Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeScaleLong: Towards More Stable Training of Diffusion Model via Scaling Network Long Skip Connection
In diffusion models, UNet is the most popular network backbone, since its long skip connects (LSCs) to connect distant network blocks can aggregate long-distant information and alleviate vanishing gradient. Unfortunately, UNet often suffers from unstable training in diffusion models which can be alleviated by scaling its LSC coefficients smaller. However, theoretical understandings of the instability of UNet in diffusion models and also the performance improvement of LSC scaling remain absent yet. To solve this issue, we theoretically show that the coefficients of LSCs in UNet have big effects on the stableness of the forward and backward propagation and robustness of UNet. Specifically, the hidden feature and gradient of UNet at any layer can oscillate and their oscillation ranges are actually large which explains the instability of UNet training. Moreover, UNet is also provably sensitive to perturbed input, and predicts an output distant from the desired output, yielding oscillatory loss and thus oscillatory gradient. Besides, we also observe the theoretical benefits of the LSC coefficient scaling of UNet in the stableness of hidden features and gradient and also robustness. Finally, inspired by our theory, we propose an effective coefficient scaling framework ScaleLong that scales the coefficients of LSC in UNet and better improves the training stability of UNet. Experimental results on four famous datasets show that our methods are superior to stabilize training and yield about 1.5x training acceleration on different diffusion models with UNet or UViT backbones. Code: https://github.com/sail-sg/ScaleLong
A Distributed Protocol for Detection of Packet Dropping Attack in Mobile Ad Hoc Networks
In multi-hop mobile ad hoc networks (MANETs),mobile nodes cooperate with each other without using any infrastructure such as access points or base stations. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms, absence of centralized monitoring points, and lack of clear lines of defense. Among the various attacks to which MANETs are vulnerable, malicious packet dropping attack is very common where a malicious node can partially degrade or completely disrupt communication in the network by consistently dropping packets. In this paper, a mechanism for detection of packet dropping attack is presented based on cooperative participation of the nodes in a MANET. The redundancy of routing information in an ad hoc network is utilized to make the scheme robust so that it works effectively even in presence of transient network partitioning and Byzantine failure of nodes. The proposed scheme is fully cooperative and thus more secure as the vulnerabilities of any election algorithm used for choosing a subset of nodes for cooperation are absent. Simulation results show the effectiveness of the protocol.
Stability Analysis for a Class of Heterogeneous Catalysis Models
We prove stability for a class of heterogeneous catalysis models in the L_p-setting. We consider a setting in a finite three-dimensional pore of cylinder-like geometry, with the lateral walls acting as a catalytic surface. Under a reasonable condition on the involved parameters, we show that given equilibria are normally stable, i.e. solutions are attracted at an exponential rate. The potential incidence of instability is discussed as well.
HyperRouter: Towards Efficient Training and Inference of Sparse Mixture of Experts
By routing input tokens to only a few split experts, Sparse Mixture-of-Experts has enabled efficient training of large language models. Recent findings suggest that fixing the routers can achieve competitive performance by alleviating the collapsing problem, where all experts eventually learn similar representations. However, this strategy has two key limitations: (i) the policy derived from random routers might be sub-optimal, and (ii) it requires extensive resources during training and evaluation, leading to limited efficiency gains. This work introduces \HyperRout, which dynamically generates the router's parameters through a fixed hypernetwork and trainable embeddings to achieve a balance between training the routers and freezing them to learn an improved routing policy. Extensive experiments across a wide range of tasks demonstrate the superior performance and efficiency gains of \HyperRouter compared to existing routing methods. Our implementation is publicly available at {{https://github.com/giangdip2410/HyperRouter}}.
Preventing Local Pitfalls in Vector Quantization via Optimal Transport
Vector-quantized networks (VQNs) have exhibited remarkable performance across various tasks, yet they are prone to training instability, which complicates the training process due to the necessity for techniques such as subtle initialization and model distillation. In this study, we identify the local minima issue as the primary cause of this instability. To address this, we integrate an optimal transport method in place of the nearest neighbor search to achieve a more globally informed assignment. We introduce OptVQ, a novel vector quantization method that employs the Sinkhorn algorithm to optimize the optimal transport problem, thereby enhancing the stability and efficiency of the training process. To mitigate the influence of diverse data distributions on the Sinkhorn algorithm, we implement a straightforward yet effective normalization strategy. Our comprehensive experiments on image reconstruction tasks demonstrate that OptVQ achieves 100% codebook utilization and surpasses current state-of-the-art VQNs in reconstruction quality.
Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures
Adapting to concept drift is a challenging task in machine learning, which is usually tackled using incremental learning techniques that periodically re-fit a learning model leveraging newly available data. A primary limitation of these techniques is their reliance on substantial amounts of data for retraining. The necessity of acquiring fresh data introduces temporal delays prior to retraining, potentially rendering the models inaccurate if a sudden concept drift occurs in-between two consecutive retrainings. In communication networks, such issue emerges when performing traffic forecasting following a~failure event: post-failure re-routing may induce a drastic shift in distribution and pattern of traffic data, thus requiring a timely model adaptation. In this work, we address this challenge for the problem of traffic forecasting and propose an approach that exploits adaptive learning algorithms, namely, liquid neural networks, which are capable of self-adaptation to abrupt changes in data patterns without requiring any retraining. Through extensive simulations of failure scenarios, we compare the predictive performance of our proposed approach to that of a reference method based on incremental learning. Experimental results show that our proposed approach outperforms incremental learning-based methods in situations where the shifts in traffic patterns are drastic.
Unified Scaling Laws for Routed Language Models
The performance of a language model has been shown to be effectively modeled as a power-law in its parameter count. Here we study the scaling behaviors of Routing Networks: architectures that conditionally use only a subset of their parameters while processing an input. For these models, parameter count and computational requirement form two independent axes along which an increase leads to better performance. In this work we derive and justify scaling laws defined on these two variables which generalize those known for standard language models and describe the performance of a wide range of routing architectures trained via three different techniques. Afterwards we provide two applications of these laws: first deriving an Effective Parameter Count along which all models scale at the same rate, and then using the scaling coefficients to give a quantitative comparison of the three routing techniques considered. Our analysis derives from an extensive evaluation of Routing Networks across five orders of magnitude of size, including models with hundreds of experts and hundreds of billions of parameters.
Priority Flow Admission and Routing in SDN: Exact and Heuristic Approaches
This paper proposes a novel admission and routing scheme which takes into account arbitrarily assigned priorities for network flows. The presented approach leverages the centralized Software Defined Networking (SDN) capabilities in order to do so. Exact and heuristic approaches to the stated Priority Flow Admission and Routing (PFAR) problem are provided. The exact approach which provides an optimal solution is based on Integer Linear Programming (ILP). Given the potentially long running time required to find an exact and optimal solution, a heuristic approach is proposed; this approach is based on Genetic Algorithms (GAs). In order to effectively estimate the performance of the proposed approaches, a simulator that is capable of generating semi-random network topologies and flows has been developed. Experimental results for large problem instances (up 50 network nodes and thousands of network flows), show that: i) an optimal solution can be often found in few seconds (even milliseconds), and ii) the heuristic approach yields close-to-optimal solutions (approximately 95\% of the optimal) in a fixed amount of time; these experimental results demonstrate the pertinence of the proposed approaches.
On the Robustness of deep learning-based MRI Reconstruction to image transformations
Although deep learning (DL) has received much attention in accelerated magnetic resonance imaging (MRI), recent studies show that tiny input perturbations may lead to instabilities of DL-based MRI reconstruction models. However, the approaches of robustifying these models are underdeveloped. Compared to image classification, it could be much more challenging to achieve a robust MRI image reconstruction network considering its regression-based learning objective, limited amount of training data, and lack of efficient robustness metrics. To circumvent the above limitations, our work revisits the problem of DL-based image reconstruction through the lens of robust machine learning. We find a new instability source of MRI image reconstruction, i.e., the lack of reconstruction robustness against spatial transformations of an input, e.g., rotation and cutout. Inspired by this new robustness metric, we develop a robustness-aware image reconstruction method that can defend against both pixel-wise adversarial perturbations as well as spatial transformations. Extensive experiments are also conducted to demonstrate the effectiveness of our proposed approaches.
Graph Vulnerability and Robustness: A Survey
The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these areas, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.
A Mechanism for Detection of Cooperative Black Hole Attack in Mobile Ad Hoc Networks
A mobile ad hoc network (MANET) is a collection of autonomous nodes that communicate with each other by forming a multi-hop radio network and maintaining connections in a decentralized manner. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms,absence of centralized monitoring points, and lack of clear lines of defense. Most of the routing protocols for MANETs are thus vulnerable to various types of attacks. Ad hoc on-demand distance vector routing (AODV) is a very popular routing algorithm. However, it is vulnerable to the well-known black hole attack, where a malicious node falsely advertises good paths to a destination node during the route discovery process. This attack becomes more sever when a group of malicious nodes cooperate each other. In this paper, a defense mechanism is presented against a coordinated attack by multiple black hole nodes in a MANET. The simulation carried out on the proposed scheme has produced results that demonstrate the effectiveness of the mechanism in detection of the attack while maintaining a reasonable level of throughput in the network.
Detection of Cooperative Black Hole Attack in Wireless Ad Hoc Networks
A mobile ad hoc network (MANET) is a collection of autonomous nodes that communicate with each other by forming a multi-hop radio network and maintaining connections in a decentralized manner. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms, absence of centralized monitoring points, and lack of clear lines of defense. Protecting the network layer of a MANET from malicious attacks is an important and challenging security issue, since most of the routing protocols for MANETs are vulnerable to various types of attacks. Ad hoc on-demand distance vector routing (AODV) is a very popular routing algorithm. However, it is vulnerable to the well-known black hole attack, where a malicious node falsely advertises good paths to a destination node during the route discovery process but drops all packets in the data forwarding phase. This attack becomes more severe when a group of malicious nodes cooperate each other. The proposed mechanism does not apply any cryptographic primitives on the routing messages. Instead, it protects the network by detecting and reacting to malicious activities of the nodes. Simulation results show that the scheme has a significantly high detection rate with moderate network traffic overhead and computation overhead in the nodes.
