new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

AUGCAL: Improving Sim2Real Adaptation by Uncertainty Calibration on Augmented Synthetic Images

Synthetic data (SIM) drawn from simulators have emerged as a popular alternative for training models where acquiring annotated real-world images is difficult. However, transferring models trained on synthetic images to real-world applications can be challenging due to appearance disparities. A commonly employed solution to counter this SIM2REAL gap is unsupervised domain adaptation, where models are trained using labeled SIM data and unlabeled REAL data. Mispredictions made by such SIM2REAL adapted models are often associated with miscalibration - stemming from overconfident predictions on real data. In this paper, we introduce AUGCAL, a simple training-time patch for unsupervised adaptation that improves SIM2REAL adapted models by - (1) reducing overall miscalibration, (2) reducing overconfidence in incorrect predictions and (3) improving confidence score reliability by better guiding misclassification detection - all while retaining or improving SIM2REAL performance. Given a base SIM2REAL adaptation algorithm, at training time, AUGCAL involves replacing vanilla SIM images with strongly augmented views (AUG intervention) and additionally optimizing for a training time calibration loss on augmented SIM predictions (CAL intervention). We motivate AUGCAL using a brief analytical justification of how to reduce miscalibration on unlabeled REAL data. Through our experiments, we empirically show the efficacy of AUGCAL across multiple adaptation methods, backbones, tasks and shifts.

TrustSQL: Benchmarking Text-to-SQL Reliability with Penalty-Based Scoring

Text-to-SQL enables users to interact with databases using natural language, simplifying the retrieval and synthesis of information. Despite the remarkable success of large language models (LLMs) in translating natural language questions into SQL queries, widespread deployment remains limited due to two primary challenges. First, the effective use of text-to-SQL models depends on users' understanding of the model's capabilities-the scope of questions the model can correctly answer. Second, the absence of abstention mechanisms can lead to incorrect SQL generation going unnoticed, thereby undermining trust in the model's output. To enable wider deployment, it is crucial to address these challenges in model design and enhance model evaluation to build trust in the model's output. To this end, we introduce TrustSQL, a novel comprehensive benchmark designed to evaluate text-to-SQL reliability-defined as a model's ability to correctly handle any type of input question by generating correct SQL queries for feasible questions and abstaining from generating infeasible ones (e.g., due to schema incompatibility or functionalities beyond SQL). We evaluate existing methods using a novel penalty-based scoring metric with two modeling approaches: (1) pipeline-based methods combining SQL generators with infeasible question detectors and SQL error detectors for abstention; and (2) unified methods using a single model for the entire task. Our experimental results reveal that achieving high scores under severe penalties requires significant effort and provide a new perspective on developing text-to-SQL models for safer deployment. TrustSQL is available at https://github.com/glee4810/TrustSQL.

Davidsonian Scene Graph: Improving Reliability in Fine-grained Evaluation for Text-to-Image Generation

Evaluating text-to-image models is notoriously difficult. A strong recent approach for assessing text-image faithfulness is based on QG/A (question generation and answering), which uses pre-trained foundational models to automatically generate a set of questions and answers from the prompt, and output images are scored based on whether these answers extracted with a visual question answering model are consistent with the prompt-based answers. This kind of evaluation is naturally dependent on the quality of the underlying QG and VQA models. We identify and address several reliability challenges in existing QG/A work: (a) QG questions should respect the prompt (avoiding hallucinations, duplications, and omissions) and (b) VQA answers should be consistent (not asserting that there is no motorcycle in an image while also claiming the motorcycle is blue). We address these issues with Davidsonian Scene Graph (DSG), an empirically grounded evaluation framework inspired by formal semantics, which is adaptable to any QG/A frameworks. DSG produces atomic and unique questions organized in dependency graphs, which (i) ensure appropriate semantic coverage and (ii) sidestep inconsistent answers. With extensive experimentation and human evaluation on a range of model configurations (LLM, VQA, and T2I), we empirically demonstrate that DSG addresses the challenges noted above. Finally, we present DSG-1k, an open-sourced evaluation benchmark that includes 1,060 prompts, covering a wide range of fine-grained semantic categories with a balanced distribution. We release the DSG-1k prompts and the corresponding DSG questions.

ARBEx: Attentive Feature Extraction with Reliability Balancing for Robust Facial Expression Learning

In this paper, we introduce a framework ARBEx, a novel attentive feature extraction framework driven by Vision Transformer with reliability balancing to cope against poor class distributions, bias, and uncertainty in the facial expression learning (FEL) task. We reinforce several data pre-processing and refinement methods along with a window-based cross-attention ViT to squeeze the best of the data. We also employ learnable anchor points in the embedding space with label distributions and multi-head self-attention mechanism to optimize performance against weak predictions with reliability balancing, which is a strategy that leverages anchor points, attention scores, and confidence values to enhance the resilience of label predictions. To ensure correct label classification and improve the models' discriminative power, we introduce anchor loss, which encourages large margins between anchor points. Additionally, the multi-head self-attention mechanism, which is also trainable, plays an integral role in identifying accurate labels. This approach provides critical elements for improving the reliability of predictions and has a substantial positive effect on final prediction capabilities. Our adaptive model can be integrated with any deep neural network to forestall challenges in various recognition tasks. Our strategy outperforms current state-of-the-art methodologies, according to extensive experiments conducted in a variety of contexts.

Fully Test-Time Adaptation for Monocular 3D Object Detection

Monocular 3D object detection (Mono 3Det) aims to identify 3D objects from a single RGB image. However, existing methods often assume training and test data follow the same distribution, which may not hold in real-world test scenarios. To address the out-of-distribution (OOD) problems, we explore a new adaptation paradigm for Mono 3Det, termed Fully Test-time Adaptation. It aims to adapt a well-trained model to unlabeled test data by handling potential data distribution shifts at test time without access to training data and test labels. However, applying this paradigm in Mono 3Det poses significant challenges due to OOD test data causing a remarkable decline in object detection scores. This decline conflicts with the pre-defined score thresholds of existing detection methods, leading to severe object omissions (i.e., rare positive detections and many false negatives). Consequently, the limited positive detection and plenty of noisy predictions cause test-time adaptation to fail in Mono 3Det. To handle this problem, we propose a novel Monocular Test-Time Adaptation (MonoTTA) method, based on two new strategies. 1) Reliability-driven adaptation: we empirically find that high-score objects are still reliable and the optimization of high-score objects can enhance confidence across all detections. Thus, we devise a self-adaptive strategy to identify reliable objects for model adaptation, which discovers potential objects and alleviates omissions. 2) Noise-guard adaptation: since high-score objects may be scarce, we develop a negative regularization term to exploit the numerous low-score objects via negative learning, preventing overfitting to noise and trivial solutions. Experimental results show that MonoTTA brings significant performance gains for Mono 3Det models in OOD test scenarios, approximately 190% gains by average on KITTI and 198% gains on nuScenes.

Do LLMs Have Distinct and Consistent Personality? TRAIT: Personality Testset designed for LLMs with Psychometrics

The idea of personality in descriptive psychology, traditionally defined through observable behavior, has now been extended to Large Language Models (LLMs) to better understand their behavior. This raises a question: do LLMs exhibit distinct and consistent personality traits, similar to humans? Existing self-assessment personality tests, while applicable, lack the necessary validity and reliability for precise personality measurements. To address this, we introduce TRAIT, a new tool consisting of 8K multi-choice questions designed to assess the personality of LLMs with validity and reliability. TRAIT is built on the psychometrically validated human questionnaire, Big Five Inventory (BFI) and Short Dark Triad (SD-3), enhanced with the ATOMIC10X knowledge graph for testing personality in a variety of real scenarios. TRAIT overcomes the reliability and validity issues when measuring personality of LLM with self-assessment, showing the highest scores across three metrics: refusal rate, prompt sensitivity, and option order sensitivity. It reveals notable insights into personality of LLM: 1) LLMs exhibit distinct and consistent personality, which is highly influenced by their training data (i.e., data used for alignment tuning), and 2) current prompting techniques have limited effectiveness in eliciting certain traits, such as high psychopathy or low conscientiousness, suggesting the need for further research in this direction.

Self-Assessment Tests are Unreliable Measures of LLM Personality

As large language models (LLM) evolve in their capabilities, various recent studies have tried to quantify their behavior using psychological tools created to study human behavior. One such example is the measurement of "personality" of LLMs using self-assessment personality tests developed to measure human personality. Yet almost none of these works verify the applicability of these tests on LLMs. In this paper, we analyze the reliability of LLM personality scores obtained from self-assessment personality tests using two simple experiments. We first introduce the property of prompt sensitivity, where three semantically equivalent prompts representing three intuitive ways of administering self-assessment tests on LLMs are used to measure the personality of the same LLM. We find that all three prompts lead to very different personality scores, a difference that is statistically significant for all traits in a large majority of scenarios. We then introduce the property of option-order symmetry for personality measurement of LLMs. Since most of the self-assessment tests exist in the form of multiple choice question (MCQ) questions, we argue that the scores should also be robust to not just the prompt template but also the order in which the options are presented. This test unsurprisingly reveals that the self-assessment test scores are not robust to the order of the options. These simple tests, done on ChatGPT and three Llama2 models of different sizes, show that self-assessment personality tests created for humans are unreliable measures of personality in LLMs.

Language Models And A Second Opinion Use Case: The Pocket Professional

This research tests the role of Large Language Models (LLMs) as formal second opinion tools in professional decision-making, particularly focusing on complex medical cases where even experienced physicians seek peer consultation. The work analyzed 183 challenging medical cases from Medscape over a 20-month period, testing multiple LLMs' performance against crowd-sourced physician responses. A key finding was the high overall score possible in the latest foundational models (>80% accuracy compared to consensus opinion), which exceeds most human metrics reported on the same clinical cases (450 pages of patient profiles, test results). The study rates the LLMs' performance disparity between straightforward cases (>81% accuracy) and complex scenarios (43% accuracy), particularly in these cases generating substantial debate among human physicians. The research demonstrates that LLMs may be valuable as generators of comprehensive differential diagnoses rather than as primary diagnostic tools, potentially helping to counter cognitive biases in clinical decision-making, reduce cognitive loads, and thus remove some sources of medical error. The inclusion of a second comparative legal dataset (Supreme Court cases, N=21) provides added empirical context to the AI use to foster second opinions, though these legal challenges proved considerably easier for LLMs to analyze. In addition to the original contributions of empirical evidence for LLM accuracy, the research aggregated a novel benchmark for others to score highly contested question and answer reliability between both LLMs and disagreeing human practitioners. These results suggest that the optimal deployment of LLMs in professional settings may differ substantially from current approaches that emphasize automation of routine tasks.

OneChart: Purify the Chart Structural Extraction via One Auxiliary Token

Chart parsing poses a significant challenge due to the diversity of styles, values, texts, and so forth. Even advanced large vision-language models (LVLMs) with billions of parameters struggle to handle such tasks satisfactorily. To address this, we propose OneChart: a reliable agent specifically devised for the structural extraction of chart information. Similar to popular LVLMs, OneChart incorporates an autoregressive main body. Uniquely, to enhance the reliability of the numerical parts of the output, we introduce an auxiliary token placed at the beginning of the total tokens along with an additional decoder. The numerically optimized (auxiliary) token allows subsequent tokens for chart parsing to capture enhanced numerical features through causal attention. Furthermore, with the aid of the auxiliary token, we have devised a self-evaluation mechanism that enables the model to gauge the reliability of its chart parsing results by providing confidence scores for the generated content. Compared to current state-of-the-art (SOTA) chart parsing models, e.g., DePlot, ChartVLM, ChartAst, OneChart significantly outperforms in Average Precision (AP) for chart structural extraction across multiple public benchmarks, despite enjoying only 0.2 billion parameters. Moreover, as a chart parsing agent, it also brings 10%+ accuracy gains for the popular LVLM (LLaVA-1.6) in the downstream ChartQA benchmark.

Language Models Prefer What They Know: Relative Confidence Estimation via Confidence Preferences

Language models (LMs) should provide reliable confidence estimates to help users detect mistakes in their outputs and defer to human experts when necessary. Asking a language model to assess its confidence ("Score your confidence from 0-1.") is a natural way of evaluating its uncertainty. However, models struggle to provide absolute assessments of confidence (i.e. judging confidence in answering a question independent of other questions) and the coarse-grained scores they produce are not useful for evaluating the correctness of their answers. We propose relative confidence estimation, where we match up questions against each other and ask the model to make relative judgments of confidence ("Which question are you more confident in answering correctly?"). Treating each question as a "player" in a series of matchups against other questions and the model's preferences as match outcomes, we can use rank aggregation methods like Elo rating and Bradley-Terry to translate the model's confidence preferences into confidence scores. We evaluate relative confidence estimation against absolute confidence estimation and self-consistency confidence methods on five state-of-the-art LMs -- GPT-4, GPT-4o, Gemini 1.5 Pro, Claude 3.5 Sonnet, and Llama 3.1 405B -- across 14 challenging STEM, social science, and commonsense reasoning question answering tasks. Our results demonstrate that relative confidence estimation consistently provides more reliable confidence scores than absolute confidence estimation, with average gains of 3.5% in selective classification AUC over direct absolute confidence estimation methods and 1.7% over self-consistency approaches across all models and datasets.

The Critique of Critique

Critique, as a natural language description for assessing the quality of model-generated content, has been proven to play an essential role in the training, evaluation, and refinement of Large Language Models (LLMs). However, there is a lack of principled understanding in evaluating the quality of the critique itself. In this paper, we pioneer the critique of critique, termed MetaCritique, which is a framework to evaluate the critique from two aspects, i.e., factuality as precision score and comprehensiveness as recall score. We calculate the harmonic mean of precision and recall as the overall rating called F1 score. To obtain a reliable evaluation outcome, we propose Atomic Information Units (AIUs), which describe the critique in a more fine-grained manner. MetaCritique takes each AIU into account and aggregates each AIU's judgment for the overall score. Moreover, given the evaluation process involves intricate reasoning, our MetaCritique provides a natural language rationale to support each judgment. We construct a meta-evaluation dataset containing 300 critiques (2653 AIUs) across four tasks (question answering, reasoning, entailment, and summarization), and we conduct a comparative study to demonstrate the feasibility and effectiveness. Experiments also show superior critique judged by MetaCritique leads to better refinement, indicating generative artificial intelligence indeed has the potential to be significantly advanced with our MetaCritique. We will release relevant code and meta-evaluation datasets at https://github.com/GAIR-NLP/MetaCritique.

Reshaping Free-Text Radiology Notes Into Structured Reports With Generative Transformers

BACKGROUND: Radiology reports are typically written in a free-text format, making clinical information difficult to extract and use. Recently the adoption of structured reporting (SR) has been recommended by various medical societies thanks to the advantages it offers, e.g. standardization, completeness and information retrieval. We propose a pipeline to extract information from free-text radiology reports, that fits with the items of the reference SR registry proposed by a national society of interventional and medical radiology, focusing on CT staging of patients with lymphoma. METHODS: Our work aims to leverage the potential of Natural Language Processing (NLP) and Transformer-based models to deal with automatic SR registry filling. With the availability of 174 radiology reports, we investigate a rule-free generative Question Answering approach based on a domain-specific version of T5 (IT5). Two strategies (batch-truncation and ex-post combination) are implemented to comply with the model's context length limitations. Performance is evaluated in terms of strict accuracy, F1, and format accuracy, and compared with the widely used GPT-3.5 Large Language Model. A 5-point Likert scale questionnaire is used to collect human-expert feedback on the similarity between medical annotations and generated answers. RESULTS: The combination of fine-tuning and batch splitting allows IT5 to achieve notable results; it performs on par with GPT-3.5 albeit its size being a thousand times smaller in terms of parameters. Human-based assessment scores show a high correlation (Spearman's correlation coefficients>0.88, p-values<0.001) with AI performance metrics (F1) and confirm the superior ability of LLMs (i.e., GPT-3.5, 175B of parameters) in generating plausible human-like statements.

