimodal models (LMMs), such as GPT-4V. As illustrated in Fig. 1 (right), we employ off-the-shelf interactive segmentation models, such as SAM, to partition an image into regions at different levels of granularity, and overlay these regions with a set of marks e.g., alphanumerics, masks, boxes. Using the marked image as input, GPT-4V can answer the questions that require visual grounding. We perform a comprehensive empirical study to validate the effectiveness of SoM on a wide range of fine-grained vision and multimodal tasks. For example, our experiments show that GPT-4V with SoM outperforms the state-of-the-art fully-finetuned referring segmentation model on RefCOCOg in a zero-shot setting.
SLiMe: Segment Like Me
Significant strides have been made using large vision-language models, like Stable Diffusion (SD), for a variety of downstream tasks, including image editing, image correspondence, and 3D shape generation. Inspired by these advancements, we explore leveraging these extensive vision-language models for segmenting images at any desired granularity using as few as one annotated sample by proposing SLiMe. SLiMe frames this problem as an optimization task. Specifically, given a single training image and its segmentation mask, we first extract attention maps, including our novel "weighted accumulated self-attention map" from the SD prior. Then, using the extracted attention maps, the text embeddings of Stable Diffusion are optimized such that, each of them, learn about a single segmented region from the training image. These learned embeddings then highlight the segmented region in the attention maps, which in turn can then be used to derive the segmentation map. This enables SLiMe to segment any real-world image during inference with the granularity of the segmented region in the training image, using just one example. Moreover, leveraging additional training data when available, i.e. few-shot, improves the performance of SLiMe. We carried out a knowledge-rich set of experiments examining various design factors and showed that SLiMe outperforms other existing one-shot and few-shot segmentation methods.
PEM: Prototype-based Efficient MaskFormer for Image Segmentation
Recent transformer-based architectures have shown impressive results in the field of image segmentation. Thanks to their flexibility, they obtain outstanding performance in multiple segmentation tasks, such as semantic and panoptic, under a single unified framework. To achieve such impressive performance, these architectures employ intensive operations and require substantial computational resources, which are often not available, especially on edge devices. To fill this gap, we propose Prototype-based Efficient MaskFormer (PEM), an efficient transformer-based architecture that can operate in multiple segmentation tasks. PEM proposes a novel prototype-based cross-attention which leverages the redundancy of visual features to restrict the computation and improve the efficiency without harming the performance. In addition, PEM introduces an efficient multi-scale feature pyramid network, capable of extracting features that have high semantic content in an efficient way, thanks to the combination of deformable convolutions and context-based self-modulation. We benchmark the proposed PEM architecture on two tasks, semantic and panoptic segmentation, evaluated on two different datasets, Cityscapes and ADE20K. PEM demonstrates outstanding performance on every task and dataset, outperforming task-specific architectures while being comparable and even better than computationally-expensive baselines.
PolyMaX: General Dense Prediction with Mask Transformer
Dense prediction tasks, such as semantic segmentation, depth estimation, and surface normal prediction, can be easily formulated as per-pixel classification (discrete outputs) or regression (continuous outputs). This per-pixel prediction paradigm has remained popular due to the prevalence of fully convolutional networks. However, on the recent frontier of segmentation task, the community has been witnessing a shift of paradigm from per-pixel prediction to cluster-prediction with the emergence of transformer architectures, particularly the mask transformers, which directly predicts a label for a mask instead of a pixel. Despite this shift, methods based on the per-pixel prediction paradigm still dominate the benchmarks on the other dense prediction tasks that require continuous outputs, such as depth estimation and surface normal prediction. Motivated by the success of DORN and AdaBins in depth estimation, achieved by discretizing the continuous output space, we propose to generalize the cluster-prediction based method to general dense prediction tasks. This allows us to unify dense prediction tasks with the mask transformer framework. Remarkably, the resulting model PolyMaX demonstrates state-of-the-art performance on three benchmarks of NYUD-v2 dataset. We hope our simple yet effective design can inspire more research on exploiting mask transformers for more dense prediction tasks. Code and model will be made available.
CLUSTSEG: Clustering for Universal Segmentation
We present CLUSTSEG, a general, transformer-based framework that tackles different image segmentation tasks (i.e., superpixel, semantic, instance, and panoptic) through a unified neural clustering scheme. Regarding queries as cluster centers, CLUSTSEG is innovative in two aspects:1) cluster centers are initialized in heterogeneous ways so as to pointedly address task-specific demands (e.g., instance- or category-level distinctiveness), yet without modifying the architecture; and 2) pixel-cluster assignment, formalized in a cross-attention fashion, is alternated with cluster center update, yet without learning additional parameters. These innovations closely link CLUSTSEG to EM clustering and make it a transparent and powerful framework that yields superior results across the above segmentation tasks.
Multi-granularity Interaction Simulation for Unsupervised Interactive Segmentation
Interactive segmentation enables users to segment as needed by providing cues of objects, which introduces human-computer interaction for many fields, such as image editing and medical image analysis. Typically, massive and expansive pixel-level annotations are spent to train deep models by object-oriented interactions with manually labeled object masks. In this work, we reveal that informative interactions can be made by simulation with semantic-consistent yet diverse region exploration in an unsupervised paradigm. Concretely, we introduce a Multi-granularity Interaction Simulation (MIS) approach to open up a promising direction for unsupervised interactive segmentation. Drawing on the high-quality dense features produced by recent self-supervised models, we propose to gradually merge patches or regions with similar features to form more extensive regions and thus, every merged region serves as a semantic-meaningful multi-granularity proposal. By randomly sampling these proposals and simulating possible interactions based on them, we provide meaningful interaction at multiple granularities to teach the model to understand interactions. Our MIS significantly outperforms non-deep learning unsupervised methods and is even comparable with some previous deep-supervised methods without any annotation.
You Actually Look Twice At it (YALTAi): using an object detection approach instead of region segmentation within the Kraken engine
Layout Analysis (the identification of zones and their classification) is the first step along line segmentation in Optical Character Recognition and similar tasks. The ability of identifying main body of text from marginal text or running titles makes the difference between extracting the work full text of a digitized book and noisy outputs. We show that most segmenters focus on pixel classification and that polygonization of this output has not been used as a target for the latest competition on historical document (ICDAR 2017 and onwards), despite being the focus in the early 2010s. We propose to shift, for efficiency, the task from a pixel classification-based polygonization to an object detection using isothetic rectangles. We compare the output of Kraken and YOLOv5 in terms of segmentation and show that the later severely outperforms the first on small datasets (1110 samples and below). We release two datasets for training and evaluation on historical documents as well as a new package, YALTAi, which injects YOLOv5 in the segmentation pipeline of Kraken 4.1.
Ref-AVS: Refer and Segment Objects in Audio-Visual Scenes
Traditional reference segmentation tasks have predominantly focused on silent visual scenes, neglecting the integral role of multimodal perception and interaction in human experiences. In this work, we introduce a novel task called Reference Audio-Visual Segmentation (Ref-AVS), which seeks to segment objects within the visual domain based on expressions containing multimodal cues. Such expressions are articulated in natural language forms but are enriched with multimodal cues, including audio and visual descriptions. To facilitate this research, we construct the first Ref-AVS benchmark, which provides pixel-level annotations for objects described in corresponding multimodal-cue expressions. To tackle the Ref-AVS task, we propose a new method that adequately utilizes multimodal cues to offer precise segmentation guidance. Finally, we conduct quantitative and qualitative experiments on three test subsets to compare our approach with existing methods from related tasks. The results demonstrate the effectiveness of our method, highlighting its capability to precisely segment objects using multimodal-cue expressions. Dataset is available at https://gewu-lab.github.io/Ref-AVS{https://gewu-lab.github.io/Ref-AVS}.