On the Stability of Expressive Positional Encodings for Graph Neural Networks
Designing effective positional encodings for graphs is key to building powerful graph transformers and enhancing message-passing graph neural networks. Although widespread, using Laplacian eigenvectors as positional encodings faces two fundamental challenges: (1) Non-uniqueness: there are many different eigendecompositions of the same Laplacian, and (2) Instability: small perturbations to the Laplacian could result in completely different eigenspaces, leading to unpredictable changes in positional encoding. Despite many attempts to address non-uniqueness, most methods overlook stability, leading to poor generalization on unseen graph structures. We identify the cause of instability to be a "hard partition" of eigenspaces. Hence, we introduce Stable and Expressive Positional Encodings (SPE), an architecture for processing eigenvectors that uses eigenvalues to "softly partition" eigenspaces. SPE is the first architecture that is (1) provably stable, and (2) universally expressive for basis invariant functions whilst respecting all symmetries of eigenvectors. Besides guaranteed stability, we prove that SPE is at least as expressive as existing methods, and highly capable of counting graph structures. Finally, we evaluate the effectiveness of our method on molecular property prediction, and out-of-distribution generalization tasks, finding improved generalization compared to existing positional encoding methods.
EAGAN: Efficient Two-stage Evolutionary Architecture Search for GANs
Generative adversarial networks (GANs) have proven successful in image generation tasks. However, GAN training is inherently unstable. Although many works try to stabilize it by manually modifying GAN architecture, it requires much expertise. Neural architecture search (NAS) has become an attractive solution to search GANs automatically. The early NAS-GANs search only generators to reduce search complexity but lead to a sub-optimal GAN. Some recent works try to search both generator (G) and discriminator (D), but they suffer from the instability of GAN training. To alleviate the instability, we propose an efficient two-stage evolutionary algorithm-based NAS framework to search GANs, namely EAGAN. We decouple the search of G and D into two stages, where stage-1 searches G with a fixed D and adopts the many-to-one training strategy, and stage-2 searches D with the optimal G found in stage-1 and adopts the one-to-one training and weight-resetting strategies to enhance the stability of GAN training. Both stages use the non-dominated sorting method to produce Pareto-front architectures under multiple objectives (e.g., model size, Inception Score (IS), and Fr\'echet Inception Distance (FID)). EAGAN is applied to the unconditional image generation task and can efficiently finish the search on the CIFAR-10 dataset in 1.2 GPU days. Our searched GANs achieve competitive results (IS=8.81pm0.10, FID=9.91) on the CIFAR-10 dataset and surpass prior NAS-GANs on the STL-10 dataset (IS=10.44pm0.087, FID=22.18). Source code: https://github.com/marsggbo/EAGAN.
Challenging the Need for Packet Spraying in Large-Scale Distributed Training
Large-scale distributed training in production datacenters constitutes a challenging workload bottlenecked by network communication. In response, both major industry players (e.g., Ultra Ethernet Consortium) and parts of academia have surprisingly, and almost unanimously, agreed that packet spraying is necessary to improve the performance of large-scale distributed training workloads. In this paper, we challenge this prevailing belief and pose the question: How close can a singlepath transport approach an optimal multipath transport? We demonstrate that singlepath transport (from a NIC's perspective) is sufficient and can perform nearly as well as an ideal multipath transport with packet spraying, particularly in the context of distributed training in leaf-spine topologies. Our assertion is based on four key observations about workloads driven by collective communication patterns: (i) flows within a collective start almost simultaneously, (ii) flow sizes are nearly equal, (iii) the completion time of a collective is more crucial than individual flow completion times, and (iv) flows can be split upon arrival. We analytically prove that singlepath transport, using minimal flow splitting (at the application layer), is equivalent to an ideal multipath transport with packet spraying in terms of maximum congestion. Our preliminary evaluations support our claims. This paper suggests an alternative agenda for developing next-generation transport protocols tailored for large-scale distributed training.
Stabilizing DARTS with Amended Gradient Estimation on Architectural Parameters
DARTS is a popular algorithm for neural architecture search (NAS). Despite its great advantage in search efficiency, DARTS often suffers weak stability, which reflects in the large variation among individual trials as well as the sensitivity to the hyper-parameters of the search process. This paper owes such instability to an optimization gap between the super-network and its sub-networks, namely, improving the validation accuracy of the super-network does not necessarily lead to a higher expectation on the performance of the sampled sub-networks. Then, we point out that the gap is due to the inaccurate estimation of the architectural gradients, based on which we propose an amended estimation method. Mathematically, our method guarantees a bounded error from the true gradients while the original estimation does not. Our approach bridges the gap from two aspects, namely, amending the estimation on the architectural gradients, and unifying the hyper-parameter settings in the search and re-training stages. Experiments on CIFAR10 and ImageNet demonstrate that our approach largely improves search stability and, more importantly, enables DARTS-based approaches to explore much larger search spaces that have not been investigated before.