Application of NotebookLM, a Large Language Model with Retrieval-Augmented Generation, for Lung Cancer Staging

Purpose: In radiology, large language models (LLMs), including ChatGPT, have recently gained attention, and their utility is being rapidly evaluated. However, concerns have emerged regarding their reliability in clinical applications due to limitations such as hallucinations and insufficient referencing. To address these issues, we focus on the latest technology, retrieval-augmented generation (RAG), which enables LLMs to reference reliable external knowledge (REK). Specifically, this study examines the utility and reliability of a recently released RAG-equipped LLM (RAG-LLM), NotebookLM, for staging lung cancer. Materials and methods: We summarized the current lung cancer staging guideline in Japan and provided this as REK to NotebookLM. We then tasked NotebookLM with staging 100 fictional lung cancer cases based on CT findings and evaluated its accuracy. For comparison, we performed the same task using a gold-standard LLM, GPT-4 Omni (GPT-4o), both with and without the REK. Results: NotebookLM achieved 86% diagnostic accuracy in the lung cancer staging experiment, outperforming GPT-4o, which recorded 39% accuracy with the REK and 25% without it. Moreover, NotebookLM demonstrated 95% accuracy in searching reference locations within the REK. Conclusion: NotebookLM successfully performed lung cancer staging by utilizing the REK, demonstrating superior performance compared to GPT-4o. Additionally, it provided highly accurate reference locations within the REK, allowing radiologists to efficiently evaluate the reliability of NotebookLM's responses and detect possible hallucinations. Overall, this study highlights the potential of NotebookLM, a RAG-LLM, in image diagnosis.

An Analysis of Approaches Taken in the ACM RecSys Challenge 2018 for Automatic Music Playlist Continuation

The ACM Recommender Systems Challenge 2018 focused on the task of automatic music playlist continuation, which is a form of the more general task of sequential recommendation. Given a playlist of arbitrary length with some additional meta-data, the task was to recommend up to 500 tracks that fit the target characteristics of the original playlist. For the RecSys Challenge, Spotify released a dataset of one million user-generated playlists. Participants could compete in two tracks, i.e., main and creative tracks. Participants in the main track were only allowed to use the provided training set, however, in the creative track, the use of external public sources was permitted. In total, 113 teams submitted 1,228 runs to the main track; 33 teams submitted 239 runs to the creative track. The highest performing team in the main track achieved an R-precision of 0.2241, an NDCG of 0.3946, and an average number of recommended songs clicks of 1.784. In the creative track, an R-precision of 0.2233, an NDCG of 0.3939, and a click rate of 1.785 was obtained by the best team. This article provides an overview of the challenge, including motivation, task definition, dataset description, and evaluation. We further report and analyze the results obtained by the top performing teams in each track and explore the approaches taken by the winners. We finally summarize our key findings, discuss generalizability of approaches and results to domains other than music, and list the open avenues and possible future directions in the area of automatic playlist continuation.

AI Predicts AGI: Leveraging AGI Forecasting and Peer Review to Explore LLMs' Complex Reasoning Capabilities

We tasked 16 state-of-the-art large language models (LLMs) with estimating the likelihood of Artificial General Intelligence (AGI) emerging by 2030. To assess the quality of these forecasts, we implemented an automated peer review process (LLM-PR). The LLMs' estimates varied widely, ranging from 3% (Reka- Core) to 47.6% (GPT-4o), with a median of 12.5%. These estimates closely align with a recent expert survey that projected a 10% likelihood of AGI by 2027, underscoring the relevance of LLMs in forecasting complex, speculative scenarios. The LLM-PR process demonstrated strong reliability, evidenced by a high Intraclass Correlation Coefficient (ICC = 0.79), reflecting notable consistency in scoring across the models. Among the models, Pplx-70b-online emerged as the top performer, while Gemini-1.5-pro-api ranked the lowest. A cross-comparison with external benchmarks, such as LMSYS Chatbot Arena, revealed that LLM rankings remained consistent across different evaluation methods, suggesting that existing benchmarks may not encapsulate some of the skills relevant for AGI prediction. We further explored the use of weighting schemes based on external benchmarks, optimizing the alignment of LLMs' predictions with human expert forecasts. This analysis led to the development of a new, 'AGI benchmark' designed to highlight performance differences in AGI-related tasks. Our findings offer insights into LLMs' capabilities in speculative, interdisciplinary forecasting tasks and emphasize the growing need for innovative evaluation frameworks for assessing AI performance in complex, uncertain real-world scenarios.

PerSEval: Assessing Personalization in Text Summarizers

Personalized summarization models cater to individuals' subjective understanding of saliency, as represented by their reading history and current topics of attention. Existing personalized text summarizers are primarily evaluated based on accuracy measures such as BLEU, ROUGE, and METEOR. However, a recent study argued that accuracy measures are inadequate for evaluating the degree of personalization of these models and proposed EGISES, the first metric to evaluate personalized text summaries. It was suggested that accuracy is a separate aspect and should be evaluated standalone. In this paper, we challenge the necessity of an accuracy leaderboard, suggesting that relying on accuracy-based aggregated results might lead to misleading conclusions. To support this, we delve deeper into EGISES, demonstrating both theoretically and empirically that it measures the degree of responsiveness, a necessary but not sufficient condition for degree-of-personalization. We subsequently propose PerSEval, a novel measure that satisfies the required sufficiency condition. Based on the benchmarking of ten SOTA summarization models on the PENS dataset, we empirically establish that -- (i) PerSEval is reliable w.r.t human-judgment correlation (Pearson's r = 0.73; Spearman's rho = 0.62; Kendall's tau = 0.42), (ii) PerSEval has high rank-stability, (iii) PerSEval as a rank-measure is not entailed by EGISES-based ranking, and (iv) PerSEval can be a standalone rank-measure without the need of any aggregated ranking.

Understanding the Impact of Confidence in Retrieval Augmented Generation: A Case Study in the Medical Domain

Retrieval Augmented Generation (RAG) complements the knowledge of Large Language Models (LLMs) by leveraging external information to enhance response accuracy for queries. This approach is widely applied in several fields by taking its advantage of injecting the most up-to-date information, and researchers are focusing on understanding and improving this aspect to unlock the full potential of RAG in such high-stakes applications. However, despite the potential of RAG to address these needs, the mechanisms behind the confidence levels of its outputs remain underexplored, although the confidence of information is very critical in some domains, such as finance, healthcare, and medicine. Our study focuses the impact of RAG on confidence within the medical domain under various configurations and models. We evaluate confidence by treating the model's predicted probability as its output and calculating Expected Calibration Error (ECE) and Adaptive Calibration Error (ACE) scores based on the probabilities and accuracy. In addition, we analyze whether the order of retrieved documents within prompts calibrates the confidence. Our findings reveal large variation in confidence and accuracy depending on the model, settings, and the format of input prompts. These results underscore the necessity of optimizing configurations based on the specific model and conditions.

Cousins Of The Vendi Score: A Family Of Similarity-Based Diversity Metrics For Science And Machine Learning

Measuring diversity accurately is important for many scientific fields, including machine learning (ML), ecology, and chemistry. The Vendi Score was introduced as a generic similarity-based diversity metric that extends the Hill number of order q=1 by leveraging ideas from quantum statistical mechanics. Contrary to many diversity metrics in ecology, the Vendi Score accounts for similarity and does not require knowledge of the prevalence of the categories in the collection to be evaluated for diversity. However, the Vendi Score treats each item in a given collection with a level of sensitivity proportional to the item's prevalence. This is undesirable in settings where there is a significant imbalance in item prevalence. In this paper, we extend the other Hill numbers using similarity to provide flexibility in allocating sensitivity to rare or common items. This leads to a family of diversity metrics -- Vendi scores with different levels of sensitivity -- that can be used in a variety of applications. We study the properties of the scores in a synthetic controlled setting where the ground truth diversity is known. We then test their utility in improving molecular simulations via Vendi Sampling. Finally, we use the Vendi scores to better understand the behavior of image generative models in terms of memorization, duplication, diversity, and sample quality.

BARS: Towards Open Benchmarking for Recommender Systems

The past two decades have witnessed the rapid development of personalized recommendation techniques. Despite significant progress made in both research and practice of recommender systems, to date, there is a lack of a widely-recognized benchmarking standard in this field. Many existing studies perform model evaluations and comparisons in an ad-hoc manner, for example, by employing their own private data splits or using different experimental settings. Such conventions not only increase the difficulty in reproducing existing studies, but also lead to inconsistent experimental results among them. This largely limits the credibility and practical value of research results in this field. To tackle these issues, we present an initiative project (namely BARS) aiming for open benchmarking for recommender systems. In comparison to some earlier attempts towards this goal, we take a further step by setting up a standardized benchmarking pipeline for reproducible research, which integrates all the details about datasets, source code, hyper-parameter settings, running logs, and evaluation results. The benchmark is designed with comprehensiveness and sustainability in mind. It covers both matching and ranking tasks, and also enables researchers to easily follow and contribute to the research in this field. This project will not only reduce the redundant efforts of researchers to re-implement or re-run existing baselines, but also drive more solid and reproducible research on recommender systems. We would like to call upon everyone to use the BARS benchmark for future evaluation, and contribute to the project through the portal at: https://openbenchmark.github.io/BARS.

Rethinking Evaluation Metric for Probability Estimation Models Using Esports Data

Probability estimation models play an important role in various fields, such as weather forecasting, recommendation systems, and sports analysis. Among several models estimating probabilities, it is difficult to evaluate which model gives reliable probabilities since the ground-truth probabilities are not available. The win probability estimation model for esports, which calculates the win probability under a certain game state, is also one of the fields being actively studied in probability estimation. However, most of the previous works evaluated their models using accuracy, a metric that only can measure the performance of discrimination. In this work, we firstly investigate the Brier score and the Expected Calibration Error (ECE) as a replacement of accuracy used as a performance evaluation metric for win probability estimation models in esports field. Based on the analysis, we propose a novel metric called Balance score which is a simple yet effective metric in terms of six good properties that probability estimation metric should have. Under the general condition, we also found that the Balance score can be an effective approximation of the true expected calibration error which has been imperfectly approximated by ECE using the binning technique. Extensive evaluations using simulation studies and real game snapshot data demonstrate the promising potential to adopt the proposed metric not only for the win probability estimation model for esports but also for evaluating general probability estimation models.

Can OpenAI o1 outperform humans in higher-order cognitive thinking?

This study evaluates the performance of OpenAI's o1-preview model in higher-order cognitive domains, including critical thinking, systematic thinking, computational thinking, data literacy, creative thinking, logical reasoning, and scientific reasoning. Using established benchmarks, we compared the o1-preview models's performance to human participants from diverse educational levels. o1-preview achieved a mean score of 24.33 on the Ennis-Weir Critical Thinking Essay Test (EWCTET), surpassing undergraduate (13.8) and postgraduate (18.39) participants (z = 1.60 and 0.90, respectively). In systematic thinking, it scored 46.1, SD = 4.12 on the Lake Urmia Vignette, significantly outperforming the human mean (20.08, SD = 8.13, z = 3.20). For data literacy, o1-preview scored 8.60, SD = 0.70 on Merk et al.'s "Use Data" dimension, compared to the human post-test mean of 4.17, SD = 2.02 (z = 2.19). On creative thinking tasks, the model achieved originality scores of 2.98, SD = 0.73, higher than the human mean of 1.74 (z = 0.71). In logical reasoning (LogiQA), it outperformed humans with average 90%, SD = 10% accuracy versus 86%, SD = 6.5% (z = 0.62). For scientific reasoning, it achieved near-perfect performance (mean = 0.99, SD = 0.12) on the TOSLS,, exceeding the highest human scores of 0.85, SD = 0.13 (z = 1.78). While o1-preview excelled in structured tasks, it showed limitations in problem-solving and adaptive reasoning. These results demonstrate the potential of AI to complement education in structured assessments but highlight the need for ethical oversight and refinement for broader applications.

Prometheus: Inducing Fine-grained Evaluation Capability in Language Models

Recently, using a powerful proprietary Large Language Model (LLM) (e.g., GPT-4) as an evaluator for long-form responses has become the de facto standard. However, for practitioners with large-scale evaluation tasks and custom criteria in consideration (e.g., child-readability), using proprietary LLMs as an evaluator is unreliable due to the closed-source nature, uncontrolled versioning, and prohibitive costs. In this work, we propose Prometheus, a fully open-source LLM that is on par with GPT-4's evaluation capabilities when the appropriate reference materials (reference answer, score rubric) are accompanied. We first construct the Feedback Collection, a new dataset that consists of 1K fine-grained score rubrics, 20K instructions, and 100K responses and language feedback generated by GPT-4. Using the Feedback Collection, we train Prometheus, a 13B evaluator LLM that can assess any given long-form text based on customized score rubric provided by the user. Experimental results show that Prometheus scores a Pearson correlation of 0.897 with human evaluators when evaluating with 45 customized score rubrics, which is on par with GPT-4 (0.882), and greatly outperforms ChatGPT (0.392). Furthermore, measuring correlation with GPT-4 with 1222 customized score rubrics across four benchmarks (MT Bench, Vicuna Bench, Feedback Bench, Flask Eval) shows similar trends, bolstering Prometheus's capability as an evaluator LLM. Lastly, Prometheus achieves the highest accuracy on two human preference benchmarks (HHH Alignment & MT Bench Human Judgment) compared to open-sourced reward models explicitly trained on human preference datasets, highlighting its potential as an universal reward model. We open-source our code, dataset, and model at https://github.com/kaistAI/Prometheus.

SubjECTive-QA: Measuring Subjectivity in Earnings Call Transcripts' QA Through Six-Dimensional Feature Analysis

Fact-checking is extensively studied in the context of misinformation and disinformation, addressing objective inaccuracies. However, a softer form of misinformation involves responses that are factually correct but lack certain features such as clarity and relevance. This challenge is prevalent in formal Question-Answer (QA) settings such as press conferences in finance, politics, sports, and other domains, where subjective answers can obscure transparency. Despite this, there is a lack of manually annotated datasets for subjective features across multiple dimensions. To address this gap, we introduce SubjECTive-QA, a human annotated dataset on Earnings Call Transcripts' (ECTs) QA sessions as the answers given by company representatives are often open to subjective interpretations and scrutiny. The dataset includes 49,446 annotations for long-form QA pairs across six features: Assertive, Cautious, Optimistic, Specific, Clear, and Relevant. These features are carefully selected to encompass the key attributes that reflect the tone of the answers provided during QA sessions across different domain. Our findings are that the best-performing Pre-trained Language Model (PLM), RoBERTa-base, has similar weighted F1 scores to Llama-3-70b-Chat on features with lower subjectivity, such as Relevant and Clear, with a mean difference of 2.17% in their weighted F1 scores. The models perform significantly better on features with higher subjectivity, such as Specific and Assertive, with a mean difference of 10.01% in their weighted F1 scores. Furthermore, testing SubjECTive-QA's generalizability using QAs from White House Press Briefings and Gaggles yields an average weighted F1 score of 65.97% using our best models for each feature, demonstrating broader applicability beyond the financial domain. SubjECTive-QA is publicly available under the CC BY 4.0 license

Evaluating language models as risk scores

Current question-answering benchmarks predominantly focus on accuracy in realizable prediction tasks. Conditioned on a question and answer-key, does the most likely token match the ground truth? Such benchmarks necessarily fail to evaluate LLMs' ability to quantify ground-truth outcome uncertainty. In this work, we focus on the use of LLMs as risk scores for unrealizable prediction tasks. We introduce folktexts, a software package to systematically generate risk scores using LLMs, and evaluate them against US Census data products. A flexible API enables the use of different prompting schemes, local or web-hosted models, and diverse census columns that can be used to compose custom prediction tasks. We evaluate 17 recent LLMs across five proposed benchmark tasks. We find that zero-shot risk scores produced by multiple-choice question-answering have high predictive signal but are widely miscalibrated. Base models consistently overestimate outcome uncertainty, while instruction-tuned models underestimate uncertainty and produce over-confident risk scores. In fact, instruction-tuning polarizes answer distribution regardless of true underlying data uncertainty. This reveals a general inability of instruction-tuned LLMs to express data uncertainty using multiple-choice answers. A separate experiment using verbalized chat-style risk queries yields substantially improved calibration across instruction-tuned models. These differences in ability to quantify data uncertainty cannot be revealed in realizable settings, and highlight a blind-spot in the current evaluation ecosystem that folktexts covers.