Information-Theoretic Segmentation by Inpainting Error Maximization
We study image segmentation from an information-theoretic perspective, proposing a novel adversarial method that performs unsupervised segmentation by partitioning images into maximally independent sets. More specifically, we group image pixels into foreground and background, with the goal of minimizing predictability of one set from the other. An easily computed loss drives a greedy search process to maximize inpainting error over these partitions. Our method does not involve training deep networks, is computationally cheap, class-agnostic, and even applicable in isolation to a single unlabeled image. Experiments demonstrate that it achieves a new state-of-the-art in unsupervised segmentation quality, while being substantially faster and more general than competing approaches.
Pixel-Level Reasoning Segmentation via Multi-turn Conversations
Existing visual perception systems focus on region-level segmentation in single-turn dialogues, relying on complex and explicit query instructions. Such systems cannot reason at the pixel level and comprehend dynamic user intent that changes over interaction. Our work tackles this issue by introducing a novel task, Pixel-level Reasoning Segmentation (Pixel-level RS) based on multi-turn conversations, tracking evolving user intent via multi-turn interactions for fine-grained segmentation. To establish a benchmark for this novel task, we build a Pixel-level ReasonIng Segmentation Dataset Based on Multi-Turn Conversations (PRIST), comprising 24k utterances from 8.3k multi-turn conversational scenarios with segmentation targets. Building on PRIST, we further propose MIRAS, a Multi-turn Interactive ReAsoning Segmentation framework, integrates pixel-level segmentation with robust multi-turn conversation understanding, generating pixel-grounded explanations aligned with user intent. The PRIST dataset and MIRSA framework fill the gap in pixel-level reasoning segmentation. Experimental results on the PRIST dataset demonstrate that our method outperforms current segmentation-specific baselines in terms of segmentation and LLM-based reasoning metrics. The code and data are available at: https://github.com/ccccai239/PixelRIST.
SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary Semantic Segmentation
Recently, the contrastive language-image pre-training, e.g., CLIP, has demonstrated promising results on various downstream tasks. The pre-trained model can capture enriched visual concepts for images by learning from a large scale of text-image data. However, transferring the learned visual knowledge to open-vocabulary semantic segmentation is still under-explored. In this paper, we propose a CLIP-based model named SegCLIP for the topic of open-vocabulary segmentation in an annotation-free manner. The SegCLIP achieves segmentation based on ViT and the main idea is to gather patches with learnable centers to semantic regions through training on text-image pairs. The gathering operation can dynamically capture the semantic groups, which can be used to generate the final segmentation results. We further propose a reconstruction loss on masked patches and a superpixel-based KL loss with pseudo-labels to enhance the visual representation. Experimental results show that our model achieves comparable or superior segmentation accuracy on the PASCAL VOC 2012 (+0.3% mIoU), PASCAL Context (+2.3% mIoU), and COCO (+2.2% mIoU) compared with baselines. We release the code at https://github.com/ArrowLuo/SegCLIP.
Open-vocabulary Panoptic Segmentation with Embedding Modulation
Open-vocabulary image segmentation is attracting increasing attention due to its critical applications in the real world. Traditional closed-vocabulary segmentation methods are not able to characterize novel objects, whereas several recent open-vocabulary attempts obtain unsatisfactory results, i.e., notable performance reduction on the closed vocabulary and massive demand for extra data. To this end, we propose OPSNet, an omnipotent and data-efficient framework for Open-vocabulary Panoptic Segmentation. Specifically, the exquisitely designed Embedding Modulation module, together with several meticulous components, enables adequate embedding enhancement and information exchange between the segmentation model and the visual-linguistic well-aligned CLIP encoder, resulting in superior segmentation performance under both open- and closed-vocabulary settings with much fewer need of additional data. Extensive experimental evaluations are conducted across multiple datasets (e.g., COCO, ADE20K, Cityscapes, and PascalContext) under various circumstances, where the proposed OPSNet achieves state-of-the-art results, which demonstrates the effectiveness and generality of the proposed approach. The code and trained models will be made publicly available.
Unsegment Anything by Simulating Deformation
Foundation segmentation models, while powerful, pose a significant risk: they enable users to effortlessly extract any objects from any digital content with a single click, potentially leading to copyright infringement or malicious misuse. To mitigate this risk, we introduce a new task "Anything Unsegmentable" to grant any image "the right to be unsegmented". The ambitious pursuit of the task is to achieve highly transferable adversarial attacks against all prompt-based segmentation models, regardless of model parameterizations and prompts. We highlight the non-transferable and heterogeneous nature of prompt-specific adversarial noises. Our approach focuses on disrupting image encoder features to achieve prompt-agnostic attacks. Intriguingly, targeted feature attacks exhibit better transferability compared to untargeted ones, suggesting the optimal update direction aligns with the image manifold. Based on the observations, we design a novel attack named Unsegment Anything by Simulating Deformation (UAD). Our attack optimizes a differentiable deformation function to create a target deformed image, which alters structural information while preserving achievable feature distance by adversarial example. Extensive experiments verify the effectiveness of our approach, compromising a variety of promptable segmentation models with different architectures and prompt interfaces. We release the code at https://github.com/jiahaolu97/anything-unsegmentable.
CV 3315 Is All You Need : Semantic Segmentation Competition
This competition focus on Urban-Sense Segmentation based on the vehicle camera view. Class highly unbalanced Urban-Sense images dataset challenge the existing solutions and further studies. Deep Conventional neural network-based semantic segmentation methods such as encoder-decoder architecture and multi-scale and pyramid-based approaches become flexible solutions applicable to real-world applications. In this competition, we mainly review the literature and conduct experiments on transformer-driven methods especially SegFormer, to achieve an optimal trade-off between performance and efficiency. For example, SegFormer-B0 achieved 74.6% mIoU with the smallest FLOPS, 15.6G, and the largest model, SegFormer- B5 archived 80.2% mIoU. According to multiple factors, including individual case failure analysis, individual class performance, training pressure and efficiency estimation, the final candidate model for the competition is SegFormer- B2 with 50.6 GFLOPS and 78.5% mIoU evaluated on the testing set. Checkout our code implementation at https://vmv.re/cv3315.
SegVol: Universal and Interactive Volumetric Medical Image Segmentation
Precise image segmentation provides clinical study with meaningful and well-structured information. Despite the remarkable progress achieved in medical image segmentation, there is still an absence of foundation segmentation model that can segment a wide range of anatomical categories with easy user interaction. In this paper, we propose a universal and interactive volumetric medical image segmentation model, named SegVol. By training on 90k unlabeled Computed Tomography (CT) volumes and 6k labeled CTs, this foundation model supports the segmentation of over 200 anatomical categories using semantic and spatial prompts. Extensive experiments verify that SegVol outperforms the state of the art by a large margin on multiple segmentation benchmarks. Notably, on three challenging lesion datasets, our method achieves around 20% higher Dice score than nnU-Net. The model and data are publicly available at: https://github.com/BAAI-DCAI/SegVol.