On Over-Squashing in Message Passing Neural Networks: The Impact of Width, Depth, and Topology
Message Passing Neural Networks (MPNNs) are instances of Graph Neural Networks that leverage the graph to send messages over the edges. This inductive bias leads to a phenomenon known as over-squashing, where a node feature is insensitive to information contained at distant nodes. Despite recent methods introduced to mitigate this issue, an understanding of the causes for over-squashing and of possible solutions are lacking. In this theoretical work, we prove that: (i) Neural network width can mitigate over-squashing, but at the cost of making the whole network more sensitive; (ii) Conversely, depth cannot help mitigate over-squashing: increasing the number of layers leads to over-squashing being dominated by vanishing gradients; (iii) The graph topology plays the greatest role, since over-squashing occurs between nodes at high commute (access) time. Our analysis provides a unified framework to study different recent methods introduced to cope with over-squashing and serves as a justification for a class of methods that fall under graph rewiring.
Boosting Large-scale Parallel Training Efficiency with C4: A Communication-Driven Approach
The emergence of Large Language Models (LLMs) has necessitated the adoption of parallel training techniques, involving the deployment of thousands of GPUs to train a single model. Unfortunately, we have found that the efficiency of current parallel training is often suboptimal, largely due to the following two main issues. Firstly, hardware failures are inevitable, leading to interruptions in the training tasks. The inability to quickly identify the faulty components results in a substantial waste of GPU resources. Secondly, since GPUs must wait for parameter synchronization to complete before proceeding to the next round of computation, network congestions can greatly increase the waiting time for GPUs. To address these challenges, this paper introduces a communication-driven solution, namely the C4. The key insights of C4 are two folds. First, in parallel training, collective communication exhibits periodic and homogeneous characteristics, so any anomalies are certainly due to some form of hardware malfunction. By leveraging this feature, C4 can rapidly identify the faulty components, swiftly isolate the anomaly, and restart the task, thereby avoiding resource wastage caused by delays in anomaly detection. Second, the predictable communication model of collective communication, involving few large flows, allows C4 to efficiently execute traffic planning, substantially reducing network congestion. C4 has been extensively implemented across our production systems, cutting error-induced overhead by roughly 30% and enhancing runtime performance by about 15% for certain applications with moderate communication costs.
Decentralized Neural Networks for Robust and Scalable Eigenvalue Computation
This paper introduces a novel method for eigenvalue computation using a distributed cooperative neural network framework. Unlike traditional techniques that face scalability challenges in large systems, our decentralized algorithm enables multiple autonomous agents to collaboratively estimate the smallest eigenvalue of large matrices. Each agent employs a localized neural network, refining its estimates through communication with neighboring agents. Our empirical results confirm the algorithm's convergence towards the true eigenvalue, with estimates clustered closely around the true value. Even in the presence of communication delays or network disruptions, the method demonstrates strong robustness and scalability. Theoretical analysis further validates the accuracy and stability of the proposed approach, while empirical tests highlight its efficiency and precision, surpassing traditional centralized algorithms in large-scale eigenvalue computations.
Landscaping Linear Mode Connectivity
The presence of linear paths in parameter space between two different network solutions in certain cases, i.e., linear mode connectivity (LMC), has garnered interest from both theoretical and practical fronts. There has been significant research that either practically designs algorithms catered for connecting networks by adjusting for the permutation symmetries as well as some others that more theoretically construct paths through which networks can be connected. Yet, the core reasons for the occurrence of LMC, when in fact it does occur, in the highly non-convex loss landscapes of neural networks are far from clear. In this work, we take a step towards understanding it by providing a model of how the loss landscape needs to behave topographically for LMC (or the lack thereof) to manifest. Concretely, we present a `mountainside and ridge' perspective that helps to neatly tie together different geometric features that can be spotted in the loss landscape along the training runs. We also complement this perspective by providing a theoretical analysis of the barrier height, for which we provide empirical support, and which additionally extends as a faithful predictor of layer-wise LMC. We close with a toy example that provides further intuition on how barriers arise in the first place, all in all, showcasing the larger aim of the work -- to provide a working model of the landscape and its topography for the occurrence of LMC.