Automated SSIM Regression for Detection and Quantification of Motion Artefacts in Brain MR Images

Motion artefacts in magnetic resonance brain images can have a strong impact on diagnostic confidence. The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis. Motion artefacts can alter the delineation of structures such as the brain, lesions or tumours and may require a repeat scan. Otherwise, an inaccurate (e.g. correct pathology but wrong severity) or incorrect diagnosis (e.g. wrong pathology) may occur. "Image quality assessment" as a fast, automated step right after scanning can assist in deciding if the acquired images are diagnostically sufficient. An automated image quality assessment based on the structural similarity index (SSIM) regression through a residual neural network is proposed in this work. Additionally, a classification into different groups - by subdividing with SSIM ranges - is evaluated. Importantly, this method predicts SSIM values of an input image in the absence of a reference ground truth image. The networks were able to detect motion artefacts, and the best performance for the regression and classification task has always been achieved with ResNet-18 with contrast augmentation. The mean and standard deviation of residuals' distribution were mu=-0.0009 and sigma=0.0139, respectively. Whilst for the classification task in 3, 5 and 10 classes, the best accuracies were 97, 95 and 89\%, respectively. The results show that the proposed method could be a tool for supporting neuro-radiologists and radiographers in evaluating image quality quickly.

The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge: Results after 1 Year Follow-up

We present the findings of "The Alzheimer's Disease Prediction Of Longitudinal Evolution" (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk of Alzheimer's disease. Challenge participants were required to make a prediction, for each month of a 5-year future time period, of three key outcomes: clinical diagnosis, Alzheimer's Disease Assessment Scale Cognitive Subdomain (ADAS-Cog13), and total volume of the ventricles. The methods used by challenge participants included multivariate linear regression, machine learning methods such as support vector machines and deep neural networks, as well as disease progression models. No single submission was best at predicting all three outcomes. For clinical diagnosis and ventricle volume prediction, the best algorithms strongly outperform simple baselines in predictive ability. However, for ADAS-Cog13 no single submitted prediction method was significantly better than random guesswork. Two ensemble methods based on taking the mean and median over all predictions, obtained top scores on almost all tasks. Better than average performance at diagnosis prediction was generally associated with the additional inclusion of features from cerebrospinal fluid (CSF) samples and diffusion tensor imaging (DTI). On the other hand, better performance at ventricle volume prediction was associated with inclusion of summary statistics, such as the slope or maxima/minima of biomarkers. TADPOLE's unique results suggest that current prediction algorithms provide sufficient accuracy to exploit biomarkers related to clinical diagnosis and ventricle volume, for cohort refinement in clinical trials for Alzheimer's disease. However, results call into question the usage of cognitive test scores for patient selection and as a primary endpoint in clinical trials.

HREF: Human Response-Guided Evaluation of Instruction Following in Language Models

Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges. In this work, we reevaluate various choices for automatic evaluation on a wide range of instruction-following tasks. We experiment with methods that leverage human-written responses and observe that they enhance the reliability of automatic evaluations across a wide range of tasks, resulting in up to a 3.2% improvement in agreement with human judges. We also discovered that human-written responses offer an orthogonal perspective to model-generated responses in following instructions and should be used as an additional context when comparing model responses. Based on these observations, we develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF), comprising 4,258 samples across 11 task categories with a composite evaluation setup, employing a composite evaluation setup that selects the most reliable method for each category. In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination. Finally, we study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template. We host a live leaderboard that evaluates LLMs on the private evaluation set of HREF.

reStructured Pre-training

In this work, we try to decipher the internal connection of NLP technology development in the past decades, searching for essence, which rewards us with a (potential) new learning paradigm for NLP tasks, dubbed as reStructured Pre-training (RST). In such a paradigm, the role of data will be re-emphasized, and model pre-training and fine-tuning of downstream tasks are viewed as a process of data storing and accessing. Based on that, we operationalize the simple principle that a good storage mechanism should not only have the ability to cache a large amount of data but also consider the ease of access. We achieve this by pre-training models over restructured data that consist of a variety of valuable information instead of raw data after overcoming several engineering challenges. Experimentally, RST models not only surpass strong competitors (e.g., T0) on 52/55 popular datasets from a variety of NLP tasks, but also achieve superior performance in National College Entrance Examination - English (Gaokao-English),the most authoritative examination in China. Specifically, the proposed system Qin achieves 40 points higher than the average scores made by students and 15 points higher than GPT3 with 1/16 parameters. In particular, Qin gets a high score of 138.5 (the full mark is 150) in the 2018 English exam (national paper III). We have released the Gaokao Benchmark with an online submission platform. In addition, we test our model in the 2022 College Entrance Examination English that happened a few days ago (2022.06.08), and it gets a total score of 134 (v.s. GPT3's 108).

Unintentional Unalignment: Likelihood Displacement in Direct Preference Optimization

Direct Preference Optimization (DPO) and its variants are increasingly used for aligning language models with human preferences. Although these methods are designed to teach a model to generate preferred responses more frequently relative to dispreferred responses, prior work has observed that the likelihood of preferred responses often decreases during training. The current work sheds light on the causes and implications of this counter-intuitive phenomenon, which we term likelihood displacement. We demonstrate that likelihood displacement can be catastrophic, shifting probability mass from preferred responses to responses with an opposite meaning. As a simple example, training a model to prefer No over Never can sharply increase the probability of Yes. Moreover, when aligning the model to refuse unsafe prompts, we show that such displacement can unintentionally lead to unalignment, by shifting probability mass from preferred refusal responses to harmful responses (e.g., reducing the refusal rate of Llama-3-8B-Instruct from 74.4% to 33.4%). We theoretically characterize that likelihood displacement is driven by preferences that induce similar embeddings, as measured by a centered hidden embedding similarity (CHES) score. Empirically, the CHES score enables identifying which training samples contribute most to likelihood displacement in a given dataset. Filtering out these samples effectively mitigated unintentional unalignment in our experiments. More broadly, our results highlight the importance of curating data with sufficiently distinct preferences, for which we believe the CHES score may prove valuable.

ACORN: Aspect-wise Commonsense Reasoning Explanation Evaluation

Evaluating free-text explanations is a multifaceted, subjective, and labor-intensive task. Large language models (LLMs) present an appealing alternative due to their potential for consistency, scalability, and cost-efficiency. In this work, we present ACORN, a new dataset of 3,500 free-text explanations and aspect-wise quality ratings, and use it to gain insights into how LLMs evaluate explanations. We observed that replacing one of the human ratings sometimes maintained, but more often lowered the inter-annotator agreement across different settings and quality aspects, suggesting that their judgments are not always consistent with human raters. We further quantified this difference by comparing the correlation between LLM-generated ratings with majority-voted human ratings across different quality aspects. With the best system, Spearman's rank correlation ranged between 0.53 to 0.95, averaging 0.72 across aspects, indicating moderately high but imperfect alignment. Finally, we considered the alternative of using an LLM as an additional rater when human raters are scarce, and measured the correlation between majority-voted labels with a limited human pool and LLMs as an additional rater, compared to the original gold labels. While GPT-4 improved the outcome when there were only two human raters, in all other observed cases, LLMs were neutral to detrimental when there were three or more human raters. We publicly release the dataset to support future improvements in LLM-in-the-loop evaluation here: https://github.com/a-brassard/ACORN.

WildBench: Benchmarking LLMs with Challenging Tasks from Real Users in the Wild

We introduce WildBench, an automated evaluation framework designed to benchmark large language models (LLMs) using challenging, real-world user queries. WildBench consists of 1,024 tasks carefully selected from over one million human-chatbot conversation logs. For automated evaluation with WildBench, we have developed two metrics, WB-Reward and WB-Score, which are computable using advanced LLMs such as GPT-4-turbo. WildBench evaluation uses task-specific checklists to evaluate model outputs systematically and provides structured explanations that justify the scores and comparisons, resulting in more reliable and interpretable automatic judgments. WB-Reward employs fine-grained pairwise comparisons between model responses, generating five potential outcomes: much better, slightly better, slightly worse, much worse, or a tie. Unlike previous evaluations that employed a single baseline model, we selected three baseline models at varying performance levels to ensure a comprehensive pairwise evaluation. Additionally, we propose a simple method to mitigate length bias, by converting outcomes of ``slightly better/worse'' to ``tie'' if the winner response exceeds the loser one by more than K characters. WB-Score evaluates the quality of model outputs individually, making it a fast and cost-efficient evaluation metric. WildBench results demonstrate a strong correlation with the human-voted Elo ratings from Chatbot Arena on hard tasks. Specifically, WB-Reward achieves a Pearson correlation of 0.98 with top-ranking models. Additionally, WB-Score reaches 0.95, surpassing both ArenaHard's 0.91 and AlpacaEval2.0's 0.89 for length-controlled win rates, as well as the 0.87 for regular win rates.

CARE to Compare: A real-world dataset for anomaly detection in wind turbine data

Anomaly detection plays a crucial role in the field of predictive maintenance for wind turbines, yet the comparison of different algorithms poses a difficult task because domain specific public datasets are scarce. Many comparisons of different approaches either use benchmarks composed of data from many different domains, inaccessible data or one of the few publicly available datasets which lack detailed information about the faults. Moreover, many publications highlight a couple of case studies where fault detection was successful. With this paper we publish a high quality dataset that contains data from 36 wind turbines across 3 different wind farms as well as the most detailed fault information of any public wind turbine dataset as far as we know. The new dataset contains 89 years worth of real-world operating data of wind turbines, distributed across 44 labeled time frames for anomalies that led up to faults, as well as 51 time series representing normal behavior. Additionally, the quality of training data is ensured by turbine-status-based labels for each data point. Furthermore, we propose a new scoring method, called CARE (Coverage, Accuracy, Reliability and Earliness), which takes advantage of the information depth that is present in the dataset to identify a good all-around anomaly detection model. This score considers the anomaly detection performance, the ability to recognize normal behavior properly and the capability to raise as few false alarms as possible while simultaneously detecting anomalies early.

AES Systems Are Both Overstable And Oversensitive: Explaining Why And Proposing Defenses

Deep-learning based Automatic Essay Scoring (AES) systems are being actively used by states and language testing agencies alike to evaluate millions of candidates for life-changing decisions ranging from college applications to visa approvals. However, little research has been put to understand and interpret the black-box nature of deep-learning based scoring algorithms. Previous studies indicate that scoring models can be easily fooled. In this paper, we explore the reason behind their surprising adversarial brittleness. We utilize recent advances in interpretability to find the extent to which features such as coherence, content, vocabulary, and relevance are important for automated scoring mechanisms. We use this to investigate the oversensitivity i.e., large change in output score with a little change in input essay content) and overstability i.e., little change in output scores with large changes in input essay content) of AES. Our results indicate that autoscoring models, despite getting trained as "end-to-end" models with rich contextual embeddings such as BERT, behave like bag-of-words models. A few words determine the essay score without the requirement of any context making the model largely overstable. This is in stark contrast to recent probing studies on pre-trained representation learning models, which show that rich linguistic features such as parts-of-speech and morphology are encoded by them. Further, we also find that the models have learnt dataset biases, making them oversensitive. To deal with these issues, we propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies. We find that our proposed models are able to detect unusual attribution patterns and flag adversarial samples successfully.

Benchmarking Foundation Models with Language-Model-as-an-Examiner

Numerous benchmarks have been established to assess the performance of foundation models on open-ended question answering, which serves as a comprehensive test of a model's ability to understand and generate language in a manner similar to humans. Most of these works focus on proposing new datasets, however, we see two main issues within previous benchmarking pipelines, namely testing leakage and evaluation automation. In this paper, we propose a novel benchmarking framework, Language-Model-as-an-Examiner, where the LM serves as a knowledgeable examiner that formulates questions based on its knowledge and evaluates responses in a reference-free manner. Our framework allows for effortless extensibility as various LMs can be adopted as the examiner, and the questions can be constantly updated given more diverse trigger topics. For a more comprehensive and equitable evaluation, we devise three strategies: (1) We instruct the LM examiner to generate questions across a multitude of domains to probe for a broad acquisition, and raise follow-up questions to engage in a more in-depth assessment. (2) Upon evaluation, the examiner combines both scoring and ranking measurements, providing a reliable result as it aligns closely with human annotations. (3) We additionally propose a decentralized Peer-examination method to address the biases in a single examiner. Our data and benchmarking results are available at: https://lmexam.com.

GenAI-Bench: Evaluating and Improving Compositional Text-to-Visual Generation

While text-to-visual models now produce photo-realistic images and videos, they struggle with compositional text prompts involving attributes, relationships, and higher-order reasoning such as logic and comparison. In this work, we conduct an extensive human study on GenAI-Bench to evaluate the performance of leading image and video generation models in various aspects of compositional text-to-visual generation. We also compare automated evaluation metrics against our collected human ratings and find that VQAScore -- a metric measuring the likelihood that a VQA model views an image as accurately depicting the prompt -- significantly outperforms previous metrics such as CLIPScore. In addition, VQAScore can improve generation in a black-box manner (without finetuning) via simply ranking a few (3 to 9) candidate images. Ranking by VQAScore is 2x to 3x more effective than other scoring methods like PickScore, HPSv2, and ImageReward at improving human alignment ratings for DALL-E 3 and Stable Diffusion, especially on compositional prompts that require advanced visio-linguistic reasoning. We will release a new GenAI-Rank benchmark with over 40,000 human ratings to evaluate scoring metrics on ranking images generated from the same prompt. Lastly, we discuss promising areas for improvement in VQAScore, such as addressing fine-grained visual details. We will release all human ratings (over 80,000) to facilitate scientific benchmarking of both generative models and automated metrics.

QuRating: Selecting High-Quality Data for Training Language Models

Selecting high-quality pre-training data is important for creating capable language models, but existing methods rely on simple heuristics. We introduce QuRating, a method for selecting pre-training data that captures the abstract qualities of texts which humans intuitively perceive. In this paper, we investigate four qualities - writing style, required expertise, facts & trivia, and educational value. We find that LLMs are able to discern these qualities and observe that they are better at making pairwise judgments of texts than at rating the quality of a text directly. We train a QuRater model to learn scalar ratings from pairwise judgments, and use it to annotate a 260B training corpus with quality ratings for each of the four criteria. In our experiments, we select 30B tokens according to the different quality ratings and train 1.3B-parameter language models on the selected data. We find that it is important to balance quality and diversity, as selecting only the highest-rated documents leads to poor results. When we sample using quality ratings as logits over documents, our models achieve lower perplexity and stronger in-context learning performance than baselines. Beyond data selection, we use the quality ratings to construct a training curriculum which improves performance without changing the training dataset. We extensively analyze the quality ratings and discuss their characteristics, biases, and wider implications.

Out-of-Distribution Detection & Applications With Ablated Learned Temperature Energy

As deep neural networks become adopted in high-stakes domains, it is crucial to be able to identify when inference inputs are Out-of-Distribution (OOD) so that users can be alerted of likely drops in performance and calibration despite high confidence. Among many others, existing methods use the following two scores to do so without training on any apriori OOD examples: a learned temperature and an energy score. In this paper we introduce Ablated Learned Temperature Energy (or "AbeT" for short), a method which combines these prior methods in novel ways with effective modifications. Due to these contributions, AbeT lowers the False Positive Rate at 95% True Positive Rate (FPR@95) by 35.39% in classification (averaged across all ID and OOD datasets measured) compared to state of the art without training networks in multiple stages or requiring hyperparameters or test-time backward passes. We additionally provide empirical insights as to how our model learns to distinguish between In-Distribution (ID) and OOD samples while only being explicitly trained on ID samples via exposure to misclassified ID examples at training time. Lastly, we show the efficacy of our method in identifying predicted bounding boxes and pixels corresponding to OOD objects in object detection and semantic segmentation, respectively - with an AUROC increase of 5.15% in object detection and both a decrease in FPR@95 of 41.48% and an increase in AUPRC of 34.20% on average in semantic segmentation compared to previous state of the art.