Semantic Amodal Segmentation
Common visual recognition tasks such as classification, object detection, and semantic segmentation are rapidly reaching maturity, and given the recent rate of progress, it is not unreasonable to conjecture that techniques for many of these problems will approach human levels of performance in the next few years. In this paper we look to the future: what is the next frontier in visual recognition? We offer one possible answer to this question. We propose a detailed image annotation that captures information beyond the visible pixels and requires complex reasoning about full scene structure. Specifically, we create an amodal segmentation of each image: the full extent of each region is marked, not just the visible pixels. Annotators outline and name all salient regions in the image and specify a partial depth order. The result is a rich scene structure, including visible and occluded portions of each region, figure-ground edge information, semantic labels, and object overlap. We create two datasets for semantic amodal segmentation. First, we label 500 images in the BSDS dataset with multiple annotators per image, allowing us to study the statistics of human annotations. We show that the proposed full scene annotation is surprisingly consistent between annotators, including for regions and edges. Second, we annotate 5000 images from COCO. This larger dataset allows us to explore a number of algorithmic ideas for amodal segmentation and depth ordering. We introduce novel metrics for these tasks, and along with our strong baselines, define concrete new challenges for the community.
Segment3D: Learning Fine-Grained Class-Agnostic 3D Segmentation without Manual Labels
Current 3D scene segmentation methods are heavily dependent on manually annotated 3D training datasets. Such manual annotations are labor-intensive, and often lack fine-grained details. Importantly, models trained on this data typically struggle to recognize object classes beyond the annotated classes, i.e., they do not generalize well to unseen domains and require additional domain-specific annotations. In contrast, 2D foundation models demonstrate strong generalization and impressive zero-shot abilities, inspiring us to incorporate these characteristics from 2D models into 3D models. Therefore, we explore the use of image segmentation foundation models to automatically generate training labels for 3D segmentation. We propose Segment3D, a method for class-agnostic 3D scene segmentation that produces high-quality 3D segmentation masks. It improves over existing 3D segmentation models (especially on fine-grained masks), and enables easily adding new training data to further boost the segmentation performance -- all without the need for manual training labels.
CascadePSP: Toward Class-Agnostic and Very High-Resolution Segmentation via Global and Local Refinement
State-of-the-art semantic segmentation methods were almost exclusively trained on images within a fixed resolution range. These segmentations are inaccurate for very high-resolution images since using bicubic upsampling of low-resolution segmentation does not adequately capture high-resolution details along object boundaries. In this paper, we propose a novel approach to address the high-resolution segmentation problem without using any high-resolution training data. The key insight is our CascadePSP network which refines and corrects local boundaries whenever possible. Although our network is trained with low-resolution segmentation data, our method is applicable to any resolution even for very high-resolution images larger than 4K. We present quantitative and qualitative studies on different datasets to show that CascadePSP can reveal pixel-accurate segmentation boundaries using our novel refinement module without any finetuning. Thus, our method can be regarded as class-agnostic. Finally, we demonstrate the application of our model to scene parsing in multi-class segmentation.
SEGIC: Unleashing the Emergent Correspondence for In-Context Segmentation
In-context segmentation aims at segmenting novel images using a few labeled example images, termed as "in-context examples", exploring content similarities between examples and the target. The resulting models can be generalized seamlessly to novel segmentation tasks, significantly reducing the labeling and training costs compared with conventional pipelines. However, in-context segmentation is more challenging than classic ones due to its meta-learning nature, requiring the model to learn segmentation rules conditioned on a few samples, not just the segmentation. Unlike previous work with ad-hoc or non-end-to-end designs, we propose SEGIC, an end-to-end segment-in-context framework built upon a single vision foundation model (VFM). In particular, SEGIC leverages the emergent correspondence within VFM to capture dense relationships between target images and in-context samples. As such, information from in-context samples is then extracted into three types of instructions, i.e. geometric, visual, and meta instructions, serving as explicit conditions for the final mask prediction. SEGIC is a straightforward yet effective approach that yields state-of-the-art performance on one-shot segmentation benchmarks. Notably, SEGIC can be easily generalized to diverse tasks, including video object segmentation and open-vocabulary segmentation. Code will be available at https://github.com/MengLcool/SEGIC.
Open-Vocabulary SAM: Segment and Recognize Twenty-thousand Classes Interactively
The CLIP and Segment Anything Model (SAM) are remarkable vision foundation models (VFMs). SAM excels in segmentation tasks across diverse domains, while CLIP is renowned for its zero-shot recognition capabilities. This paper presents an in-depth exploration of integrating these two models into a unified framework. Specifically, we introduce the Open-Vocabulary SAM, a SAM-inspired model designed for simultaneous interactive segmentation and recognition, leveraging two unique knowledge transfer modules: SAM2CLIP and CLIP2SAM. The former adapts SAM's knowledge into the CLIP via distillation and learnable transformer adapters, while the latter transfers CLIP knowledge into SAM, enhancing its recognition capabilities. Extensive experiments on various datasets and detectors show the effectiveness of Open-Vocabulary SAM in both segmentation and recognition tasks, significantly outperforming the naive baselines of simply combining SAM and CLIP. Furthermore, aided with image classification data training, our method can segment and recognize approximately 22,000 classes.
ViCaS: A Dataset for Combining Holistic and Pixel-level Video Understanding using Captions with Grounded Segmentation
Recent advances in multimodal large language models (MLLMs) have expanded research in video understanding, primarily focusing on high-level tasks such as video captioning and question-answering. Meanwhile, a smaller body of work addresses dense, pixel-precise segmentation tasks, which typically involve category-guided or referral-based object segmentation. Although both research directions are essential for developing models with human-level video comprehension, they have largely evolved separately, with distinct benchmarks and architectures. This paper aims to unify these efforts by introducing ViCaS, a new dataset containing thousands of challenging videos, each annotated with detailed, human-written captions and temporally consistent, pixel-accurate masks for multiple objects with phrase grounding. Our benchmark evaluates models on both holistic/high-level understanding and language-guided, pixel-precise segmentation. We also present carefully validated evaluation measures and propose an effective model architecture that can tackle our benchmark. Project page: https://ali2500.github.io/vicas-project/
OneFormer: One Transformer to Rule Universal Image Segmentation
Universal Image Segmentation is not a new concept. Past attempts to unify image segmentation in the last decades include scene parsing, panoptic segmentation, and, more recently, new panoptic architectures. However, such panoptic architectures do not truly unify image segmentation because they need to be trained individually on the semantic, instance, or panoptic segmentation to achieve the best performance. Ideally, a truly universal framework should be trained only once and achieve SOTA performance across all three image segmentation tasks. To that end, we propose OneFormer, a universal image segmentation framework that unifies segmentation with a multi-task train-once design. We first propose a task-conditioned joint training strategy that enables training on ground truths of each domain (semantic, instance, and panoptic segmentation) within a single multi-task training process. Secondly, we introduce a task token to condition our model on the task at hand, making our model task-dynamic to support multi-task training and inference. Thirdly, we propose using a query-text contrastive loss during training to establish better inter-task and inter-class distinctions. Notably, our single OneFormer model outperforms specialized Mask2Former models across all three segmentation tasks on ADE20k, CityScapes, and COCO, despite the latter being trained on each of the three tasks individually with three times the resources. With new ConvNeXt and DiNAT backbones, we observe even more performance improvement. We believe OneFormer is a significant step towards making image segmentation more universal and accessible. To support further research, we open-source our code and models at https://github.com/SHI-Labs/OneFormer
WISE-TTT:Worldwide Information Segmentation Enhancement
Video multi-target segmentation remains a major challenge in long sequences, mainly due to the inherent limitations of existing architectures in capturing global temporal dependencies. We introduce WISE-TTT, a synergistic architecture integrating Test-Time Training (TTT) mechanisms with the Transformer architecture through co-design. The TTT layer systematically compresses historical temporal data to generate hidden states containing worldwide information(Lossless memory to maintain long contextual integrity), while achieving multi-stage contextual aggregation through splicing. Crucially, our framework provides the first empirical validation that implementing worldwide information across multiple network layers is essential for optimal dependency utilization.Ablation studies show TTT modules at high-level features boost global modeling. This translates to 3.1% accuracy improvement(J&F metric) on Davis2017 long-term benchmarks -- the first proof of hierarchical context superiority in video segmentation. We provide the first systematic evidence that worldwide information critically impacts segmentation performance.