Auxiliary-Loss-Free Load Balancing Strategy for Mixture-of-Experts
For Mixture-of-Experts (MoE) models, an unbalanced expert load will lead to routing collapse or increased computational overhead. Existing methods commonly employ an auxiliary loss to encourage load balance, but a large auxiliary loss will introduce non-negligible interference gradients into training and thus impair the model performance. In order to control load balance while not producing undesired gradients during training, we propose Loss-Free Balancing, featured by an auxiliary-loss-free load balancing strategy. To be specific, before the top-K routing decision, Loss-Free Balancing will first apply an expert-wise bias to the routing scores of each expert. By dynamically updating the bias of each expert according to its recent load, Loss-Free Balancing can consistently maintain a balanced distribution of expert load. In addition, since Loss-Free Balancing does not produce any interference gradients, it also elevates the upper bound of model performance gained from MoE training. We validate the performance of Loss-Free Balancing on MoE models with up to 3B parameters trained on up to 200B tokens. Experimental results show that Loss-Free Balancing achieves both better performance and better load balance compared with traditional auxiliary-loss-controlled load balancing strategies.
Buffer Overflow in Mixture of Experts
Mixture of Experts (MoE) has become a key ingredient for scaling large foundation models while keeping inference costs steady. We show that expert routing strategies that have cross-batch dependencies are vulnerable to attacks. Malicious queries can be sent to a model and can affect a model's output on other benign queries if they are grouped in the same batch. We demonstrate this via a proof-of-concept attack in a toy experimental setting.
Rank List Sensitivity of Recommender Systems to Interaction Perturbations
Prediction models can exhibit sensitivity with respect to training data: small changes in the training data can produce models that assign conflicting predictions to individual data points during test time. In this work, we study this sensitivity in recommender systems, where users' recommendations are drastically altered by minor perturbations in other unrelated users' interactions. We introduce a measure of stability for recommender systems, called Rank List Sensitivity (RLS), which measures how rank lists generated by a given recommender system at test time change as a result of a perturbation in the training data. We develop a method, CASPER, which uses cascading effect to identify the minimal and systematical perturbation to induce higher instability in a recommender system. Experiments on four datasets show that recommender models are overly sensitive to minor perturbations introduced randomly or via CASPER - even perturbing one random interaction of one user drastically changes the recommendation lists of all users. Importantly, with CASPER perturbation, the models generate more unstable recommendations for low-accuracy users (i.e., those who receive low-quality recommendations) than high-accuracy ones.
A Mechanism for Detection of Gray Hole Attack in Mobile Ad Hoc Networks
Protecting the network layer from malicious attacks is an important and challenging security issue in mobile ad hoc networks (MANETs). In this paper, a security mechanism is proposed to defend against a cooperative gray hole attack on the well known AODV routing protocol in MANETs. A gray hole is a node that selectively drops and forwards data packets after it advertises itself as having the shortest path to the destination node in response to a route request message from a source node. The proposed mechanism does not apply any cryptographic primitives on the routing messages. Instead, it protects the network by detecting and reacting to malicious activities of any node. Simulation results show that the scheme has a significantly high detection rate with moderate network traffic overhead.
Evaluating Graph Vulnerability and Robustness using TIGER
Network robustness plays a crucial role in our understanding of complex interconnected systems such as transportation, communication, and computer networks. While significant research has been conducted in the area of network robustness, no comprehensive open-source toolbox currently exists to assist researchers and practitioners in this important topic. This lack of available tools hinders reproducibility and examination of existing work, development of new research, and dissemination of new ideas. We contribute TIGER, an open-sourced Python toolbox to address these challenges. TIGER contains 22 graph robustness measures with both original and fast approximate versions; 17 failure and attack strategies; 15 heuristic and optimization-based defense techniques; and 4 simulation tools. By democratizing the tools required to study network robustness, our goal is to assist researchers and practitioners in analyzing their own networks; and facilitate the development of new research in the field. TIGER has been integrated into the Nvidia Data Science Teaching Kit available to educators across the world; and Georgia Tech's Data and Visual Analytics class with over 1,000 students. TIGER is open sourced at: https://github.com/safreita1/TIGER
Soft Merging of Experts with Adaptive Routing
Sparsely activated neural networks with conditional computation learn to route their inputs through different "expert" subnetworks, providing a form of modularity that densely activated models lack. Despite their possible benefits, models with learned routing often underperform their parameter-matched densely activated counterparts as well as models that use non-learned heuristic routing strategies. In this paper, we hypothesize that these shortcomings stem from the gradient estimation techniques used to train sparsely activated models that use non-differentiable discrete routing decisions. To address this issue, we introduce Soft Merging of Experts with Adaptive Routing (SMEAR), which avoids discrete routing by using a single "merged" expert constructed via a weighted average of all of the experts' parameters. By routing activations through a single merged expert, SMEAR does not incur a significant increase in computational costs and enables standard gradient-based training. We empirically validate that models using SMEAR outperform models that route based on metadata or learn sparse routing through gradient estimation. Furthermore, we provide qualitative analysis demonstrating that the experts learned via SMEAR exhibit a significant amount of specialization. All of the code used in our experiments is publicly available.