Automatic Assessment of Divergent Thinking in Chinese Language with TransDis: A Transformer-Based Language Model Approach

Language models have been increasingly popular for automatic creativity assessment, generating semantic distances to objectively measure the quality of creative ideas. However, there is currently a lack of an automatic assessment system for evaluating creative ideas in the Chinese language. To address this gap, we developed TransDis, a scoring system using transformer-based language models, capable of providing valid originality (quality) and flexibility (variety) scores for Alternative Uses Task (AUT) responses in Chinese. Study 1 demonstrated that the latent model-rated originality factor, comprised of three transformer-based models, strongly predicted human originality ratings, and the model-rated flexibility strongly correlated with human flexibility ratings as well. Criterion validity analyses indicated that model-rated originality and flexibility positively correlated to other creativity measures, demonstrating similar validity to human ratings. Study 2 & 3 showed that TransDis effectively distinguished participants instructed to provide creative vs. common uses (Study 2) and participants instructed to generate ideas in a flexible vs. persistent way (Study 3). Our findings suggest that TransDis can be a reliable and low-cost tool for measuring idea originality and flexibility in Chinese language, potentially paving the way for automatic creativity assessment in other languages. We offer an open platform to compute originality and flexibility for AUT responses in Chinese and over 50 other languages (https://osf.io/59jv2/).

Benchmark Agreement Testing Done Right: A Guide for LLM Benchmark Evaluation

Recent advancements in Language Models (LMs) have catalyzed the creation of multiple benchmarks, designed to assess these models' general capabilities. A crucial task, however, is assessing the validity of the benchmarks themselves. This is most commonly done via Benchmark Agreement Testing (BAT), where new benchmarks are validated against established ones using some agreement metric (e.g., rank correlation). Despite the crucial role of BAT for benchmark builders and consumers, there are no standardized procedures for such agreement testing. This deficiency can lead to invalid conclusions, fostering mistrust in benchmarks and upending the ability to properly choose the appropriate benchmark to use. By analyzing over 40 prominent benchmarks, we demonstrate how some overlooked methodological choices can significantly influence BAT results, potentially undermining the validity of conclusions. To address these inconsistencies, we propose a set of best practices for BAT and demonstrate how utilizing these methodologies greatly improves BAT robustness and validity. To foster adoption and facilitate future research,, we introduce BenchBench, a python package for BAT, and release the BenchBench-leaderboard, a meta-benchmark designed to evaluate benchmarks using their peers. Our findings underscore the necessity for standardized BAT, ensuring the robustness and validity of benchmark evaluations in the evolving landscape of language model research. BenchBench Package: https://github.com/IBM/BenchBench Leaderboard: https://huggingface.co/spaces/per/BenchBench

Evaluating ChatGPT as a Recommender System: A Rigorous Approach

Recent popularity surrounds large AI language models due to their impressive natural language capabilities. They contribute significantly to language-related tasks, including prompt-based learning, making them valuable for various specific tasks. This approach unlocks their full potential, enhancing precision and generalization. Research communities are actively exploring their applications, with ChatGPT receiving recognition. Despite extensive research on large language models, their potential in recommendation scenarios still needs to be explored. This study aims to fill this gap by investigating ChatGPT's capabilities as a zero-shot recommender system. Our goals include evaluating its ability to use user preferences for recommendations, reordering existing recommendation lists, leveraging information from similar users, and handling cold-start situations. We assess ChatGPT's performance through comprehensive experiments using three datasets (MovieLens Small, Last.FM, and Facebook Book). We compare ChatGPT's performance against standard recommendation algorithms and other large language models, such as GPT-3.5 and PaLM-2. To measure recommendation effectiveness, we employ widely-used evaluation metrics like Mean Average Precision (MAP), Recall, Precision, F1, normalized Discounted Cumulative Gain (nDCG), Item Coverage, Expected Popularity Complement (EPC), Average Coverage of Long Tail (ACLT), Average Recommendation Popularity (ARP), and Popularity-based Ranking-based Equal Opportunity (PopREO). Through thoroughly exploring ChatGPT's abilities in recommender systems, our study aims to contribute to the growing body of research on the versatility and potential applications of large language models. Our experiment code is available on the GitHub repository: https://github.com/sisinflab/Recommender-ChatGPT

A Named Entity Based Approach to Model Recipes

Traditional cooking recipes follow a structure which can be modelled very well if the rules and semantics of the different sections of the recipe text are analyzed and represented accurately. We propose a structure that can accurately represent the recipe as well as a pipeline to infer the best representation of the recipe in this uniform structure. The Ingredients section in a recipe typically lists down the ingredients required and corresponding attributes such as quantity, temperature, and processing state. This can be modelled by defining these attributes and their values. The physical entities which make up a recipe can be broadly classified into utensils, ingredients and their combinations that are related by cooking techniques. The instruction section lists down a series of events in which a cooking technique or process is applied upon these utensils and ingredients. We model these relationships in the form of tuples. Thus, using a combination of these methods we model cooking recipe in the dataset RecipeDB to show the efficacy of our method. This mined information model can have several applications which include translating recipes between languages, determining similarity between recipes, generation of novel recipes and estimation of the nutritional profile of recipes. For the purpose of recognition of ingredient attributes, we train the Named Entity Relationship (NER) models and analyze the inferences with the help of K-Means clustering. Our model presented with an F1 score of 0.95 across all datasets. We use a similar NER tagging model for labelling cooking techniques (F1 score = 0.88) and utensils (F1 score = 0.90) within the instructions section. Finally, we determine the temporal sequence of relationships between ingredients, utensils and cooking techniques for modeling the instruction steps.

Verifiable by Design: Aligning Language Models to Quote from Pre-Training Data

For humans to trust the fluent generations of large language models (LLMs), they must be able to verify their correctness against trusted, external sources. Recent efforts aim to increase verifiability through citations of retrieved documents or post-hoc provenance. However, such citations are prone to mistakes that further complicate their verifiability. To address these limitations, we tackle the verifiability goal with a different philosophy: we trivialize the verification process by developing models that quote verbatim statements from trusted sources in pre-training data. We propose Quote-Tuning, which demonstrates the feasibility of aligning LLMs to leverage memorized information and quote from pre-training data. Quote-Tuning quantifies quoting against large corpora with efficient membership inference tools, and uses the amount of quotes as an implicit reward signal to construct a synthetic preference dataset for quoting, without any human annotation. Next, the target model is aligned to quote using preference optimization algorithms. Experimental results show that Quote-Tuning significantly increases the percentage of LLM generation quoted verbatim from high-quality pre-training documents by 55% to 130% relative to untuned models while maintaining response quality. Further experiments demonstrate that Quote-Tuning generalizes quoting to out-of-domain data, is applicable in different tasks, and provides additional benefits to truthfulness. Quote-Tuning not only serves as a hassle-free method to increase quoting but also opens up avenues for improving LLM trustworthiness through better verifiability.

Large Language Models are not Fair Evaluators

In this paper, we uncover a systematic bias in the evaluation paradigm of adopting large language models~(LLMs), e.g., GPT-4, as a referee to score and compare the quality of responses generated by candidate models. We find that the quality ranking of candidate responses can be easily hacked by simply altering their order of appearance in the context. This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other, e.g., Vicuna-13B could beat ChatGPT on 66 over 80 tested queries with ChatGPT as an evaluator. To address this issue, we propose a calibration framework with three simple yet effective strategies: 1) Multiple Evidence Calibration, which requires the evaluator model to generate multiple evaluation evidence before assigning ratings; 2) Balanced Position Calibration, which aggregates results across various orders to determine the final score; 3) Human-in-the-Loop Calibration, which introduces a balanced position diversity entropy to measure the difficulty of each example and seeks human assistance when needed. We also manually annotate the "win/tie/lose" outcomes of responses from ChatGPT and Vicuna-13B in the Vicuna Benchmark's question prompt, and extensive experiments demonstrate that our approach successfully mitigates evaluation bias, resulting in closer alignment with human judgments. We release our code and human annotation at https://github.com/i-Eval/FairEval to facilitate future research.

T2Ranking: A large-scale Chinese Benchmark for Passage Ranking

Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/

SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs

Large language models (LLMs) have made significant advancements in various natural language processing tasks, including question answering (QA) tasks. While incorporating new information with the retrieval of relevant passages is a promising way to improve QA with LLMs, the existing methods often require additional fine-tuning which becomes infeasible with recent LLMs. Augmenting retrieved passages via prompting has the potential to address this limitation, but this direction has been limitedly explored. To this end, we design a simple yet effective framework to enhance open-domain QA (ODQA) with LLMs, based on the summarized retrieval (SuRe). SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval that could be viewed as an explicit rationale extracted from the retrieved passages. Specifically, SuRe first constructs summaries of the retrieved passages for each of the multiple answer candidates. Then, SuRe confirms the most plausible answer from the candidate set by evaluating the validity and ranking of the generated summaries. Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches. SuRe also can be integrated with a broad range of retrieval methods and LLMs. Finally, the generated summaries from SuRe show additional advantages to measure the importance of retrieved passages and serve as more preferred rationales by models and humans.

Development of a Large-scale Dataset of Chest Computed Tomography Reports in Japanese and a High-performance Finding Classification Model

Background: Recent advances in large language models highlight the need for high-quality multilingual medical datasets. While Japan leads globally in CT scanner deployment and utilization, the lack of large-scale Japanese radiology datasets has hindered the development of specialized language models for medical imaging analysis. Objective: To develop a comprehensive Japanese CT report dataset through machine translation and establish a specialized language model for structured finding classification. Additionally, to create a rigorously validated evaluation dataset through expert radiologist review. Methods: We translated the CT-RATE dataset (24,283 CT reports from 21,304 patients) into Japanese using GPT-4o mini. The training dataset consisted of 22,778 machine-translated reports, while the validation dataset included 150 radiologist-revised reports. We developed CT-BERT-JPN based on "tohoku-nlp/bert-base-japanese-v3" architecture for extracting 18 structured findings from Japanese radiology reports. Results: Translation metrics showed strong performance with BLEU scores of 0.731 and 0.690, and ROUGE scores ranging from 0.770 to 0.876 for Findings and from 0.748 to 0.857 for Impression sections. CT-BERT-JPN demonstrated superior performance compared to GPT-4o in 11 out of 18 conditions, including lymphadenopathy (+14.2%), interlobular septal thickening (+10.9%), and atelectasis (+7.4%). The model maintained F1 scores exceeding 0.95 in 14 out of 18 conditions and achieved perfect scores in four conditions. Conclusions: Our study establishes a robust Japanese CT report dataset and demonstrates the effectiveness of a specialized language model for structured finding classification. The hybrid approach of machine translation and expert validation enables the creation of large-scale medical datasets while maintaining high quality.

Prompt Optimization with Human Feedback

Large language models (LLMs) have demonstrated remarkable performances in various tasks. However, the performance of LLMs heavily depends on the input prompt, which has given rise to a number of recent works on prompt optimization. However, previous works often require the availability of a numeric score to assess the quality of every prompt. Unfortunately, when a human user interacts with a black-box LLM, attaining such a score is often infeasible and unreliable. Instead, it is usually significantly easier and more reliable to obtain preference feedback from a human user, i.e., showing the user the responses generated from a pair of prompts and asking the user which one is preferred. Therefore, in this paper, we study the problem of prompt optimization with human feedback (POHF), in which we aim to optimize the prompt for a black-box LLM using only human preference feedback. Drawing inspiration from dueling bandits, we design a theoretically principled strategy to select a pair of prompts to query for preference feedback in every iteration, and hence introduce our algorithm named automated POHF (APOHF). We apply our APOHF algorithm to various tasks, including optimizing user instructions, prompt optimization for text-to-image generative models, and response optimization with human feedback (i.e., further refining the response using a variant of our APOHF). The results demonstrate that our APOHF can efficiently find a good prompt using a small number of preference feedback instances. Our code can be found at https://github.com/xqlin98/APOHF.

Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models

Retrieval-augmented language models (RALMs) represent a substantial advancement in the capabilities of large language models, notably in reducing factual hallucination by leveraging external knowledge sources. However, the reliability of the retrieved information is not always guaranteed. The retrieval of irrelevant data can lead to misguided responses, and potentially causing the model to overlook its inherent knowledge, even when it possesses adequate information to address the query. Moreover, standard RALMs often struggle to assess whether they possess adequate knowledge, both intrinsic and retrieved, to provide an accurate answer. In situations where knowledge is lacking, these systems should ideally respond with "unknown" when the answer is unattainable. In response to these challenges, we introduces Chain-of-Noting (CoN), a novel approach aimed at improving the robustness of RALMs in facing noisy, irrelevant documents and in handling unknown scenarios. The core idea of CoN is to generate sequential reading notes for retrieved documents, enabling a thorough evaluation of their relevance to the given question and integrating this information to formulate the final answer. We employed ChatGPT to create training data for CoN, which was subsequently trained on an LLaMa-2 7B model. Our experiments across four open-domain QA benchmarks show that RALMs equipped with CoN significantly outperform standard RALMs. Notably, CoN achieves an average improvement of +7.9 in EM score given entirely noisy retrieved documents and +10.5 in rejection rates for real-time questions that fall outside the pre-training knowledge scope.

What are the best systems? New perspectives on NLP Benchmarking

In Machine Learning, a benchmark refers to an ensemble of datasets associated with one or multiple metrics together with a way to aggregate different systems performances. They are instrumental in (i) assessing the progress of new methods along different axes and (ii) selecting the best systems for practical use. This is particularly the case for NLP with the development of large pre-trained models (e.g. GPT, BERT) that are expected to generalize well on a variety of tasks. While the community mainly focused on developing new datasets and metrics, there has been little interest in the aggregation procedure, which is often reduced to a simple average over various performance measures. However, this procedure can be problematic when the metrics are on a different scale, which may lead to spurious conclusions. This paper proposes a new procedure to rank systems based on their performance across different tasks. Motivated by the social choice theory, the final system ordering is obtained through aggregating the rankings induced by each task and is theoretically grounded. We conduct extensive numerical experiments (on over 270k scores) to assess the soundness of our approach both on synthetic and real scores (e.g. GLUE, EXTREM, SEVAL, TAC, FLICKR). In particular, we show that our method yields different conclusions on state-of-the-art systems than the mean-aggregation procedure while being both more reliable and robust.

Subset Selection Based On Multiple Rankings in the Presence of Bias: Effectiveness of Fairness Constraints for Multiwinner Voting Score Functions

We consider the problem of subset selection where one is given multiple rankings of items and the goal is to select the highest ``quality'' subset. Score functions from the multiwinner voting literature have been used to aggregate rankings into quality scores for subsets. We study this setting of subset selection problems when, in addition, rankings may contain systemic or unconscious biases toward a group of items. For a general model of input rankings and biases, we show that requiring the selected subset to satisfy group fairness constraints can improve the quality of the selection with respect to unbiased rankings. Importantly, we show that for fairness constraints to be effective, different multiwinner score functions may require a drastically different number of rankings: While for some functions, fairness constraints need an exponential number of rankings to recover a close-to-optimal solution, for others, this dependency is only polynomial. This result relies on a novel notion of ``smoothness'' of submodular functions in this setting that quantifies how well a function can ``correctly'' assess the quality of items in the presence of bias. The results in this paper can be used to guide the choice of multiwinner score functions for the subset selection setting considered here; we additionally provide a tool to empirically enable this.