SAM-Med2D
The Segment Anything Model (SAM) represents a state-of-the-art research advancement in natural image segmentation, achieving impressive results with input prompts such as points and bounding boxes. However, our evaluation and recent research indicate that directly applying the pretrained SAM to medical image segmentation does not yield satisfactory performance. This limitation primarily arises from significant domain gap between natural images and medical images. To bridge this gap, we introduce SAM-Med2D, the most comprehensive studies on applying SAM to medical 2D images. Specifically, we first collect and curate approximately 4.6M images and 19.7M masks from public and private datasets, constructing a large-scale medical image segmentation dataset encompassing various modalities and objects. Then, we comprehensively fine-tune SAM on this dataset and turn it into SAM-Med2D. Unlike previous methods that only adopt bounding box or point prompts as interactive segmentation approach, we adapt SAM to medical image segmentation through more comprehensive prompts involving bounding boxes, points, and masks. We additionally fine-tune the encoder and decoder of the original SAM to obtain a well-performed SAM-Med2D, leading to the most comprehensive fine-tuning strategies to date. Finally, we conducted a comprehensive evaluation and analysis to investigate the performance of SAM-Med2D in medical image segmentation across various modalities, anatomical structures, and organs. Concurrently, we validated the generalization capability of SAM-Med2D on 9 datasets from MICCAI 2023 challenge. Overall, our approach demonstrated significantly superior performance and generalization capability compared to SAM.
Self-Calibrated Cross Attention Network for Few-Shot Segmentation
The key to the success of few-shot segmentation (FSS) lies in how to effectively utilize support samples. Most solutions compress support foreground (FG) features into prototypes, but lose some spatial details. Instead, others use cross attention to fuse query features with uncompressed support FG. Query FG could be fused with support FG, however, query background (BG) cannot find matched BG features in support FG, yet inevitably integrates dissimilar features. Besides, as both query FG and BG are combined with support FG, they get entangled, thereby leading to ineffective segmentation. To cope with these issues, we design a self-calibrated cross attention (SCCA) block. For efficient patch-based attention, query and support features are firstly split into patches. Then, we design a patch alignment module to align each query patch with its most similar support patch for better cross attention. Specifically, SCCA takes a query patch as Q, and groups the patches from the same query image and the aligned patches from the support image as K&V. In this way, the query BG features are fused with matched BG features (from query patches), and thus the aforementioned issues will be mitigated. Moreover, when calculating SCCA, we design a scaled-cosine mechanism to better utilize the support features for similarity calculation. Extensive experiments conducted on PASCAL-5^i and COCO-20^i demonstrate the superiority of our model, e.g., the mIoU score under 5-shot setting on COCO-20^i is 5.6%+ better than previous state-of-the-arts. The code is available at https://github.com/Sam1224/SCCAN.
EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models
Diffusion models have recently received increasing research attention for their remarkable transfer abilities in semantic segmentation tasks. However, generating fine-grained segmentation masks with diffusion models often requires additional training on annotated datasets, leaving it unclear to what extent pre-trained diffusion models alone understand the semantic relations of their generated images. To address this question, we leverage the semantic knowledge extracted from Stable Diffusion (SD) and aim to develop an image segmentor capable of generating fine-grained segmentation maps without any additional training. The primary difficulty stems from the fact that semantically meaningful feature maps typically exist only in the spatially lower-dimensional layers, which poses a challenge in directly extracting pixel-level semantic relations from these feature maps. To overcome this issue, our framework identifies semantic correspondences between image pixels and spatial locations of low-dimensional feature maps by exploiting SD's generation process and utilizes them for constructing image-resolution segmentation maps. In extensive experiments, the produced segmentation maps are demonstrated to be well delineated and capture detailed parts of the images, indicating the existence of highly accurate pixel-level semantic knowledge in diffusion models.
FrozenSeg: Harmonizing Frozen Foundation Models for Open-Vocabulary Segmentation
Open-vocabulary segmentation poses significant challenges, as it requires segmenting and recognizing objects across an open set of categories in unconstrained environments. Building on the success of powerful vision-language (ViL) foundation models, such as CLIP, recent efforts sought to harness their zero-short capabilities to recognize unseen categories. Despite notable performance improvements, these models still encounter the critical issue of generating precise mask proposals for unseen categories and scenarios, resulting in inferior segmentation performance eventually. To address this challenge, we introduce a novel approach, FrozenSeg, designed to integrate spatial knowledge from a localization foundation model (e.g., SAM) and semantic knowledge extracted from a ViL model (e.g., CLIP), in a synergistic framework. Taking the ViL model's visual encoder as the feature backbone, we inject the space-aware feature into the learnable queries and CLIP features within the transformer decoder. In addition, we devise a mask proposal ensemble strategy for further improving the recall rate and mask quality. To fully exploit pre-trained knowledge while minimizing training overhead, we freeze both foundation models, focusing optimization efforts solely on a lightweight transformer decoder for mask proposal generation-the performance bottleneck. Extensive experiments demonstrate that FrozenSeg advances state-of-the-art results across various segmentation benchmarks, trained exclusively on COCO panoptic data, and tested in a zero-shot manner. Code is available at https://github.com/chenxi52/FrozenSeg.
RbA: Segmenting Unknown Regions Rejected by All
Standard semantic segmentation models owe their success to curated datasets with a fixed set of semantic categories, without contemplating the possibility of identifying unknown objects from novel categories. Existing methods in outlier detection suffer from a lack of smoothness and objectness in their predictions, due to limitations of the per-pixel classification paradigm. Furthermore, additional training for detecting outliers harms the performance of known classes. In this paper, we explore another paradigm with region-level classification to better segment unknown objects. We show that the object queries in mask classification tend to behave like one \vs all classifiers. Based on this finding, we propose a novel outlier scoring function called RbA by defining the event of being an outlier as being rejected by all known classes. Our extensive experiments show that mask classification improves the performance of the existing outlier detection methods, and the best results are achieved with the proposed RbA. We also propose an objective to optimize RbA using minimal outlier supervision. Further fine-tuning with outliers improves the unknown performance, and unlike previous methods, it does not degrade the inlier performance.