Understanding Oversquashing in GNNs through the Lens of Effective Resistance
Message passing graph neural networks (GNNs) are a popular learning architectures for graph-structured data. However, one problem GNNs experience is oversquashing, where a GNN has difficulty sending information between distant nodes. Understanding and mitigating oversquashing has recently received significant attention from the research community. In this paper, we continue this line of work by analyzing oversquashing through the lens of the effective resistance between nodes in the input graph. Effective resistance intuitively captures the ``strength'' of connection between two nodes by paths in the graph, and has a rich literature spanning many areas of graph theory. We propose to use total effective resistance as a bound of the total amount of oversquashing in a graph and provide theoretical justification for its use. We further develop an algorithm to identify edges to be added to an input graph to minimize the total effective resistance, thereby alleviating oversquashing. We provide empirical evidence of the effectiveness of our total effective resistance based rewiring strategies for improving the performance of GNNs.
Dynamic Load Balancing Strategies for Graph Applications on GPUs
Acceleration of graph applications on GPUs has found large interest due to the ubiquitous use of graph processing in various domains. The inherent irregularity in graph applications leads to several challenges for parallelization. A key challenge, which we address in this paper, is that of load-imbalance. If the work-assignment to threads uses node-based graph partitioning, it can result in skewed task-distribution, leading to poor load-balance. In contrast, if the work-assignment uses edge-based graph partitioning, the load-balancing is better, but the memory requirement is relatively higher. This makes it unsuitable for large graphs. In this work, we propose three techniques for improved load-balancing of graph applications on GPUs. Each technique brings in unique advantages, and a user may have to employ a specific technique based on the requirement. Using Breadth First Search and Single Source Shortest Paths as our processing kernels, we illustrate the effectiveness of each of the proposed techniques in comparison to the existing node-based and edge-based mechanisms.
Exploring the Impact of Disrupted Peer-to-Peer Communications on Fully Decentralized Learning in Disaster Scenarios
Fully decentralized learning enables the distribution of learning resources and decision-making capabilities across multiple user devices or nodes, and is rapidly gaining popularity due to its privacy-preserving and decentralized nature. Importantly, this crowdsourcing of the learning process allows the system to continue functioning even if some nodes are affected or disconnected. In a disaster scenario, communication infrastructure and centralized systems may be disrupted or completely unavailable, hindering the possibility of carrying out standard centralized learning tasks in these settings. Thus, fully decentralized learning can help in this case. However, transitioning from centralized to peer-to-peer communications introduces a dependency between the learning process and the topology of the communication graph among nodes. In a disaster scenario, even peer-to-peer communications are susceptible to abrupt changes, such as devices running out of battery or getting disconnected from others due to their position. In this study, we investigate the effects of various disruptions to peer-to-peer communications on decentralized learning in a disaster setting. We examine the resilience of a decentralized learning process when a subset of devices drop from the process abruptly. To this end, we analyze the difference between losing devices holding data, i.e., potential knowledge, vs. devices contributing only to the graph connectivity, i.e., with no data. Our findings on a Barabasi-Albert graph topology, where training data is distributed across nodes in an IID fashion, indicate that the accuracy of the learning process is more affected by a loss of connectivity than by a loss of data. Nevertheless, the network remains relatively robust, and the learning process can achieve a good level of accuracy.
Critical yielding rheology: from externally deformed glasses to active systems
In the last decade many research efforts have been focused on understanding the rheology of disordered materials, and several theoretical predictions have been put forward regarding their yielding behavior. Nevertheless, not many experiments nor molecular dynamics simulations were dedicated to testing those theoretical predictions. Here we use computer simulations to study the yielding transition under two different loading schemes: standard simple shear dynamics, and self-propelled, dense active systems. In the active systems a yielding transition is observed as expected, when the self-propulsion is increased. However, the range of self-propulsions in which a pure liquid regime exist appears to vanish upon approaching the so-called "jamming point" at which solidity of soft-sphere packings is lost. Such an "active yielding" transition shares similarities with the generic yielding transition for shear flows. A Herschel-Bulkley law is observed in both loading scenarios, with a clear difference in the critical scaling exponents between the two, suggesting the existent of different universality classes for the yielding transition under different driving conditions. In addition, we present direct measurements of length and time scales for both driving scenarios. A comparison with theoretical predictions from recent literature reveals poor agreement with our numerical results.
DRew: Dynamically Rewired Message Passing with Delay
Message passing neural networks (MPNNs) have been shown to suffer from the phenomenon of over-squashing that causes poor performance for tasks relying on long-range interactions. This can be largely attributed to message passing only occurring locally, over a node's immediate neighbours. Rewiring approaches attempting to make graphs 'more connected', and supposedly better suited to long-range tasks, often lose the inductive bias provided by distance on the graph since they make distant nodes communicate instantly at every layer. In this paper we propose a framework, applicable to any MPNN architecture, that performs a layer-dependent rewiring to ensure gradual densification of the graph. We also propose a delay mechanism that permits skip connections between nodes depending on the layer and their mutual distance. We validate our approach on several long-range tasks and show that it outperforms graph Transformers and multi-hop MPNNs.