How Discriminative Are Your Qrels? How To Study the Statistical Significance of Document Adjudication Methods

Creating test collections for offline retrieval evaluation requires human effort to judge documents' relevance. This expensive activity motivated much work in developing methods for constructing benchmarks with fewer assessment costs. In this respect, adjudication methods actively decide both which documents and the order in which experts review them, in order to better exploit the assessment budget or to lower it. Researchers evaluate the quality of those methods by measuring the correlation between the known gold ranking of systems under the full collection and the observed ranking of systems under the lower-cost one. This traditional analysis ignores whether and how the low-cost judgements impact on the statistically significant differences among systems with respect to the full collection. We fill this void by proposing a novel methodology to evaluate how the low-cost adjudication methods preserve the pairwise significant differences between systems as the full collection. In other terms, while traditional approaches look for stability in answering the question "is system A better than system B?", our proposed approach looks for stability in answering the question "is system A significantly better than system B?", which is the ultimate questions researchers need to answer to guarantee the generalisability of their results. Among other results, we found that the best methods in terms of ranking of systems correlation do not always match those preserving statistical significance.

Harnessing Diversity for Important Data Selection in Pretraining Large Language Models

Data selection is of great significance in pre-training large language models, given the variation in quality within the large-scale available training corpora. To achieve this, researchers are currently investigating the use of data influence to measure the importance of data instances, i.e., a high influence score indicates that incorporating this instance to the training set is likely to enhance the model performance. Consequently, they select the top-k instances with the highest scores. However, this approach has several limitations. (1) Computing the influence of all available data is time-consuming. (2) The selected data instances are not diverse enough, which may hinder the pre-trained model's ability to generalize effectively to various downstream tasks. In this paper, we introduce Quad, a data selection approach that considers both quality and diversity by using data influence to achieve state-of-the-art pre-training results. In particular, noting that attention layers capture extensive semantic details, we have adapted the accelerated iHVP computation methods for attention layers, enhancing our ability to evaluate the influence of data, i.e., its quality. For the diversity, Quad clusters the dataset into similar data instances within each cluster and diverse instances across different clusters. For each cluster, if we opt to select data from it, we take some samples to evaluate the influence to prevent processing all instances. To determine which clusters to select, we utilize the classic Multi-Armed Bandit method, treating each cluster as an arm. This approach favors clusters with highly influential instances (ensuring high quality) or clusters that have been selected less frequently (ensuring diversity), thereby well balancing between quality and diversity.

Generating and Evaluating Tests for K-12 Students with Language Model Simulations: A Case Study on Sentence Reading Efficiency

Developing an educational test can be expensive and time-consuming, as each item must be written by experts and then evaluated by collecting hundreds of student responses. Moreover, many tests require multiple distinct sets of questions administered throughout the school year to closely monitor students' progress, known as parallel tests. In this study, we focus on tests of silent sentence reading efficiency, used to assess students' reading ability over time. To generate high-quality parallel tests, we propose to fine-tune large language models (LLMs) to simulate how previous students would have responded to unseen items. With these simulated responses, we can estimate each item's difficulty and ambiguity. We first use GPT-4 to generate new test items following a list of expert-developed rules and then apply a fine-tuned LLM to filter the items based on criteria from psychological measurements. We also propose an optimal-transport-inspired technique for generating parallel tests and show the generated tests closely correspond to the original test's difficulty and reliability based on crowdworker responses. Our evaluation of a generated test with 234 students from grades 2 to 8 produces test scores highly correlated (r=0.93) to those of a standard test form written by human experts and evaluated across thousands of K-12 students.

De-identification of Patient Notes with Recurrent Neural Networks

Objective: Patient notes in electronic health records (EHRs) may contain critical information for medical investigations. However, the vast majority of medical investigators can only access de-identified notes, in order to protect the confidentiality of patients. In the United States, the Health Insurance Portability and Accountability Act (HIPAA) defines 18 types of protected health information (PHI) that needs to be removed to de-identify patient notes. Manual de-identification is impractical given the size of EHR databases, the limited number of researchers with access to the non-de-identified notes, and the frequent mistakes of human annotators. A reliable automated de-identification system would consequently be of high value. Materials and Methods: We introduce the first de-identification system based on artificial neural networks (ANNs), which requires no handcrafted features or rules, unlike existing systems. We compare the performance of the system with state-of-the-art systems on two datasets: the i2b2 2014 de-identification challenge dataset, which is the largest publicly available de-identification dataset, and the MIMIC de-identification dataset, which we assembled and is twice as large as the i2b2 2014 dataset. Results: Our ANN model outperforms the state-of-the-art systems. It yields an F1-score of 97.85 on the i2b2 2014 dataset, with a recall 97.38 and a precision of 97.32, and an F1-score of 99.23 on the MIMIC de-identification dataset, with a recall 99.25 and a precision of 99.06. Conclusion: Our findings support the use of ANNs for de-identification of patient notes, as they show better performance than previously published systems while requiring no feature engineering.

Capabilities of GPT-4 on Medical Challenge Problems

Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation across various domains, including medicine. We present a comprehensive evaluation of GPT-4, a state-of-the-art LLM, on medical competency examinations and benchmark datasets. GPT-4 is a general-purpose model that is not specialized for medical problems through training or engineered to solve clinical tasks. Our analysis covers two sets of official practice materials for the USMLE, a three-step examination program used to assess clinical competency and grant licensure in the United States. We also evaluate performance on the MultiMedQA suite of benchmark datasets. Beyond measuring model performance, experiments were conducted to investigate the influence of test questions containing both text and images on model performance, probe for memorization of content during training, and study probability calibration, which is of critical importance in high-stakes applications like medicine. Our results show that GPT-4, without any specialized prompt crafting, exceeds the passing score on USMLE by over 20 points and outperforms earlier general-purpose models (GPT-3.5) as well as models specifically fine-tuned on medical knowledge (Med-PaLM, a prompt-tuned version of Flan-PaLM 540B). In addition, GPT-4 is significantly better calibrated than GPT-3.5, demonstrating a much-improved ability to predict the likelihood that its answers are correct. We also explore the behavior of the model qualitatively through a case study that shows the ability of GPT-4 to explain medical reasoning, personalize explanations to students, and interactively craft new counterfactual scenarios around a medical case. Implications of the findings are discussed for potential uses of GPT-4 in medical education, assessment, and clinical practice, with appropriate attention to challenges of accuracy and safety.

Evaluating Robustness of Reward Models for Mathematical Reasoning

Reward models are key in reinforcement learning from human feedback (RLHF) systems, aligning the model behavior with human preferences. Particularly in the math domain, there have been plenty of studies using reward models to align policies for improving reasoning capabilities. Recently, as the importance of reward models has been emphasized, RewardBench is proposed to understand their behavior. However, we figure out that the math subset of RewardBench has different representations between chosen and rejected completions, and relies on a single comparison, which may lead to unreliable results as it only see an isolated case. Therefore, it fails to accurately present the robustness of reward models, leading to a misunderstanding of its performance and potentially resulting in reward hacking. In this work, we introduce a new design for reliable evaluation of reward models, and to validate this, we construct RewardMATH, a benchmark that effectively represents the robustness of reward models in mathematical reasoning tasks. We demonstrate that the scores on RewardMATH strongly correlate with the results of optimized policy and effectively estimate reward overoptimization, whereas the existing benchmark shows almost no correlation. The results underscore the potential of our design to enhance the reliability of evaluation, and represent the robustness of reward model. We make our code and data publicly available.

An Algorithm for Recommending Groceries Based on an Item Ranking Method

This research proposes a new recommender system algorithm for online grocery shopping. The algorithm is based on the perspective that, since the grocery items are usually bought in bulk, a grocery recommender system should be capable of recommending the items in bulk. The algorithm figures out the possible dishes a user may cook based on the items added to the basket and recommends the ingredients accordingly. Our algorithm does not depend on the user ratings. Customers usually do not have the patience to rate the groceries they purchase. Therefore, algorithms that are not dependent on user ratings need to be designed. Instead of using a brute force search, this algorithm limits the search space to a set of only a few probably food categories. Each food category consists of several food subcategories. For example, "fried rice" and "biryani" are food subcategories that belong to the food category "rice". For each food category, items are ranked according to how well they can differentiate a food subcategory. To each food subcategory in the activated search space, this algorithm attaches a score. The score is calculated based on the rank of the items added to the basket. Once the score exceeds a threshold value, its corresponding subcategory gets activated. The algorithm then uses a basket-to-recipe similarity measure to identify the best recipe matches within the activated subcategories only. This reduces the search space to a great extent. We may argue that this algorithm is similar to the content-based recommender system in some sense, but it does not suffer from the limitations like limited content, over-specialization, or the new user problem.

Language Models (Mostly) Know What They Know

We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.

HRDE: Retrieval-Augmented Large Language Models for Chinese Health Rumor Detection and Explainability

As people increasingly prioritize their health, the speed and breadth of health information dissemination on the internet have also grown. At the same time, the presence of false health information (health rumors) intermingled with genuine content poses a significant potential threat to public health. However, current research on Chinese health rumors still lacks a large-scale, public, and open-source dataset of health rumor information, as well as effective and reliable rumor detection methods. This paper addresses this gap by constructing a dataset containing 1.12 million health-related rumors (HealthRCN) through web scraping of common health-related questions and a series of data processing steps. HealthRCN is the largest known dataset of Chinese health information rumors to date. Based on this dataset, we propose retrieval-augmented large language models for Chinese health rumor detection and explainability (HRDE). This model leverages retrieved relevant information to accurately determine whether the input health information is a rumor and provides explanatory responses, effectively aiding users in verifying the authenticity of health information. In evaluation experiments, we compared multiple models and found that HRDE outperformed them all, including GPT-4-1106-Preview, in rumor detection accuracy and answer quality. HRDE achieved an average accuracy of 91.04% and an F1 score of 91.58%.

TIGERScore: Towards Building Explainable Metric for All Text Generation Tasks

We present TIGERScore, a Trained metric that follows Instruction Guidance to perform Explainable, and Reference-free evaluation over a wide spectrum of text generation tasks. Different from other automatic evaluation methods that only provide arcane scores, TIGERScore is guided by the natural language instruction to provide error analysis to pinpoint the mistakes in the generated text. Our metric is based on LLaMA, trained on our meticulously curated instruction-tuning dataset MetricInstruct which covers 6 text generation tasks and 23 text generation datasets. The dataset consists of 48K quadruple in the form of (instruction, input, system output rightarrow error analysis). We collected the `system outputs' through diverse channels to cover different types of errors. To quantitatively assess our metric, we evaluate its correlation with human ratings on 5 held-in datasets, 2 held-out datasets and show that TIGERScore can achieve the highest overall Spearman's correlation with human ratings across these datasets and outperforms other metrics significantly. As a reference-free metric, its correlation can even surpass the best existing reference-based metrics. To further qualitatively assess the rationale generated by our metric, we conduct human evaluation on the generated explanations and found that the explanations are 70.8\% accurate. Through these experimental results, we believe TIGERScore demonstrates the possibility of building universal explainable metrics to evaluate any text generation task.

Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs

Empowering large language models to accurately express confidence in their answers is essential for trustworthy decision-making. Previous confidence elicitation methods, which primarily rely on white-box access to internal model information or model fine-tuning, have become less suitable for LLMs, especially closed-source commercial APIs. This leads to a growing need to explore the untapped area of black-box approaches for LLM uncertainty estimation. To better break down the problem, we define a systematic framework with three components: prompting strategies for eliciting verbalized confidence, sampling methods for generating multiple responses, and aggregation techniques for computing consistency. We then benchmark these methods on two key tasks-confidence calibration and failure prediction-across five types of datasets (e.g., commonsense and arithmetic reasoning) and five widely-used LLMs including GPT-4 and LLaMA 2 Chat. Our analysis uncovers several key insights: 1) LLMs, when verbalizing their confidence, tend to be overconfident, potentially imitating human patterns of expressing confidence. 2) As model capability scales up, both calibration and failure prediction performance improve. 3) Employing our proposed strategies, such as human-inspired prompts, consistency among multiple responses, and better aggregation strategies can help mitigate this overconfidence from various perspectives. 4) Comparisons with white-box methods indicate that while white-box methods perform better, the gap is narrow, e.g., 0.522 to 0.605 in AUROC. Despite these advancements, none of these techniques consistently outperform others, and all investigated methods struggle in challenging tasks, such as those requiring professional knowledge, indicating significant scope for improvement. We believe this study can serve as a strong baseline and provide insights for eliciting confidence in black-box LLMs.

Preference-free Alignment Learning with Regularized Relevance Reward

Learning from human preference has been considered key to aligning Large Language Models (LLMs) with human values. However, contrary to popular belief, our preliminary study reveals that reward models trained on human preference datasets tend to give higher scores to long off-topic responses than short on-topic ones. Motivated by this observation, we explore a preference-free approach utilizing `relevance' as a key objective for alignment. On our first attempt, we find that the relevance score obtained by a retriever alone is vulnerable to reward hacking, i.e., overoptimizing to undesired shortcuts, when we utilize the score as a reward for reinforcement learning. To mitigate it, we integrate effective inductive biases into the vanilla relevance to regularize each other, resulting in a mixture of reward functions: Regularized Relevance Reward (R^3). R^3 significantly improves performance on preference benchmarks by providing a robust reward signal. Notably, R^3 does not require any human preference datasets (i.e., preference-free), outperforming open-source reward models in improving human preference. Our analysis demonstrates that R^3 has advantages in elevating human preference while minimizing its side effects. Finally, we show the generalizability of R^3, consistently improving instruction-tuned models in various backbones and sizes without additional dataset cost. Our code is available at https://github.com/naver-ai/RRR.

ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs

In the midst of widespread misinformation and disinformation through social media and the proliferation of AI-generated texts, it has become increasingly difficult for people to validate and trust information they encounter. Many fact-checking approaches and tools have been developed, but they often lack appropriate explainability or granularity to be useful in various contexts. A text validation method that is easy to use, accessible, and can perform fine-grained evidence attribution has become crucial. More importantly, building user trust in such a method requires presenting the rationale behind each prediction, as research shows this significantly influences people's belief in automated systems. It is also paramount to localize and bring users' attention to the specific problematic content, instead of providing simple blanket labels. In this paper, we present ClaimVer, a human-centric framework tailored to meet users' informational and verification needs by generating rich annotations and thereby reducing cognitive load. Designed to deliver comprehensive evaluations of texts, it highlights each claim, verifies it against a trusted knowledge graph (KG), presents the evidence, and provides succinct, clear explanations for each claim prediction. Finally, our framework introduces an attribution score, enhancing applicability across a wide range of downstream tasks.

Revisiting Text-to-Image Evaluation with Gecko: On Metrics, Prompts, and Human Ratings

While text-to-image (T2I) generative models have become ubiquitous, they do not necessarily generate images that align with a given prompt. While previous work has evaluated T2I alignment by proposing metrics, benchmarks, and templates for collecting human judgements, the quality of these components is not systematically measured. Human-rated prompt sets are generally small and the reliability of the ratings -- and thereby the prompt set used to compare models -- is not evaluated. We address this gap by performing an extensive study evaluating auto-eval metrics and human templates. We provide three main contributions: (1) We introduce a comprehensive skills-based benchmark that can discriminate models across different human templates. This skills-based benchmark categorises prompts into sub-skills, allowing a practitioner to pinpoint not only which skills are challenging, but at what level of complexity a skill becomes challenging. (2) We gather human ratings across four templates and four T2I models for a total of >100K annotations. This allows us to understand where differences arise due to inherent ambiguity in the prompt and where they arise due to differences in metric and model quality. (3) Finally, we introduce a new QA-based auto-eval metric that is better correlated with human ratings than existing metrics for our new dataset, across different human templates, and on TIFA160.