MedicoSAM: Towards foundation models for medical image segmentation
Medical image segmentation is an important analysis task in clinical practice and research. Deep learning has massively advanced the field, but current approaches are mostly based on models trained for a specific task. Training such models or adapting them to a new condition is costly due to the need for (manually) labeled data. The emergence of vision foundation models, especially Segment Anything, offers a path to universal segmentation for medical images, overcoming these issues. Here, we study how to improve Segment Anything for medical images by comparing different finetuning strategies on a large and diverse dataset. We evaluate the finetuned models on a wide range of interactive and (automatic) semantic segmentation tasks. We find that the performance can be clearly improved for interactive segmentation. However, semantic segmentation does not benefit from pretraining on medical images. Our best model, MedicoSAM, is publicly available at https://github.com/computational-cell-analytics/medico-sam. We show that it is compatible with existing tools for data annotation and believe that it will be of great practical value.
PolyFormer: Referring Image Segmentation as Sequential Polygon Generation
In this work, instead of directly predicting the pixel-level segmentation masks, the problem of referring image segmentation is formulated as sequential polygon generation, and the predicted polygons can be later converted into segmentation masks. This is enabled by a new sequence-to-sequence framework, Polygon Transformer (PolyFormer), which takes a sequence of image patches and text query tokens as input, and outputs a sequence of polygon vertices autoregressively. For more accurate geometric localization, we propose a regression-based decoder, which predicts the precise floating-point coordinates directly, without any coordinate quantization error. In the experiments, PolyFormer outperforms the prior art by a clear margin, e.g., 5.40% and 4.52% absolute improvements on the challenging RefCOCO+ and RefCOCOg datasets. It also shows strong generalization ability when evaluated on the referring video segmentation task without fine-tuning, e.g., achieving competitive 61.5% J&F on the Ref-DAVIS17 dataset.
Open-RGBT: Open-vocabulary RGB-T Zero-shot Semantic Segmentation in Open-world Environments
Semantic segmentation is a critical technique for effective scene understanding. Traditional RGB-T semantic segmentation models often struggle to generalize across diverse scenarios due to their reliance on pretrained models and predefined categories. Recent advancements in Visual Language Models (VLMs) have facilitated a shift from closed-set to open-vocabulary semantic segmentation methods. However, these models face challenges in dealing with intricate scenes, primarily due to the heterogeneity between RGB and thermal modalities. To address this gap, we present Open-RGBT, a novel open-vocabulary RGB-T semantic segmentation model. Specifically, we obtain instance-level detection proposals by incorporating visual prompts to enhance category understanding. Additionally, we employ the CLIP model to assess image-text similarity, which helps correct semantic consistency and mitigates ambiguities in category identification. Empirical evaluations demonstrate that Open-RGBT achieves superior performance in diverse and challenging real-world scenarios, even in the wild, significantly advancing the field of RGB-T semantic segmentation.
Segment Any Motion in Videos
Moving object segmentation is a crucial task for achieving a high-level understanding of visual scenes and has numerous downstream applications. Humans can effortlessly segment moving objects in videos. Previous work has largely relied on optical flow to provide motion cues; however, this approach often results in imperfect predictions due to challenges such as partial motion, complex deformations, motion blur and background distractions. We propose a novel approach for moving object segmentation that combines long-range trajectory motion cues with DINO-based semantic features and leverages SAM2 for pixel-level mask densification through an iterative prompting strategy. Our model employs Spatio-Temporal Trajectory Attention and Motion-Semantic Decoupled Embedding to prioritize motion while integrating semantic support. Extensive testing on diverse datasets demonstrates state-of-the-art performance, excelling in challenging scenarios and fine-grained segmentation of multiple objects. Our code is available at https://motion-seg.github.io/.
Segment Anything in Medical Images and Videos: Benchmark and Deployment
Recent advances in segmentation foundation models have enabled accurate and efficient segmentation across a wide range of natural images and videos, but their utility to medical data remains unclear. In this work, we first present a comprehensive benchmarking of the Segment Anything Model 2 (SAM2) across 11 medical image modalities and videos and point out its strengths and weaknesses by comparing it to SAM1 and MedSAM. Then, we develop a transfer learning pipeline and demonstrate SAM2 can be quickly adapted to medical domain by fine-tuning. Furthermore, we implement SAM2 as a 3D slicer plugin and Gradio API for efficient 3D image and video segmentation. The code has been made publicly available at https://github.com/bowang-lab/MedSAM.
SegPrompt: Boosting Open-world Segmentation via Category-level Prompt Learning
Current closed-set instance segmentation models rely on pre-defined class labels for each mask during training and evaluation, largely limiting their ability to detect novel objects. Open-world instance segmentation (OWIS) models address this challenge by detecting unknown objects in a class-agnostic manner. However, previous OWIS approaches completely erase category information during training to keep the model's ability to generalize to unknown objects. In this work, we propose a novel training mechanism termed SegPrompt that uses category information to improve the model's class-agnostic segmentation ability for both known and unknown categories. In addition, the previous OWIS training setting exposes the unknown classes to the training set and brings information leakage, which is unreasonable in the real world. Therefore, we provide a new open-world benchmark closer to a real-world scenario by dividing the dataset classes into known-seen-unseen parts. For the first time, we focus on the model's ability to discover objects that never appear in the training set images. Experiments show that SegPrompt can improve the overall and unseen detection performance by 5.6% and 6.1% in AR on our new benchmark without affecting the inference efficiency. We further demonstrate the effectiveness of our method on existing cross-dataset transfer and strongly supervised settings, leading to 5.5% and 12.3% relative improvement.
UrbanSAM: Learning Invariance-Inspired Adapters for Segment Anything Models in Urban Construction
Object extraction and segmentation from remote sensing (RS) images is a critical yet challenging task in urban environment monitoring. Urban morphology is inherently complex, with irregular objects of diverse shapes and varying scales. These challenges are amplified by heterogeneity and scale disparities across RS data sources, including sensors, platforms, and modalities, making accurate object segmentation particularly demanding. While the Segment Anything Model (SAM) has shown significant potential in segmenting complex scenes, its performance in handling form-varying objects remains limited due to manual-interactive prompting. To this end, we propose UrbanSAM, a customized version of SAM specifically designed to analyze complex urban environments while tackling scaling effects from remotely sensed observations. Inspired by multi-resolution analysis (MRA) theory, UrbanSAM incorporates a novel learnable prompter equipped with a Uscaling-Adapter that adheres to the invariance criterion, enabling the model to capture multiscale contextual information of objects and adapt to arbitrary scale variations with theoretical guarantees. Furthermore, features from the Uscaling-Adapter and the trunk encoder are aligned through a masked cross-attention operation, allowing the trunk encoder to inherit the adapter's multiscale aggregation capability. This synergy enhances the segmentation performance, resulting in more powerful and accurate outputs, supported by the learned adapter. Extensive experimental results demonstrate the flexibility and superior segmentation performance of the proposed UrbanSAM on a global-scale dataset, encompassing scale-varying urban objects such as buildings, roads, and water.
DPSeg: Dual-Prompt Cost Volume Learning for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation aims to segment images into distinct semantic regions for both seen and unseen categories at the pixel level. Current methods utilize text embeddings from pre-trained vision-language models like CLIP but struggle with the inherent domain gap between image and text embeddings, even after extensive alignment during training. Additionally, relying solely on deep text-aligned features limits shallow-level feature guidance, which is crucial for detecting small objects and fine details, ultimately reducing segmentation accuracy. To address these limitations, we propose a dual prompting framework, DPSeg, for this task. Our approach combines dual-prompt cost volume generation, a cost volume-guided decoder, and a semantic-guided prompt refinement strategy that leverages our dual prompting scheme to mitigate alignment issues in visual prompt generation. By incorporating visual embeddings from a visual prompt encoder, our approach reduces the domain gap between text and image embeddings while providing multi-level guidance through shallow features. Extensive experiments demonstrate that our method significantly outperforms existing state-of-the-art approaches on multiple public datasets.