Stable ResNet
Deep ResNet architectures have achieved state of the art performance on many tasks. While they solve the problem of gradient vanishing, they might suffer from gradient exploding as the depth becomes large (Yang et al. 2017). Moreover, recent results have shown that ResNet might lose expressivity as the depth goes to infinity (Yang et al. 2017, Hayou et al. 2019). To resolve these issues, we introduce a new class of ResNet architectures, called Stable ResNet, that have the property of stabilizing the gradient while ensuring expressivity in the infinite depth limit.
Is Consensus Acceleration Possible in Decentralized Optimization over Slowly Time-Varying Networks?
We consider decentralized optimization problems where one aims to minimize a sum of convex smooth objective functions distributed between nodes in the network. The links in the network can change from time to time. For the setting when the amount of changes is arbitrary, lower complexity bounds and corresponding optimal algorithms are known, and the consensus acceleration is not possible. However, in practice the magnitude of network changes may be limited. We derive lower communication complexity bounds for several regimes of velocity of networks changes. Moreover, we show how to obtain accelerated communication rates for a certain class of time-varying graphs using a specific consensus algorithm.
Gradients are Not All You Need
Differentiable programming techniques are widely used in the community and are responsible for the machine learning renaissance of the past several decades. While these methods are powerful, they have limits. In this short report, we discuss a common chaos based failure mode which appears in a variety of differentiable circumstances, ranging from recurrent neural networks and numerical physics simulation to training learned optimizers. We trace this failure to the spectrum of the Jacobian of the system under study, and provide criteria for when a practitioner might expect this failure to spoil their differentiation based optimization algorithms.
MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs
We present the design, implementation and engineering experience in building and deploying MegaScale, a production system for training large language models (LLMs) at the scale of more than 10,000 GPUs. Training LLMs at this scale brings unprecedented challenges to training efficiency and stability. We take a full-stack approach that co-designs the algorithmic and system components across model block and optimizer design, computation and communication overlapping, operator optimization, data pipeline, and network performance tuning. Maintaining high efficiency throughout the training process (i.e., stability) is an important consideration in production given the long extent of LLM training jobs. Many hard stability issues only emerge at large scale, and in-depth observability is the key to address them. We develop a set of diagnosis tools to monitor system components and events deep in the stack, identify root causes, and derive effective techniques to achieve fault tolerance and mitigate stragglers. MegaScale achieves 55.2% Model FLOPs Utilization (MFU) when training a 175B LLM model on 12,288 GPUs, improving the MFU by 1.34x compared to Megatron-LM. We share our operational experience in identifying and fixing failures and stragglers. We hope by articulating the problems and sharing our experience from a systems perspective, this work can inspire future LLM systems research.
A Multi-Path Certification Protocol for Mobile Ad Hoc Networks
A mobile ad hoc network (MANET) is a collection of autonomous nodes that communicate with each other by forming a multi-hop radio network and maintaining connections in a decentralized manner. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms, absence of centralized monitoring points, and lack of clear lines of defense. Most of the routing protocols for MANETs are thus vulnerable to various types of attacks. For security, these protocols are highly dependent on cryptographic key exchange operations. This paper presents a multi-path certification protocol for efficient and reliable key exchange among the nodes in a MANET. Simulation results have shown the effectiveness and efficiency of the protocol.
Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks
Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.
AirTag, You're It: Reverse Logistics and Last Mile Dynamics
This study addresses challenges in reverse logistics, a frequently overlooked but essential component of last-mile delivery, particularly in disaster relief scenarios where infrastructure disruptions demand adaptive solutions. While hub-and-spoke logistics networks excel at long-distance scalability, they often fail to optimize closely spaced spokes reliant on distant hubs, introducing inefficiencies in transit times and resource allocation. Using 20 Apple AirTags embedded in packages, this research provides empirical insights into logistical flows, capturing granular spatial and temporal data through Bluetooth LE (BLE) 5 trackers integrated with the Apple Find My network. These trackers demonstrated their value in monitoring dynamic cargo movements, enabling real-time adjustments in mobile hub placement and route optimization, particularly in disaster relief contexts like Hurricane Helene. A novel application of discrete event simulation (DES) further explored the saddle point in hub-spoke configurations, where excessive hub reliance clashes with diminishing spoke interaction demand. By coupling simulation results with empirical AirTag tracking, the study highlights the potential of BLE technology to refine reverse logistics, reduce delays, and improve operational flexibility in both routine and crisis-driven delivery networks.
Security Implications and Mitigation Strategies in MPLS Networks
Multiprotocol Label Switching (MPLS) is a high-performance telecommunications technology that directs data from one network node to another based on short path labels rather than long network addresses. Its efficiency and scalability have made it a popular choice for large-scale and enterprise networks. However, as MPLS networks grow and evolve, they encounter various security challenges. This paper explores the security implications associated with MPLS networks, including risks such as label spoofing, traffic interception, and denial of service attacks. Additionally, it evaluates advanced mitigation strategies to address these vulnerabilities, leveraging mathematical models and security protocols to enhance MPLS network resilience. By integrating theoretical analysis with practical solutions, this paper aims to provide a comprehensive understanding of MPLS security and propose effective methods for safeguarding network infrastructure.