Closing the gap between open-source and commercial large language models for medical evidence summarization

Large language models (LLMs) hold great promise in summarizing medical evidence. Most recent studies focus on the application of proprietary LLMs. Using proprietary LLMs introduces multiple risk factors, including a lack of transparency and vendor dependency. While open-source LLMs allow better transparency and customization, their performance falls short compared to proprietary ones. In this study, we investigated to what extent fine-tuning open-source LLMs can further improve their performance in summarizing medical evidence. Utilizing a benchmark dataset, MedReview, consisting of 8,161 pairs of systematic reviews and summaries, we fine-tuned three broadly-used, open-sourced LLMs, namely PRIMERA, LongT5, and Llama-2. Overall, the fine-tuned LLMs obtained an increase of 9.89 in ROUGE-L (95% confidence interval: 8.94-10.81), 13.21 in METEOR score (95% confidence interval: 12.05-14.37), and 15.82 in CHRF score (95% confidence interval: 13.89-16.44). The performance of fine-tuned LongT5 is close to GPT-3.5 with zero-shot settings. Furthermore, smaller fine-tuned models sometimes even demonstrated superior performance compared to larger zero-shot models. The above trends of improvement were also manifested in both human and GPT4-simulated evaluations. Our results can be applied to guide model selection for tasks demanding particular domain knowledge, such as medical evidence summarization.

Automatic Personalized Impression Generation for PET Reports Using Large Language Models

In this study, we aimed to determine if fine-tuned large language models (LLMs) can generate accurate, personalized impressions for whole-body PET reports. Twelve language models were trained on a corpus of PET reports using the teacher-forcing algorithm, with the report findings as input and the clinical impressions as reference. An extra input token encodes the reading physician's identity, allowing models to learn physician-specific reporting styles. Our corpus comprised 37,370 retrospective PET reports collected from our institution between 2010 and 2022. To identify the best LLM, 30 evaluation metrics were benchmarked against quality scores from two nuclear medicine (NM) physicians, with the most aligned metrics selecting the model for expert evaluation. In a subset of data, model-generated impressions and original clinical impressions were assessed by three NM physicians according to 6 quality dimensions (3-point scale) and an overall utility score (5-point scale). Each physician reviewed 12 of their own reports and 12 reports from other physicians. Bootstrap resampling was used for statistical analysis. Of all evaluation metrics, domain-adapted BARTScore and PEGASUSScore showed the highest Spearman's rank correlations (0.568 and 0.563) with physician preferences. Based on these metrics, the fine-tuned PEGASUS model was selected as the top LLM. When physicians reviewed PEGASUS-generated impressions in their own style, 89% were considered clinically acceptable, with a mean utility score of 4.08 out of 5. Physicians rated these personalized impressions as comparable in overall utility to the impressions dictated by other physicians (4.03, P=0.41). In conclusion, personalized impressions generated by PEGASUS were clinically useful, highlighting its potential to expedite PET reporting.

Neural Rankers for Effective Screening Prioritisation in Medical Systematic Review Literature Search

Medical systematic reviews typically require assessing all the documents retrieved by a search. The reason is two-fold: the task aims for ``total recall''; and documents retrieved using Boolean search are an unordered set, and thus it is unclear how an assessor could examine only a subset. Screening prioritisation is the process of ranking the (unordered) set of retrieved documents, allowing assessors to begin the downstream processes of the systematic review creation earlier, leading to earlier completion of the review, or even avoiding screening documents ranked least relevant. Screening prioritisation requires highly effective ranking methods. Pre-trained language models are state-of-the-art on many IR tasks but have yet to be applied to systematic review screening prioritisation. In this paper, we apply several pre-trained language models to the systematic review document ranking task, both directly and fine-tuned. An empirical analysis compares how effective neural methods compare to traditional methods for this task. We also investigate different types of document representations for neural methods and their impact on ranking performance. Our results show that BERT-based rankers outperform the current state-of-the-art screening prioritisation methods. However, BERT rankers and existing methods can actually be complementary, and thus, further improvements may be achieved if used in conjunction.

Listening to the Wise Few: Select-and-Copy Attention Heads for Multiple-Choice QA

A standard way to evaluate the abilities of LLM involves presenting a multiple-choice question and selecting the option with the highest logit as the model's predicted answer. However, such a format for evaluating LLMs has limitations, since even if the model knows the correct answer, it may struggle to select the corresponding letter simply due to difficulties in following this rigid format. To address this, we introduce new scores that better capture and reveal model's underlying knowledge: the Query-Key Score (QK-score), derived from the interaction between query and key representations in attention heads, and the Attention Score, based on attention weights. These scores are extracted from specific select-and-copy heads, which show consistent performance across popular Multi-Choice Question Answering (MCQA) datasets. Based on these scores, our method improves knowledge extraction, yielding up to 16\% gain for LLaMA2-7B and up to 10\% for larger models on popular MCQA benchmarks. At the same time, the accuracy on a simple synthetic dataset, where the model explicitly knows the right answer, increases by almost 60\%, achieving nearly perfect accuracy, therefore demonstrating the method's efficiency in mitigating MCQA format limitations. To support our claims, we conduct experiments on models ranging from 7 billion to 70 billion parameters in both zero- and few-shot setups.

Detecting automatically the layout of clinical documents to enhance the performances of downstream natural language processing

Objective:Develop and validate an algorithm for analyzing the layout of PDF clinical documents to improve the performance of downstream natural language processing tasks. Materials and Methods: We designed an algorithm to process clinical PDF documents and extract only clinically relevant text. The algorithm consists of several steps: initial text extraction using a PDF parser, followed by classification into categories such as body text, left notes, and footers using a Transformer deep neural network architecture, and finally an aggregation step to compile the lines of a given label in the text. We evaluated the technical performance of the body text extraction algorithm by applying it to a random sample of documents that were annotated. Medical performance was evaluated by examining the extraction of medical concepts of interest from the text in their respective sections. Finally, we tested an end-to-end system on a medical use case of automatic detection of acute infection described in the hospital report. Results:Our algorithm achieved per-line precision, recall, and F1 score of 98.4, 97.0, and 97.7, respectively, for body line extraction. The precision, recall, and F1 score per document for the acute infection detection algorithm were 82.54 (95CI 72.86-91.60), 85.24 (95CI 76.61-93.70), 83.87 (95CI 76, 92-90.08) with exploitation of the results of the advanced body extraction algorithm, respectively. Conclusion:We have developed and validated a system for extracting body text from clinical documents in PDF format by identifying their layout. We were able to demonstrate that this preprocessing allowed us to obtain better performances for a common downstream task, i.e., the extraction of medical concepts in their respective sections, thus proving the interest of this method on a clinical use case.

What are the Desired Characteristics of Calibration Sets? Identifying Correlates on Long Form Scientific Summarization

Summarization models often generate text that is poorly calibrated to quality metrics because they are trained to maximize the likelihood of a single reference (MLE). To address this, recent work has added a calibration step, which exposes a model to its own ranked outputs to improve relevance or, in a separate line of work, contrasts positive and negative sets to improve faithfulness. While effective, much of this work has focused on how to generate and optimize these sets. Less is known about why one setup is more effective than another. In this work, we uncover the underlying characteristics of effective sets. For each training instance, we form a large, diverse pool of candidates and systematically vary the subsets used for calibration fine-tuning. Each selection strategy targets distinct aspects of the sets, such as lexical diversity or the size of the gap between positive and negatives. On three diverse scientific long-form summarization datasets (spanning biomedical, clinical, and chemical domains), we find, among others, that faithfulness calibration is optimal when the negative sets are extractive and more likely to be generated, whereas for relevance calibration, the metric margin between candidates should be maximized and surprise--the disagreement between model and metric defined candidate rankings--minimized. Code to create, select, and optimize calibration sets is available at https://github.com/griff4692/calibrating-summaries

A Natural Language Processing Pipeline of Chinese Free-text Radiology Reports for Liver Cancer Diagnosis

Despite the rapid development of natural language processing (NLP) implementation in electronic medical records (EMRs), Chinese EMRs processing remains challenging due to the limited corpus and specific grammatical characteristics, especially for radiology reports. In this study, we designed an NLP pipeline for the direct extraction of clinically relevant features from Chinese radiology reports, which is the first key step in computer-aided radiologic diagnosis. The pipeline was comprised of named entity recognition, synonyms normalization, and relationship extraction to finally derive the radiological features composed of one or more terms. In named entity recognition, we incorporated lexicon into deep learning model bidirectional long short-term memory-conditional random field (BiLSTM-CRF), and the model finally achieved an F1 score of 93.00%. With the extracted radiological features, least absolute shrinkage and selection operator and machine learning methods (support vector machine, random forest, decision tree, and logistic regression) were used to build the classifiers for liver cancer prediction. For liver cancer diagnosis, random forest had the highest predictive performance in liver cancer diagnosis (F1 score 86.97%, precision 87.71%, and recall 86.25%). This work was a comprehensive NLP study focusing on Chinese radiology reports and the application of NLP in cancer risk prediction. The proposed NLP pipeline for the radiological feature extraction could be easily implemented in other kinds of Chinese clinical texts and other disease predictive tasks.

AstroMLab 1: Who Wins Astronomy Jeopardy!?

We present a comprehensive evaluation of proprietary and open-weights large language models using the first astronomy-specific benchmarking dataset. This dataset comprises 4,425 multiple-choice questions curated from the Annual Review of Astronomy and Astrophysics, covering a broad range of astrophysical topics. Our analysis examines model performance across various astronomical subfields and assesses response calibration, crucial for potential deployment in research environments. Claude-3.5-Sonnet outperforms competitors by up to 4.6 percentage points, achieving 85.0% accuracy. For proprietary models, we observed a universal reduction in cost every 3-to-12 months to achieve similar score in this particular astronomy benchmark. Open-source models have rapidly improved, with LLaMA-3-70b (80.6%) and Qwen-2-72b (77.7%) now competing with some of the best proprietary models. We identify performance variations across topics, with non-English-focused models generally struggling more in exoplanet-related fields, stellar astrophysics, and instrumentation related questions. These challenges likely stem from less abundant training data, limited historical context, and rapid recent developments in these areas. This pattern is observed across both open-weights and proprietary models, with regional dependencies evident, highlighting the impact of training data diversity on model performance in specialized scientific domains. Top-performing models demonstrate well-calibrated confidence, with correlations above 0.9 between confidence and correctness, though they tend to be slightly underconfident. The development for fast, low-cost inference of open-weights models presents new opportunities for affordable deployment in astronomy. The rapid progress observed suggests that LLM-driven research in astronomy may become feasible in the near future.

SemRe-Rank: Improving Automatic Term Extraction By Incorporating Semantic Relatedness With Personalised PageRank

Automatic Term Extraction deals with the extraction of terminology from a domain specific corpus, and has long been an established research area in data and knowledge acquisition. ATE remains a challenging task as it is known that there is no existing ATE methods that can consistently outperform others in any domain. This work adopts a refreshed perspective to this problem: instead of searching for such a 'one-size-fit-all' solution that may never exist, we propose to develop generic methods to 'enhance' existing ATE methods. We introduce SemRe-Rank, the first method based on this principle, to incorporate semantic relatedness - an often overlooked venue - into an existing ATE method to further improve its performance. SemRe-Rank incorporates word embeddings into a personalised PageRank process to compute 'semantic importance' scores for candidate terms from a graph of semantically related words (nodes), which are then used to revise the scores of candidate terms computed by a base ATE algorithm. Extensively evaluated with 13 state-of-the-art base ATE methods on four datasets of diverse nature, it is shown to have achieved widespread improvement over all base methods and across all datasets, with up to 15 percentage points when measured by the Precision in the top ranked K candidate terms (the average for a set of K's), or up to 28 percentage points in F1 measured at a K that equals to the expected real terms in the candidates (F1 in short). Compared to an alternative approach built on the well-known TextRank algorithm, SemRe-Rank can potentially outperform by up to 8 points in Precision at top K, or up to 17 points in F1.

The Chronicles of RAG: The Retriever, the Chunk and the Generator

Retrieval Augmented Generation (RAG) has become one of the most popular paradigms for enabling LLMs to access external data, and also as a mechanism for grounding to mitigate against hallucinations. When implementing RAG you can face several challenges like effective integration of retrieval models, efficient representation learning, data diversity, computational efficiency optimization, evaluation, and quality of text generation. Given all these challenges, every day a new technique to improve RAG appears, making it unfeasible to experiment with all combinations for your problem. In this context, this paper presents good practices to implement, optimize, and evaluate RAG for the Brazilian Portuguese language, focusing on the establishment of a simple pipeline for inference and experiments. We explored a diverse set of methods to answer questions about the first Harry Potter book. To generate the answers we used the OpenAI's gpt-4, gpt-4-1106-preview, gpt-3.5-turbo-1106, and Google's Gemini Pro. Focusing on the quality of the retriever, our approach achieved an improvement of MRR@10 by 35.4% compared to the baseline. When optimizing the input size in the application, we observed that it is possible to further enhance it by 2.4%. Finally, we present the complete architecture of the RAG with our recommendations. As result, we moved from a baseline of 57.88% to a maximum relative score of 98.61%.

Benchmarking Large Language Models on CMExam -- A Comprehensive Chinese Medical Exam Dataset

Recent advancements in large language models (LLMs) have transformed the field of question answering (QA). However, evaluating LLMs in the medical field is challenging due to the lack of standardized and comprehensive datasets. To address this gap, we introduce CMExam, sourced from the Chinese National Medical Licensing Examination. CMExam consists of 60K+ multiple-choice questions for standardized and objective evaluations, as well as solution explanations for model reasoning evaluation in an open-ended manner. For in-depth analyses of LLMs, we invited medical professionals to label five additional question-wise annotations, including disease groups, clinical departments, medical disciplines, areas of competency, and question difficulty levels. Alongside the dataset, we further conducted thorough experiments with representative LLMs and QA algorithms on CMExam. The results show that GPT-4 had the best accuracy of 61.6% and a weighted F1 score of 0.617. These results highlight a great disparity when compared to human accuracy, which stood at 71.6%. For explanation tasks, while LLMs could generate relevant reasoning and demonstrate improved performance after finetuning, they fall short of a desired standard, indicating ample room for improvement. To the best of our knowledge, CMExam is the first Chinese medical exam dataset to provide comprehensive medical annotations. The experiments and findings of LLM evaluation also provide valuable insights into the challenges and potential solutions in developing Chinese medical QA systems and LLM evaluation pipelines. The dataset and relevant code are available at https://github.com/williamliujl/CMExam.

Question-Answering Model for Schizophrenia Symptoms and Their Impact on Daily Life using Mental Health Forums Data

In recent years, there is strong emphasis on mining medical data using machine learning techniques. A common problem is to obtain a noiseless set of textual documents, with a relevant content for the research question, and developing a Question Answering (QA) model for a specific medical field. The purpose of this paper is to present a new methodology for building a medical dataset and obtain a QA model for analysis of symptoms and impact on daily life for a specific disease domain. The ``Mental Health'' forum was used, a forum dedicated to people suffering from schizophrenia and different mental disorders. Relevant posts of active users, who regularly participate, were extrapolated providing a new method of obtaining low-bias content and without privacy issues. Furthermore, it is shown how to pre-process the dataset to convert it into a QA dataset. The Bidirectional Encoder Representations from Transformers (BERT), DistilBERT, RoBERTa, and BioBERT models were fine-tuned and evaluated via F1-Score, Exact Match, Precision and Recall. Accurate empirical experiments demonstrated the effectiveness of the proposed method for obtaining an accurate dataset for QA model implementation. By fine-tuning the BioBERT QA model, we achieved an F1 score of 0.885, showing a considerable improvement and outperforming the state-of-the-art model for mental disorders domain.

Toward Stable and Consistent Evaluation Results: A New Methodology for Base Model Evaluation

This paper poses two critical issues in evaluating base models (without post-training): (1) Unstable evaluation during training: in the early stages of pre-training, the models lack the capability to answer questions as required, leading to unstable evaluation results. This instability makes it difficult to provide solid conclusions to guide the training, especially for key experiments such as data ablation and scaling law. (2) Inconsistency between base and instruct models: base models generally exhibit poorer evaluation performance compared to corresponding instruct models. This gap poses a challenge for assessing whether a base model with better evaluation can truly lead to a better instruct model. To address these issues, we propose Base model Oriented Systematic Evaluation (BOSE), a method specifically designed to optimize the evaluation of base models. Specifically, BOSE introduces two key innovations: In-Context Light-instruction Prompt (ICLiP) for open-ended tasks and Blank-ppl for multi-choice tasks with candidate options, which transforms the standard perplexity (ppl) metric into a fill-in-the-blank format to mitigate early-stage evaluation fluctuations. Furthermore, we are the first to propose Kendall's rank correlation to quantitatively measure the evaluation stability and consistency. Experimental results demonstrate that BOSE significantly enhances both the stability of evaluations during pre-training and the consistency between base and instruct models, thereby providing more reliable guidance for the LLMs' training.