Exploring Open-Vocabulary Semantic Segmentation without Human Labels
Semantic segmentation is a crucial task in computer vision that involves segmenting images into semantically meaningful regions at the pixel level. However, existing approaches often rely on expensive human annotations as supervision for model training, limiting their scalability to large, unlabeled datasets. To address this challenge, we present ZeroSeg, a novel method that leverages the existing pretrained vision-language (VL) model (e.g. CLIP) to train open-vocabulary zero-shot semantic segmentation models. Although acquired extensive knowledge of visual concepts, it is non-trivial to exploit knowledge from these VL models to the task of semantic segmentation, as they are usually trained at an image level. ZeroSeg overcomes this by distilling the visual concepts learned by VL models into a set of segment tokens, each summarizing a localized region of the target image. We evaluate ZeroSeg on multiple popular segmentation benchmarks, including PASCAL VOC 2012, PASCAL Context, and COCO, in a zero-shot manner (i.e., no training or adaption on target segmentation datasets). Our approach achieves state-of-the-art performance when compared to other zero-shot segmentation methods under the same training data, while also performing competitively compared to strongly supervised methods. Finally, we also demonstrated the effectiveness of ZeroSeg on open-vocabulary segmentation, through both human studies and qualitative visualizations.
OmniSeg3D: Omniversal 3D Segmentation via Hierarchical Contrastive Learning
Towards holistic understanding of 3D scenes, a general 3D segmentation method is needed that can segment diverse objects without restrictions on object quantity or categories, while also reflecting the inherent hierarchical structure. To achieve this, we propose OmniSeg3D, an omniversal segmentation method aims for segmenting anything in 3D all at once. The key insight is to lift multi-view inconsistent 2D segmentations into a consistent 3D feature field through a hierarchical contrastive learning framework, which is accomplished by two steps. Firstly, we design a novel hierarchical representation based on category-agnostic 2D segmentations to model the multi-level relationship among pixels. Secondly, image features rendered from the 3D feature field are clustered at different levels, which can be further drawn closer or pushed apart according to the hierarchical relationship between different levels. In tackling the challenges posed by inconsistent 2D segmentations, this framework yields a global consistent 3D feature field, which further enables hierarchical segmentation, multi-object selection, and global discretization. Extensive experiments demonstrate the effectiveness of our method on high-quality 3D segmentation and accurate hierarchical structure understanding. A graphical user interface further facilitates flexible interaction for omniversal 3D segmentation.
EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything
Segment Anything Model (SAM) has emerged as a powerful tool for numerous vision applications. A key component that drives the impressive performance for zero-shot transfer and high versatility is a super large Transformer model trained on the extensive high-quality SA-1B dataset. While beneficial, the huge computation cost of SAM model has limited its applications to wider real-world applications. To address this limitation, we propose EfficientSAMs, light-weight SAM models that exhibits decent performance with largely reduced complexity. Our idea is based on leveraging masked image pretraining, SAMI, which learns to reconstruct features from SAM image encoder for effective visual representation learning. Further, we take SAMI-pretrained light-weight image encoders and mask decoder to build EfficientSAMs, and finetune the models on SA-1B for segment anything task. We perform evaluations on multiple vision tasks including image classification, object detection, instance segmentation, and semantic object detection, and find that our proposed pretraining method, SAMI, consistently outperforms other masked image pretraining methods. On segment anything task such as zero-shot instance segmentation, our EfficientSAMs with SAMI-pretrained lightweight image encoders perform favorably with a significant gain (e.g., ~4 AP on COCO/LVIS) over other fast SAM models.
Comparative Evaluation of Traditional and Deep Learning-Based Segmentation Methods for Spoil Pile Delineation Using UAV Images
The stability of mine dumps is contingent upon the precise arrangement of spoil piles, taking into account their geological and geotechnical attributes. Yet, on-site characterisation of individual piles poses a formidable challenge. The utilisation of image-based techniques for spoil pile characterisation, employing remotely acquired data through unmanned aerial systems, is a promising complementary solution. Image processing, such as object-based classification and feature extraction, are dependent upon effective segmentation. This study refines and juxtaposes various segmentation approaches, specifically colour-based and morphology-based techniques. The objective is to enhance and evaluate avenues for object-based analysis for spoil characterisation within the context of mining environments. Furthermore, a comparative analysis is conducted between conventional segmentation approaches and those rooted in deep learning methodologies. Among the diverse segmentation approaches evaluated, the morphology-based deep learning segmentation approach, Segment Anything Model (SAM), exhibited superior performance in comparison to other approaches. This outcome underscores the efficacy of incorporating advanced morphological and deep learning techniques for accurate and efficient spoil pile characterisation. The findings of this study contribute valuable insights to the optimisation of segmentation strategies, thereby advancing the application of image-based techniques for the characterisation of spoil piles in mining environments.
Track Anything: Segment Anything Meets Videos
Recently, the Segment Anything Model (SAM) gains lots of attention rapidly due to its impressive segmentation performance on images. Regarding its strong ability on image segmentation and high interactivity with different prompts, we found that it performs poorly on consistent segmentation in videos. Therefore, in this report, we propose Track Anything Model (TAM), which achieves high-performance interactive tracking and segmentation in videos. To be detailed, given a video sequence, only with very little human participation, i.e., several clicks, people can track anything they are interested in, and get satisfactory results in one-pass inference. Without additional training, such an interactive design performs impressively on video object tracking and segmentation. All resources are available on https://github.com/gaomingqi/Track-Anything. We hope this work can facilitate related research.
SAM 2 in Robotic Surgery: An Empirical Evaluation for Robustness and Generalization in Surgical Video Segmentation
The recent Segment Anything Model (SAM) 2 has demonstrated remarkable foundational competence in semantic segmentation, with its memory mechanism and mask decoder further addressing challenges in video tracking and object occlusion, thereby achieving superior results in interactive segmentation for both images and videos. Building upon our previous empirical studies, we further explore the zero-shot segmentation performance of SAM 2 in robot-assisted surgery based on prompts, alongside its robustness against real-world corruption. For static images, we employ two forms of prompts: 1-point and bounding box, while for video sequences, the 1-point prompt is applied to the initial frame. Through extensive experimentation on the MICCAI EndoVis 2017 and EndoVis 2018 benchmarks, SAM 2, when utilizing bounding box prompts, outperforms state-of-the-art (SOTA) methods in comparative evaluations. The results with point prompts also exhibit a substantial enhancement over SAM's capabilities, nearing or even surpassing existing unprompted SOTA methodologies. Besides, SAM 2 demonstrates improved inference speed and less performance degradation against various image corruption. Although slightly unsatisfactory results remain in specific edges or regions, SAM 2's robust adaptability to 1-point prompts underscores its potential for downstream surgical tasks with limited prompt requirements.