Deep Neural Network Initialization with Sparsity Inducing Activations
Inducing and leveraging sparse activations during training and inference is a promising avenue for improving the computational efficiency of deep networks, which is increasingly important as network sizes continue to grow and their application becomes more widespread. Here we use the large width Gaussian process limit to analyze the behaviour, at random initialization, of nonlinear activations that induce sparsity in the hidden outputs. A previously unreported form of training instability is proven for arguably two of the most natural candidates for hidden layer sparsification; those being a shifted ReLU (phi(x)=max(0, x-tau) for tauge 0) and soft thresholding (phi(x)=0 for |x|letau and x-sign(x)tau for |x|>tau). We show that this instability is overcome by clipping the nonlinear activation magnitude, at a level prescribed by the shape of the associated Gaussian process variance map. Numerical experiments verify the theory and show that the proposed magnitude clipped sparsifying activations can be trained with training and test fractional sparsity as high as 85\% while retaining close to full accuracy.
Instability of the solitary waves for the Generalized Benjamin-Bona-Mahony Equation
In this work, we consider the generalized Benjamin-Bona-Mahony equation $partial_t u+partial_x u+partial_x( |u|^pu)-partial_t partial_x^{2}u=0, quad(t,x) in R times R, with p>4. This equation has the traveling wave solutions \phi_{c}(x-ct), for any frequency c>1. It has been proved by Souganidis and Strauss Strauss-1990 that, there exists a number c_{0}(p)>1, such that solitary waves \phi_{c}(x-ct) with 1<c<c_{0}(p) is orbitally unstable, while for c>c_{0}(p), \phi_{c}(x-ct) is orbitally stable. The linear exponential instability in the former case was further proved by Pego and Weinstein Pego-1991-eigenvalue. In this paper, we prove the orbital instability in the critical case c=c_{0}(p)$.
Simplifying, Stabilizing and Scaling Continuous-Time Consistency Models
Consistency models (CMs) are a powerful class of diffusion-based generative models optimized for fast sampling. Most existing CMs are trained using discretized timesteps, which introduce additional hyperparameters and are prone to discretization errors. While continuous-time formulations can mitigate these issues, their success has been limited by training instability. To address this, we propose a simplified theoretical framework that unifies previous parameterizations of diffusion models and CMs, identifying the root causes of instability. Based on this analysis, we introduce key improvements in diffusion process parameterization, network architecture, and training objectives. These changes enable us to train continuous-time CMs at an unprecedented scale, reaching 1.5B parameters on ImageNet 512x512. Our proposed training algorithm, using only two sampling steps, achieves FID scores of 2.06 on CIFAR-10, 1.48 on ImageNet 64x64, and 1.88 on ImageNet 512x512, narrowing the gap in FID scores with the best existing diffusion models to within 10%.
Driving Enhanced Exciton Transfer by Automatic Differentiation
We model and study the processes of excitation, absorption, and transfer in various networks. The model consists of a harmonic oscillator representing a single-mode radiation field, a qubit acting as an antenna, a network through which the excitation propagates, and a qubit at the end serving as a sink. We investigate how off-resonant excitations can be optimally absorbed and transmitted through the network. Three strategies are considered: optimising network energies, adjusting the couplings between the radiation field, the antenna, and the network, or introducing and optimising driving fields at the start and end of the network. These strategies are tested on three different types of network with increasing complexity: nearest-neighbour and star configurations, and one associated with the Fenna-Matthews-Olson complex. The results show that, among the various strategies, the introduction of driving fields is the most effective, leading to a significant increase in the probability of reaching the sink in a given time. This result remains stable across networks of varying dimensionalities and types, and the driving process requires only a few parameters to be effective.
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression
This work studies training instabilities of behavior cloning with deep neural networks. We observe that minibatch SGD updates to the policy network during training result in sharp oscillations in long-horizon rewards, despite negligibly affecting the behavior cloning loss. We empirically disentangle the statistical and computational causes of these oscillations, and find them to stem from the chaotic propagation of minibatch SGD noise through unstable closed-loop dynamics. While SGD noise is benign in the single-step action prediction objective, it results in catastrophic error accumulation over long horizons, an effect we term gradient variance amplification (GVA). We show that many standard mitigation techniques do not alleviate GVA, but find an exponential moving average (EMA) of iterates to be surprisingly effective at doing so. We illustrate the generality of this phenomenon by showing the existence of GVA and its amelioration by EMA in both continuous control and autoregressive language generation. Finally, we provide theoretical vignettes that highlight the benefits of EMA in alleviating GVA and shed light on the extent to which classical convex models can help in understanding the benefits of iterate averaging in deep learning.