Pre-trained Language Models as Re-Annotators

Annotation noise is widespread in datasets, but manually revising a flawed corpus is time-consuming and error-prone. Hence, given the prior knowledge in Pre-trained Language Models and the expected uniformity across all annotations, we attempt to reduce annotation noise in the corpus through two tasks automatically: (1) Annotation Inconsistency Detection that indicates the credibility of annotations, and (2) Annotation Error Correction that rectifies the abnormal annotations. We investigate how to acquire semantic sensitive annotation representations from Pre-trained Language Models, expecting to embed the examples with identical annotations to the mutually adjacent positions even without fine-tuning. We proposed a novel credibility score to reveal the likelihood of annotation inconsistencies based on the neighbouring consistency. Then, we fine-tune the Pre-trained Language Models based classifier with cross-validation for annotation correction. The annotation corrector is further elaborated with two approaches: (1) soft labelling by Kernel Density Estimation and (2) a novel distant-peer contrastive loss. We study the re-annotation in relation extraction and create a new manually revised dataset, Re-DocRED, for evaluating document-level re-annotation. The proposed credibility scores show promising agreement with human revisions, achieving a Binary F1 of 93.4 and 72.5 in detecting inconsistencies on TACRED and DocRED respectively. Moreover, the neighbour-aware classifiers based on distant-peer contrastive learning and uncertain labels achieve Macro F1 up to 66.2 and 57.8 in correcting annotations on TACRED and DocRED respectively. These improvements are not merely theoretical: Rather, automatically denoised training sets demonstrate up to 3.6% performance improvement for state-of-the-art relation extraction models.

Tool-Augmented Reward Modeling

Reward modeling (a.k.a., preference modeling) is instrumental for aligning large language models with human preferences, particularly within the context of reinforcement learning from human feedback (RLHF). While conventional reward models (RMs) have exhibited remarkable scalability, they oft struggle with fundamental functionality such as arithmetic computation, code execution, and factual lookup. In this paper, we propose a tool-augmented preference modeling approach, named Themis, to address these limitations by empowering RMs with access to external environments, including calculators and search engines. This approach not only fosters synergy between tool utilization and reward grading but also enhances interpretive capacity and scoring reliability. Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources and construct task-specific tool engagement and reasoning traces in an autoregressive manner. We validate our approach across a wide range of domains, incorporating seven distinct external tools. Our experimental results demonstrate a noteworthy overall improvement of 17.7% across eight tasks in preference ranking. Furthermore, our approach outperforms Gopher 280B by 7.3% on TruthfulQA task in zero-shot evaluation. In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines across four distinct tasks. Additionally, we provide a comprehensive collection of tool-related RM datasets, incorporating data from seven distinct tool APIs, totaling 15,000 instances. We have made the code, data, and model checkpoints publicly available to facilitate and inspire further research advancements\url{https://github.com/ernie-research/Tool-Augmented-Reward-Model}.

Predicting Users' Value Changes by the Friends' Influence from Social Media Usage

Basic human values represent a set of values such as security, independence, success, kindness, and pleasure, which we deem important to our lives. Each of us holds different values with different degrees of significance. Existing studies show that values of a person can be identified from their social network usage. However, the value priority of a person may change over time due to different factors such as life experiences, influence, social structure and technology. Existing studies do not conduct any analysis regarding the change of users' value from the social influence, i.e., group persuasion, form the social media usage. In our research, first, we predict users' value score by the influence of friends from their social media usage. We propose a Bounded Confidence Model (BCM) based value dynamics model from 275 different ego networks in Facebook that predicts how social influence may persuade a person to change their value over time. Then, to predict better, we use particle swarm optimization based hyperparameter tuning technique. We observe that these optimized hyperparameters produce accurate future value score. We also run our approach with different machine learning based methods and find support vector regression (SVR) outperforms other regressor models. By using SVR with the best hyperparameters of BCM model, we find the lowest Mean Squared Error (MSE) score 0.00347.

ICON: Improving Inter-Report Consistency of Radiology Report Generation via Lesion-aware Mix-up Augmentation

Previous research on radiology report generation has made significant progress in terms of increasing the clinical accuracy of generated reports. In this paper, we emphasize another crucial quality that it should possess, i.e., inter-report consistency, which refers to the capability of generating consistent reports for semantically equivalent radiographs. This quality is even of greater significance than the overall report accuracy in terms of ensuring the system's credibility, as a system prone to providing conflicting results would severely erode users' trust. Regrettably, existing approaches struggle to maintain inter-report consistency, exhibiting biases towards common patterns and susceptibility to lesion variants. To address this issue, we propose ICON, which improves the inter-report consistency of radiology report generation. Aiming at enhancing the system's ability to capture the similarities in semantically equivalent lesions, our approach involves first extracting lesions from input images and examining their characteristics. Then, we introduce a lesion-aware mix-up augmentation technique to ensure that the representations of the semantically equivalent lesions align with the same attributes, by linearly interpolating them during the training phase. Extensive experiments on three publicly available chest X-ray datasets verify the effectiveness of our approach, both in terms of improving the consistency and accuracy of the generated reports.

The Calibration Gap between Model and Human Confidence in Large Language Models

For large language models (LLMs) to be trusted by humans they need to be well-calibrated in the sense that they can accurately assess and communicate how likely it is that their predictions are correct. Recent work has focused on the quality of internal LLM confidence assessments, but the question remains of how well LLMs can communicate this internal model confidence to human users. This paper explores the disparity between external human confidence in an LLM's responses and the internal confidence of the model. Through experiments involving multiple-choice questions, we systematically examine human users' ability to discern the reliability of LLM outputs. Our study focuses on two key areas: (1) assessing users' perception of true LLM confidence and (2) investigating the impact of tailored explanations on this perception. The research highlights that default explanations from LLMs often lead to user overestimation of both the model's confidence and its' accuracy. By modifying the explanations to more accurately reflect the LLM's internal confidence, we observe a significant shift in user perception, aligning it more closely with the model's actual confidence levels. This adjustment in explanatory approach demonstrates potential for enhancing user trust and accuracy in assessing LLM outputs. The findings underscore the importance of transparent communication of confidence levels in LLMs, particularly in high-stakes applications where understanding the reliability of AI-generated information is essential.

Quality-Diversity through AI Feedback

In many text-generation problems, users may prefer not only a single response, but a diverse range of high-quality outputs from which to choose. Quality-diversity (QD) search algorithms aim at such outcomes, by continually improving and diversifying a population of candidates. However, the applicability of QD to qualitative domains, like creative writing, has been limited by the difficulty of algorithmically specifying measures of quality and diversity. Interestingly, recent developments in language models (LMs) have enabled guiding search through AI feedback, wherein LMs are prompted in natural language to evaluate qualitative aspects of text. Leveraging this development, we introduce Quality-Diversity through AI Feedback (QDAIF), wherein an evolutionary algorithm applies LMs to both generate variation and evaluate the quality and diversity of candidate text. When assessed on creative writing domains, QDAIF covers more of a specified search space with high-quality samples than do non-QD controls. Further, human evaluation of QDAIF-generated creative texts validates reasonable agreement between AI and human evaluation. Our results thus highlight the potential of AI feedback to guide open-ended search for creative and original solutions, providing a recipe that seemingly generalizes to many domains and modalities. In this way, QDAIF is a step towards AI systems that can independently search, diversify, evaluate, and improve, which are among the core skills underlying human society's capacity for innovation.

The Vendi Score: A Diversity Evaluation Metric for Machine Learning

Diversity is an important criterion for many areas of machine learning (ML), including generative modeling and dataset curation. Yet little work has gone into understanding, formalizing, and measuring diversity in ML. In this paper, we address the diversity evaluation problem by proposing the Vendi Score, which connects and extends ideas from ecology and quantum statistical mechanics to ML. The Vendi Score is defined as the exponential of the Shannon entropy of the eigenvalues of a similarity matrix. This matrix is induced by a user-defined similarity function applied to the sample to be evaluated for diversity. In taking a similarity function as input, the Vendi Score enables its user to specify any desired form of diversity. Importantly, unlike many existing metrics in ML, the Vendi Score doesn't require a reference dataset or distribution over samples or labels, it is therefore general and applicable to any generative model, decoding algorithm, and dataset from any domain where similarity can be defined. We showcased the Vendi Score on molecular generative modeling, a domain where diversity plays an important role in enabling the discovery of novel molecules. We found that the Vendi Score addresses shortcomings of the current diversity metric of choice in that domain. We also applied the Vendi Score to generative models of images and decoding algorithms of text and found it confirms known results about diversity in those domains. Furthermore, we used the Vendi Score to measure mode collapse, a known limitation of generative adversarial networks (GANs). In particular, the Vendi Score revealed that even GANs that capture all the modes of a labeled dataset can be less diverse than the original dataset. Finally, the interpretability of the Vendi Score allowed us to diagnose several benchmark ML datasets for diversity, opening the door for diversity-informed data augmentation.

CXR-LLaVA: Multimodal Large Language Model for Interpreting Chest X-ray Images

Purpose: Recent advancements in large language models (LLMs) have expanded their capabilities in a multimodal fashion, potentially replicating the image interpretation of human radiologists. This study aimed to develop open-source multimodal large language model for interpreting chest X-ray images (CXR-LLaVA). We also examined the effect of prompt engineering and model parameters such as temperature and nucleus sampling. Materials and Methods: For training, we collected 659,287 publicly available CXRs: 417,336 CXRs had labels for certain radiographic abnormalities (dataset 1); 241,951 CXRs provided free-text radiology reports (dataset 2). After pre-training the Resnet50 as an image encoder, the contrastive language-image pre-training was used to align CXRs and corresponding radiographic abnormalities. Then, the Large Language Model Meta AI-2 was fine-tuned using dataset 2, which were refined using GPT-4, with generating various question answering scenarios. The code can be found at https://github.com/ECOFRI/CXR_LLaVA. Results: In the test set, we observed that the model's performance fluctuated based on its parameters. On average, it achieved F1 score of 0.34 for five pathologic findings (atelectasis, cardiomegaly, consolidation, edema, and pleural effusion), which was improved to 0.46 through prompt engineering. In the independent set, the model achieved an average F1 score of 0.30 for the same pathologic findings. Notably, for the pediatric chest radiograph dataset, which was unseen during training, the model differentiated abnormal radiographs with an F1 score ranging from 0.84 to 0.85. Conclusion: CXR-LLaVA demonstrates promising potential in CXR interpretation. Both prompt engineering and model parameter adjustments can play pivotal roles in interpreting CXRs.

Dynamic Intelligence Assessment: Benchmarking LLMs on the Road to AGI with a Focus on Model Confidence

As machine intelligence evolves, the need to test and compare the problem-solving abilities of different AI models grows. However, current benchmarks are often overly simplistic, allowing models to perform uniformly well, making it difficult to distinguish their capabilities. Additionally, benchmarks typically rely on static question-answer pairs, which models might memorize or guess. To address these limitations, we introduce the Dynamic Intelligence Assessment (DIA), a novel methodology for testing AI models using dynamic question templates and improved metrics across multiple disciplines such as mathematics, cryptography, cybersecurity, and computer science. The accompanying DIA-Bench dataset, which includes 150 diverse and challenging task templates with mutable parameters, is presented in various formats such as text, PDFs, compiled binaries, and visual puzzles. Our framework introduces four new metrics to assess a model's reliability and confidence across multiple attempts. These metrics revealed that even simple questions are frequently answered incorrectly when posed in varying forms, highlighting significant gaps in models' reliability. Notably, models like GPT-4o tended to overestimate their mathematical abilities, while ChatGPT-4o demonstrated better decision-making and performance through effective tool usage. We evaluated eight state-of-the-art large language models (LLMs) using DIA-Bench, showing that current models struggle with complex tasks and often display unexpectedly low confidence, even with simpler questions. The DIA framework sets a new standard for assessing not only problem-solving but also a model's adaptive intelligence and ability to assess its own limitations. The dataset is publicly available on our project's website.

Indonesian Text-to-Image Synthesis with Sentence-BERT and FastGAN

Currently, text-to-image synthesis uses text encoder and image generator architecture. Research on this topic is challenging. This is because of the domain gap between natural language and vision. Nowadays, most research on this topic only focuses on producing a photo-realistic image, but the other domain, in this case, is the language, which is less concentrated. A lot of the current research uses English as the input text. Besides, there are many languages around the world. Bahasa Indonesia, as the official language of Indonesia, is quite popular. This language has been taught in Philipines, Australia, and Japan. Translating or recreating a new dataset into another language with good quality will cost a lot. Research on this domain is necessary because we need to examine how the image generator performs in other languages besides generating photo-realistic images. To achieve this, we translate the CUB dataset into Bahasa using google translate and manually by humans. We use Sentence BERT as the text encoder and FastGAN as the image generator. FastGAN uses lots of skip excitation modules and auto-encoder to generate an image with resolution 512x512x3, which is twice as bigger as the current state-of-the-art model (Zhang, Xu, Li, Zhang, Wang, Huang and Metaxas, 2019). We also get 4.76 +- 0.43 and 46.401 on Inception Score and Fr\'echet inception distance, respectively, and comparable with the current English text-to-image generation models. The mean opinion score also gives as 3.22 out of 5, which means the generated image is acceptable by humans. Link to source code: https://github.com/share424/Indonesian-Text-to-Image-synthesis-with-Sentence-BERT-and-FastGAN

BARTScore: Evaluating Generated Text as Text Generation

A wide variety of NLP applications, such as machine translation, summarization, and dialog, involve text generation. One major challenge for these applications is how to evaluate whether such generated texts are actually fluent, accurate, or effective. In this work, we conceptualize the evaluation of generated text as a text generation problem, modeled using pre-trained sequence-to-sequence models. The general idea is that models trained to convert the generated text to/from a reference output or the source text will achieve higher scores when the generated text is better. We operationalize this idea using BART, an encoder-decoder based pre-trained model, and propose a metric BARTScore with a number of variants that can be flexibly applied in an unsupervised fashion to evaluation of text from different perspectives (e.g. informativeness, fluency, or factuality). BARTScore is conceptually simple and empirically effective. It can outperform existing top-scoring metrics in 16 of 22 test settings, covering evaluation of 16 datasets (e.g., machine translation, text summarization) and 7 different perspectives (e.g., informativeness, factuality). Code to calculate BARTScore is available at https://github.com/neulab/BARTScore, and we have released an interactive leaderboard for meta-evaluation at http://explainaboard.nlpedia.ai/leaderboard/task-meval/ on the ExplainaBoard platform, which allows us to interactively understand the strengths, weaknesses, and complementarity of each metric.

Q-Eval-100K: Evaluating Visual Quality and Alignment Level for Text-to-Vision Content

Evaluating text-to-vision content hinges on two crucial aspects: visual quality and alignment. While significant progress has been made in developing objective models to assess these dimensions, the performance of such models heavily relies on the scale and quality of human annotations. According to Scaling Law, increasing the number of human-labeled instances follows a predictable pattern that enhances the performance of evaluation models. Therefore, we introduce a comprehensive dataset designed to Evaluate Visual quality and Alignment Level for text-to-vision content (Q-EVAL-100K), featuring the largest collection of human-labeled Mean Opinion Scores (MOS) for the mentioned two aspects. The Q-EVAL-100K dataset encompasses both text-to-image and text-to-video models, with 960K human annotations specifically focused on visual quality and alignment for 100K instances (60K images and 40K videos). Leveraging this dataset with context prompt, we propose Q-Eval-Score, a unified model capable of evaluating both visual quality and alignment with special improvements for handling long-text prompt alignment. Experimental results indicate that the proposed Q-Eval-Score achieves superior performance on both visual quality and alignment, with strong generalization capabilities across other benchmarks. These findings highlight the significant value of the Q-EVAL-100K dataset. Data and codes will be available at https://github.com/zzc-1998/Q-Eval.