Segment Anything with Multiple Modalities
Robust and accurate segmentation of scenes has become one core functionality in various visual recognition and navigation tasks. This has inspired the recent development of Segment Anything Model (SAM), a foundation model for general mask segmentation. However, SAM is largely tailored for single-modal RGB images, limiting its applicability to multi-modal data captured with widely-adopted sensor suites, such as LiDAR plus RGB, depth plus RGB, thermal plus RGB, etc. We develop MM-SAM, an extension and expansion of SAM that supports cross-modal and multi-modal processing for robust and enhanced segmentation with different sensor suites. MM-SAM features two key designs, namely, unsupervised cross-modal transfer and weakly-supervised multi-modal fusion, enabling label-efficient and parameter-efficient adaptation toward various sensor modalities. It addresses three main challenges: 1) adaptation toward diverse non-RGB sensors for single-modal processing, 2) synergistic processing of multi-modal data via sensor fusion, and 3) mask-free training for different downstream tasks. Extensive experiments show that MM-SAM consistently outperforms SAM by large margins, demonstrating its effectiveness and robustness across various sensors and data modalities.
TransDAE: Dual Attention Mechanism in a Hierarchical Transformer for Efficient Medical Image Segmentation
In healthcare, medical image segmentation is crucial for accurate disease diagnosis and the development of effective treatment strategies. Early detection can significantly aid in managing diseases and potentially prevent their progression. Machine learning, particularly deep convolutional neural networks, has emerged as a promising approach to addressing segmentation challenges. Traditional methods like U-Net use encoding blocks for local representation modeling and decoding blocks to uncover semantic relationships. However, these models often struggle with multi-scale objects exhibiting significant variations in texture and shape, and they frequently fail to capture long-range dependencies in the input data. Transformers designed for sequence-to-sequence predictions have been proposed as alternatives, utilizing global self-attention mechanisms. Yet, they can sometimes lack precise localization due to insufficient granular details. To overcome these limitations, we introduce TransDAE: a novel approach that reimagines the self-attention mechanism to include both spatial and channel-wise associations across the entire feature space, while maintaining computational efficiency. Additionally, TransDAE enhances the skip connection pathway with an inter-scale interaction module, promoting feature reuse and improving localization accuracy. Remarkably, TransDAE outperforms existing state-of-the-art methods on the Synaps multi-organ dataset, even without relying on pre-trained weights.
PartImageNet: A Large, High-Quality Dataset of Parts
It is natural to represent objects in terms of their parts. This has the potential to improve the performance of algorithms for object recognition and segmentation but can also help for downstream tasks like activity recognition. Research on part-based models, however, is hindered by the lack of datasets with per-pixel part annotations. This is partly due to the difficulty and high cost of annotating object parts so it has rarely been done except for humans (where there exists a big literature on part-based models). To help address this problem, we propose PartImageNet, a large, high-quality dataset with part segmentation annotations. It consists of 158 classes from ImageNet with approximately 24,000 images. PartImageNet is unique because it offers part-level annotations on a general set of classes including non-rigid, articulated objects, while having an order of magnitude larger size compared to existing part datasets (excluding datasets of humans). It can be utilized for many vision tasks including Object Segmentation, Semantic Part Segmentation, Few-shot Learning and Part Discovery. We conduct comprehensive experiments which study these tasks and set up a set of baselines. The dataset and scripts are released at https://github.com/TACJu/PartImageNet.
Unsupervised Segmentation of Fire and Smoke from Infra-Red Videos
This paper proposes a vision-based fire and smoke segmentation system which use spatial, temporal and motion information to extract the desired regions from the video frames. The fusion of information is done using multiple features such as optical flow, divergence and intensity values. These features extracted from the images are used to segment the pixels into different classes in an unsupervised way. A comparative analysis is done by using multiple clustering algorithms for segmentation. Here the Markov Random Field performs more accurately than other segmentation algorithms since it characterizes the spatial interactions of pixels using a finite number of parameters. It builds a probabilistic image model that selects the most likely labeling using the maximum a posteriori (MAP) estimation. This unsupervised approach is tested on various images and achieves a frame-wise fire detection rate of 95.39%. Hence this method can be used for early detection of fire in real-time and it can be incorporated into an indoor or outdoor surveillance system.
Efficient Knowledge Distillation of SAM for Medical Image Segmentation
The Segment Anything Model (SAM) has set a new standard in interactive image segmentation, offering robust performance across various tasks. However, its significant computational requirements limit its deployment in real-time or resource-constrained environments. To address these challenges, we propose a novel knowledge distillation approach, KD SAM, which incorporates both encoder and decoder optimization through a combination of Mean Squared Error (MSE) and Perceptual Loss. This dual-loss framework captures structural and semantic features, enabling the student model to maintain high segmentation accuracy while reducing computational complexity. Based on the model evaluation on datasets, including Kvasir-SEG, ISIC 2017, Fetal Head Ultrasound, and Breast Ultrasound, we demonstrate that KD SAM achieves comparable or superior performance to the baseline models, with significantly fewer parameters. KD SAM effectively balances segmentation accuracy and computational efficiency, making it well-suited for real-time medical image segmentation applications in resource-constrained environments.
Coarse-to-Fine Amodal Segmentation with Shape Prior
Amodal object segmentation is a challenging task that involves segmenting both visible and occluded parts of an object. In this paper, we propose a novel approach, called Coarse-to-Fine Segmentation (C2F-Seg), that addresses this problem by progressively modeling the amodal segmentation. C2F-Seg initially reduces the learning space from the pixel-level image space to the vector-quantized latent space. This enables us to better handle long-range dependencies and learn a coarse-grained amodal segment from visual features and visible segments. However, this latent space lacks detailed information about the object, which makes it difficult to provide a precise segmentation directly. To address this issue, we propose a convolution refine module to inject fine-grained information and provide a more precise amodal object segmentation based on visual features and coarse-predicted segmentation. To help the studies of amodal object segmentation, we create a synthetic amodal dataset, named as MOViD-Amodal (MOViD-A), which can be used for both image and video amodal object segmentation. We extensively evaluate our model on two benchmark datasets: KINS and COCO-A. Our empirical results demonstrate the superiority of C2F-Seg. Moreover, we exhibit the potential of our approach for video amodal object segmentation tasks on FISHBOWL and our proposed MOViD-A. Project page at: http://jianxgao.github.io/C2F-Seg.
View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields
Large-scale vision foundation models such as Segment Anything (SAM) demonstrate impressive performance in zero-shot image segmentation at multiple levels of granularity. However, these zero-shot predictions are rarely 3D-consistent. As the camera viewpoint changes in a scene, so do the segmentation predictions, as well as the characterizations of "coarse" or "fine" granularity. In this work, we address the challenging task of lifting multi-granular and view-inconsistent image segmentations into a hierarchical and 3D-consistent representation. We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene, whose segmentation structure can be revealed at different scales by simply using different thresholds on feature distance. Our key idea is to learn an ultrametric feature space, which unlike a Euclidean space, exhibits transitivity in distance-based grouping, naturally leading to a hierarchical clustering. Put together, our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output. We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency. We additionally provide qualitative examples of our model's 3D hierarchical segmentations in real world scenes. The code and dataset are available at https://github.com/hardyho/ultrametric_feature_fields
Beyond One-to-One: Rethinking the Referring Image Segmentation
Referring image segmentation aims to segment the target object referred by a natural language expression. However, previous methods rely on the strong assumption that one sentence must describe one target in the image, which is often not the case in real-world applications. As a result, such methods fail when the expressions refer to either no objects or multiple objects. In this paper, we address this issue from two perspectives. First, we propose a Dual Multi-Modal Interaction (DMMI) Network, which contains two decoder branches and enables information flow in two directions. In the text-to-image decoder, text embedding is utilized to query the visual feature and localize the corresponding target. Meanwhile, the image-to-text decoder is implemented to reconstruct the erased entity-phrase conditioned on the visual feature. In this way, visual features are encouraged to contain the critical semantic information about target entity, which supports the accurate segmentation in the text-to-image decoder in turn. Secondly, we collect a new challenging but realistic dataset called Ref-ZOM, which includes image-text pairs under different settings. Extensive experiments demonstrate our method achieves state-of-the-art performance on different datasets, and the Ref-ZOM-trained model performs well on various types of text inputs. Codes and datasets are available at https://github.com/toggle1995/RIS-DMMI.
A Novel Transformer Based Semantic Segmentation Scheme for Fine-Resolution Remote Sensing Images
The fully convolutional network (FCN) with an encoder-decoder architecture has been the standard paradigm for semantic segmentation. The encoder-decoder architecture utilizes an encoder to capture multilevel feature maps, which are incorporated into the final prediction by a decoder. As the context is crucial for precise segmentation, tremendous effort has been made to extract such information in an intelligent fashion, including employing dilated/atrous convolutions or inserting attention modules. However, these endeavors are all based on the FCN architecture with ResNet or other backbones, which cannot fully exploit the context from the theoretical concept. By contrast, we introduce the Swin Transformer as the backbone to extract the context information and design a novel decoder of densely connected feature aggregation module (DCFAM) to restore the resolution and produce the segmentation map. The experimental results on two remotely sensed semantic segmentation datasets demonstrate the effectiveness of the proposed scheme.Code is available at https://github.com/WangLibo1995/GeoSeg
COSNet: A Novel Semantic Segmentation Network using Enhanced Boundaries in Cluttered Scenes
Automated waste recycling aims to efficiently separate the recyclable objects from the waste by employing vision-based systems. However, the presence of varying shaped objects having different material types makes it a challenging problem, especially in cluttered environments. Existing segmentation methods perform reasonably on many semantic segmentation datasets by employing multi-contextual representations, however, their performance is degraded when utilized for waste object segmentation in cluttered scenarios. In addition, plastic objects further increase the complexity of the problem due to their translucent nature. To address these limitations, we introduce an efficacious segmentation network, named COSNet, that uses boundary cues along with multi-contextual information to accurately segment the objects in cluttered scenes. COSNet introduces novel components including feature sharpening block (FSB) and boundary enhancement module (BEM) for enhancing the features and highlighting the boundary information of irregular waste objects in cluttered environment. Extensive experiments on three challenging datasets including ZeroWaste-f, SpectralWaste, and ADE20K demonstrate the effectiveness of the proposed method. Our COSNet achieves a significant gain of 1.8% on ZeroWaste-f and 2.1% on SpectralWaste datasets respectively in terms of mIoU metric.
Mask2Former for Video Instance Segmentation
We find Mask2Former also achieves state-of-the-art performance on video instance segmentation without modifying the architecture, the loss or even the training pipeline. In this report, we show universal image segmentation architectures trivially generalize to video segmentation by directly predicting 3D segmentation volumes. Specifically, Mask2Former sets a new state-of-the-art of 60.4 AP on YouTubeVIS-2019 and 52.6 AP on YouTubeVIS-2021. We believe Mask2Former is also capable of handling video semantic and panoptic segmentation, given its versatility in image segmentation. We hope this will make state-of-the-art video segmentation research more accessible and bring more attention to designing universal image and video segmentation architectures.
PixelLM: Pixel Reasoning with Large Multimodal Model
While large multimodal models (LMMs) have achieved remarkable progress, generating pixel-level masks for image reasoning tasks involving multiple open-world targets remains a challenge. To bridge this gap, we introduce PixelLM, an effective and efficient LMM for pixel-level reasoning and understanding. Central to PixelLM is a novel, lightweight pixel decoder and a comprehensive segmentation codebook. The decoder efficiently produces masks from the hidden embeddings of the codebook tokens, which encode detailed target-relevant information. With this design, PixelLM harmonizes with the structure of popular LMMs and avoids the need for additional costly segmentation models. Furthermore, we propose a target refinement loss to enhance the model's ability to differentiate between multiple targets, leading to substantially improved mask quality. To advance research in this area, we construct MUSE, a high-quality multi-target reasoning segmentation benchmark. PixelLM excels across various pixel-level image reasoning and understanding tasks, outperforming well-established methods in multiple benchmarks, including MUSE, single- and multi-referring segmentation. Comprehensive ablations confirm the efficacy of each proposed component. All code, models, and datasets will be publicly available.
Microsoft COCO: Common Objects in Context
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
AdapterShadow: Adapting Segment Anything Model for Shadow Detection
Segment anything model (SAM) has shown its spectacular performance in segmenting universal objects, especially when elaborate prompts are provided. However, the drawback of SAM is twofold. On the first hand, it fails to segment specific targets, e.g., shadow images or lesions in medical images. On the other hand, manually specifying prompts is extremely time-consuming. To overcome the problems, we propose AdapterShadow, which adapts SAM model for shadow detection. To adapt SAM for shadow images, trainable adapters are inserted into the frozen image encoder of SAM, since the training of the full SAM model is both time and memory consuming. Moreover, we introduce a novel grid sampling method to generate dense point prompts, which helps to automatically segment shadows without any manual interventions. Extensive experiments are conducted on four widely used benchmark datasets to demonstrate the superior performance of our proposed method. Codes will are publicly available at https://github.com/LeipingJie/AdapterShadow.
PSALM: Pixelwise SegmentAtion with Large Multi-Modal Model
PSALM is a powerful extension of the Large Multi-modal Model (LMM) to address the segmentation task challenges. To overcome the limitation of the LMM being limited to textual output, PSALM incorporates a mask decoder and a well-designed input schema to handle a variety of segmentation tasks. This schema includes images, task instructions, conditional prompts, and mask tokens, which enable the model to generate and classify segmentation masks effectively. The flexible design of PSALM supports joint training across multiple datasets and tasks, leading to improved performance and task generalization. PSALM achieves superior results on several benchmarks, such as RefCOCO/RefCOCO+/RefCOCOg, COCO Panoptic Segmentation, and COCO-Interactive, and further exhibits zero-shot capabilities on unseen tasks, such as open-vocabulary segmentation, generalized referring expression segmentation and video object segmentation, making a significant step towards a GPT moment in computer vision. Through extensive experiments, PSALM demonstrates its potential to transform the domain of image segmentation, leveraging the robust visual understanding capabilities of LMMs as seen in natural language processing. Code and models are available at https://github.com/zamling/PSALM.
Deshadow-Anything: When Segment Anything Model Meets Zero-shot shadow removal
Segment Anything (SAM), an advanced universal image segmentation model trained on an expansive visual dataset, has set a new benchmark in image segmentation and computer vision. However, it faced challenges when it came to distinguishing between shadows and their backgrounds. To address this, we developed Deshadow-Anything, considering the generalization of large-scale datasets, and we performed Fine-tuning on large-scale datasets to achieve image shadow removal. The diffusion model can diffuse along the edges and textures of an image, helping to remove shadows while preserving the details of the image. Furthermore, we design Multi-Self-Attention Guidance (MSAG) and adaptive input perturbation (DDPM-AIP) to accelerate the iterative training speed of diffusion. Experiments on shadow removal tasks demonstrate that these methods can effectively improve image restoration performance.