Training Curricula for Open Domain Answer Re-Ranking

In precision-oriented tasks like answer ranking, it is more important to rank many relevant answers highly than to retrieve all relevant answers. It follows that a good ranking strategy would be to learn how to identify the easiest correct answers first (i.e., assign a high ranking score to answers that have characteristics that usually indicate relevance, and a low ranking score to those with characteristics that do not), before incorporating more complex logic to handle difficult cases (e.g., semantic matching or reasoning). In this work, we apply this idea to the training of neural answer rankers using curriculum learning. We propose several heuristics to estimate the difficulty of a given training sample. We show that the proposed heuristics can be used to build a training curriculum that down-weights difficult samples early in the training process. As the training process progresses, our approach gradually shifts to weighting all samples equally, regardless of difficulty. We present a comprehensive evaluation of our proposed idea on three answer ranking datasets. Results show that our approach leads to superior performance of two leading neural ranking architectures, namely BERT and ConvKNRM, using both pointwise and pairwise losses. When applied to a BERT-based ranker, our method yields up to a 4% improvement in MRR and a 9% improvement in P@1 (compared to the model trained without a curriculum). This results in models that can achieve comparable performance to more expensive state-of-the-art techniques.

Using LLMs to Establish Implicit User Sentiment of Software Desirability

This study explores the use of LLMs for providing quantitative zero-shot sentiment analysis of implicit software desirability, addressing a critical challenge in product evaluation where traditional review scores, though convenient, fail to capture the richness of qualitative user feedback. Innovations include establishing a method that 1) works with qualitative user experience data without the need for explicit review scores, 2) focuses on implicit user satisfaction, and 3) provides scaled numerical sentiment analysis, offering a more nuanced understanding of user sentiment, instead of simply classifying sentiment as positive, neutral, or negative. Data is collected using the Microsoft Product Desirability Toolkit (PDT), a well-known qualitative user experience analysis tool. For initial exploration, the PDT metric was given to users of two software systems. PDT data was fed through several LLMs (Claude Sonnet 3 and 3.5, GPT4, and GPT4o) and through a leading transfer learning technique, Twitter-Roberta-Base-Sentiment, and Vader, a leading sentiment analysis tool. Each system was asked to evaluate the data in two ways, by looking at the sentiment expressed in the PDT word/explanation pairs; and by looking at the sentiment expressed by the users in their grouped selection of five words and explanations, as a whole. Each LLM provided a sentiment score, its confidence (low, medium, high) in the score, and an explanation of the score. All LLMs tested were able to statistically detect user sentiment from the users' grouped data, whereas TRBS and Vader were not. The confidence and explanation of confidence provided by the LLMs assisted in understanding user sentiment. This study adds deeper understanding of evaluating user experiences, toward the goal of creating a universal tool that quantifies implicit sentiment.

Improving Wikipedia Verifiability with AI

Verifiability is a core content policy of Wikipedia: claims that are likely to be challenged need to be backed by citations. There are millions of articles available online and thousands of new articles are released each month. For this reason, finding relevant sources is a difficult task: many claims do not have any references that support them. Furthermore, even existing citations might not support a given claim or become obsolete once the original source is updated or deleted. Hence, maintaining and improving the quality of Wikipedia references is an important challenge and there is a pressing need for better tools to assist humans in this effort. Here, we show that the process of improving references can be tackled with the help of artificial intelligence (AI). We develop a neural network based system, called Side, to identify Wikipedia citations that are unlikely to support their claims, and subsequently recommend better ones from the web. We train this model on existing Wikipedia references, therefore learning from the contributions and combined wisdom of thousands of Wikipedia editors. Using crowd-sourcing, we observe that for the top 10% most likely citations to be tagged as unverifiable by our system, humans prefer our system's suggested alternatives compared to the originally cited reference 70% of the time. To validate the applicability of our system, we built a demo to engage with the English-speaking Wikipedia community and find that Side's first citation recommendation collects over 60% more preferences than existing Wikipedia citations for the same top 10% most likely unverifiable claims according to Side. Our results indicate that an AI-based system could be used, in tandem with humans, to improve the verifiability of Wikipedia. More generally, we hope that our work can be used to assist fact checking efforts and increase the general trustworthiness of information online.

JudgeBench: A Benchmark for Evaluating LLM-based Judges

LLM-based judges have emerged as a scalable alternative to human evaluation and are increasingly used to assess, compare, and improve models. However, the reliability of LLM-based judges themselves is rarely scrutinized. As LLMs become more advanced, their responses grow more sophisticated, requiring stronger judges to evaluate them. Existing benchmarks primarily focus on a judge's alignment with human preferences, but often fail to account for more challenging tasks where crowdsourced human preference is a poor indicator of factual and logical correctness. To address this, we propose a novel evaluation framework to objectively evaluate LLM-based judges. Based on this framework, we propose JudgeBench, a benchmark for evaluating LLM-based judges on challenging response pairs spanning knowledge, reasoning, math, and coding. JudgeBench leverages a novel pipeline for converting existing difficult datasets into challenging response pairs with preference labels reflecting objective correctness. Our comprehensive evaluation on a collection of prompted judges, fine-tuned judges, multi-agent judges, and reward models shows that JudgeBench poses a significantly greater challenge than previous benchmarks, with many strong models (e.g., GPT-4o) performing just slightly better than random guessing. Overall, JudgeBench offers a reliable platform for assessing increasingly advanced LLM-based judges. Data and code are available at https://github.com/ScalerLab/JudgeBench .

More efficient manual review of automatically transcribed tabular data

Machine learning methods have proven useful in transcribing historical data. However, results from even highly accurate methods require manual verification and correction. Such manual review can be time-consuming and expensive, therefore the objective of this paper was to make it more efficient. Previously, we used machine learning to transcribe 2.3 million handwritten occupation codes from the Norwegian 1950 census with high accuracy (97%). We manually reviewed the 90,000 (3%) codes with the lowest model confidence. We allocated those 90,000 codes to human reviewers, who used our annotation tool to review the codes. To assess reviewer agreement, some codes were assigned to multiple reviewers. We then analyzed the review results to understand the relationship between accuracy improvements and effort. Additionally, we interviewed the reviewers to improve the workflow. The reviewers corrected 62.8% of the labels and agreed with the model label in 31.9% of cases. About 0.2% of the images could not be assigned a label, while for 5.1% the reviewers were uncertain, or they assigned an invalid label. 9,000 images were independently reviewed by multiple reviewers, resulting in an agreement of 86.43% and disagreement of 8.96%. We learned that our automatic transcription is biased towards the most frequent codes, with a higher degree of misclassification for the lowest frequency codes. Our interview findings show that the reviewers did internal quality control and found our custom tool well-suited. So, only one reviewer is needed, but they should report uncertainty.

MEDEC: A Benchmark for Medical Error Detection and Correction in Clinical Notes

Several studies showed that Large Language Models (LLMs) can answer medical questions correctly, even outperforming the average human score in some medical exams. However, to our knowledge, no study has been conducted to assess the ability of language models to validate existing or generated medical text for correctness and consistency. In this paper, we introduce MEDEC (https://github.com/abachaa/MEDEC), the first publicly available benchmark for medical error detection and correction in clinical notes, covering five types of errors (Diagnosis, Management, Treatment, Pharmacotherapy, and Causal Organism). MEDEC consists of 3,848 clinical texts, including 488 clinical notes from three US hospital systems that were not previously seen by any LLM. The dataset has been used for the MEDIQA-CORR shared task to evaluate seventeen participating systems [Ben Abacha et al., 2024]. In this paper, we describe the data creation methods and we evaluate recent LLMs (e.g., o1-preview, GPT-4, Claude 3.5 Sonnet, and Gemini 2.0 Flash) for the tasks of detecting and correcting medical errors requiring both medical knowledge and reasoning capabilities. We also conducted a comparative study where two medical doctors performed the same task on the MEDEC test set. The results showed that MEDEC is a sufficiently challenging benchmark to assess the ability of models to validate existing or generated notes and to correct medical errors. We also found that although recent LLMs have a good performance in error detection and correction, they are still outperformed by medical doctors in these tasks. We discuss the potential factors behind this gap, the insights from our experiments, the limitations of current evaluation metrics, and share potential pointers for future research.

RevisEval: Improving LLM-as-a-Judge via Response-Adapted References

With significant efforts in recent studies, LLM-as-a-Judge has become a cost-effective alternative to human evaluation for assessing the text generation quality in a wide range of tasks. However, there still remains a reliability gap between LLM-as-a-Judge and human evaluation. One important reason is the lack of guided oracles in the evaluation process. Motivated by the role of reference pervasively used in classic text evaluation, we introduce RevisEval, a novel text generation evaluation paradigm via the response-adapted references. RevisEval is driven by the key observation that an ideal reference should maintain the necessary relevance to the response to be evaluated. Specifically, RevisEval leverages the text revision capabilities of large language models (LLMs) to adaptively revise the response, then treat the revised text as the reference (response-adapted reference) for the subsequent evaluation. Extensive experiments demonstrate that RevisEval outperforms traditional reference-free and reference-based evaluation paradigms that use LLM-as-a-Judge across NLG tasks and open-ended instruction-following tasks. More importantly, our response-adapted references can further boost the classical text metrics, e.g., BLEU and BERTScore, compared to traditional references and even rival the LLM-as-a-Judge. A detailed analysis is also conducted to confirm RevisEval's effectiveness in bias reduction, the impact of inference cost, and reference relevance.

Enhancing Large Language Models with Domain-specific Retrieval Augment Generation: A Case Study on Long-form Consumer Health Question Answering in Ophthalmology

Despite the potential of Large Language Models (LLMs) in medicine, they may generate responses lacking supporting evidence or based on hallucinated evidence. While Retrieval Augment Generation (RAG) is popular to address this issue, few studies implemented and evaluated RAG in downstream domain-specific applications. We developed a RAG pipeline with 70,000 ophthalmology-specific documents that retrieve relevant documents to augment LLMs during inference time. In a case study on long-form consumer health questions, we systematically evaluated the responses including over 500 references of LLMs with and without RAG on 100 questions with 10 healthcare professionals. The evaluation focuses on factuality of evidence, selection and ranking of evidence, attribution of evidence, and answer accuracy and completeness. LLMs without RAG provided 252 references in total. Of which, 45.3% hallucinated, 34.1% consisted of minor errors, and 20.6% were correct. In contrast, LLMs with RAG significantly improved accuracy (54.5% being correct) and reduced error rates (18.8% with minor hallucinations and 26.7% with errors). 62.5% of the top 10 documents retrieved by RAG were selected as the top references in the LLM response, with an average ranking of 4.9. The use of RAG also improved evidence attribution (increasing from 1.85 to 2.49 on a 5-point scale, P<0.001), albeit with slight decreases in accuracy (from 3.52 to 3.23, P=0.03) and completeness (from 3.47 to 3.27, P=0.17). The results demonstrate that LLMs frequently exhibited hallucinated and erroneous evidence in the responses, raising concerns for downstream applications in the medical domain. RAG substantially reduced the proportion of such evidence but encountered challenges.

Flexible Model Aggregation for Quantile Regression

Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.

HelpSteer2: Open-source dataset for training top-performing reward models

High-quality preference datasets are essential for training reward models that can effectively guide large language models (LLMs) in generating high-quality responses aligned with human preferences. As LLMs become stronger and better aligned, permissively licensed preference datasets, such as Open Assistant, HH-RLHF, and HelpSteer need to be updated to remain effective for reward modeling. Methods that distil preference data from proprietary LLMs such as GPT-4 have restrictions on commercial usage imposed by model providers. To improve upon both generated responses and attribute labeling quality, we release HelpSteer2, a permissively licensed preference dataset (CC-BY-4.0). Using a powerful internal base model trained on HelpSteer2, we are able to achieve the SOTA score (92.0%) on Reward-Bench's primary dataset, outperforming currently listed open and proprietary models, as of June 12th, 2024. Notably, HelpSteer2 consists of only ten thousand response pairs, an order of magnitude fewer than existing preference datasets (e.g., HH-RLHF), which makes it highly efficient for training reward models. Our extensive experiments demonstrate that reward models trained with HelpSteer2 are effective in aligning LLMs. In particular, we propose SteerLM 2.0, a model alignment approach that can effectively make use of the rich multi-attribute score predicted by our reward models. HelpSteer2 is available at https://huggingface.co/datasets/nvidia/HelpSteer2 and code is available at https://github.com/NVIDIA/NeMo-Aligner

Debate Helps Supervise Unreliable Experts

As AI systems are used to answer more difficult questions and potentially help create new knowledge, judging the truthfulness of their outputs becomes more difficult and more important. How can we supervise unreliable experts, which have access to the truth but may not accurately report it, to give answers that are systematically true and don't just superficially seem true, when the supervisor can't tell the difference between the two on their own? In this work, we show that debate between two unreliable experts can help a non-expert judge more reliably identify the truth. We collect a dataset of human-written debates on hard reading comprehension questions where the judge has not read the source passage, only ever seeing expert arguments and short quotes selectively revealed by 'expert' debaters who have access to the passage. In our debates, one expert argues for the correct answer, and the other for an incorrect answer. Comparing debate to a baseline we call consultancy, where a single expert argues for only one answer which is correct half of the time, we find that debate performs significantly better, with 84% judge accuracy compared to consultancy's 74%. Debates are also more efficient, being 68% of the length of consultancies. By comparing human to AI debaters, we find evidence that with more skilled (in this case, human) debaters, the performance of debate goes up but the performance of consultancy goes down. Our error analysis also supports this trend, with 46% of errors in human debate attributable to mistakes by the honest debater (which should go away with increased skill); whereas 52% of errors in human consultancy are due to debaters obfuscating the relevant evidence from the judge (which should become worse with increased skill). Overall, these results show that debate is a promising approach for supervising increasingly capable but potentially unreliable AI systems.

Eureka: Evaluating and Understanding Large Foundation Models

Rigorous and reproducible evaluation is critical for assessing the state of the art and for guiding scientific advances in Artificial Intelligence. Evaluation is challenging in practice due to several reasons, including benchmark saturation, lack of transparency in methods used for measurement, development challenges in extracting measurements for generative tasks, and, more generally, the extensive number of capabilities required for a well-rounded comparison across models. We make three contributions to alleviate the above challenges. First, we present Eureka, an open-source framework for standardizing evaluations of large foundation models beyond single-score reporting and rankings. Second, we introduce Eureka-Bench as an extensible collection of benchmarks testing capabilities that (i) are still challenging for state-of-the-art models and (ii) represent fundamental but overlooked language and multimodal capabilities. The inherent space for improvement in non-saturated benchmarks enables us to discover meaningful differences between models at a capability level. Third, using Eureka, we conduct an analysis of 12 state-of-the-art models, providing in-depth insights into failure understanding and model comparison, which can be leveraged to plan targeted improvements. In contrast to recent trends in reports and leaderboards showing absolute rankings and claims for one model or another to be the best, our analysis shows that there is no such best model. Different models have different strengths, but there are models that appear more often than others as best performers for some capabilities. Despite the recent improvements, current models still struggle with several fundamental capabilities including detailed image understanding, benefiting from multimodal input when available rather than fully relying on language, factuality and grounding for information retrieval, and over refusals.

Automatic Calibration and Error Correction for Large Language Models via Pareto Optimal Self-Supervision

Large language models (LLMs) have demonstrated remarkable capabilities out of box for a wide range of applications, yet accuracy still remains a major growth area, especially in mission-critical domains such as biomedicine. An effective method to calibrate the confidence level on LLM responses is essential to automatically detect errors and facilitate human-in-the-loop verification. An important source of calibration signals stems from expert-stipulated programmatic supervision, which is often available at low cost but has its own limitations such as noise and coverage. In this paper, we introduce a Pareto optimal self-supervision framework that can leverage available programmatic supervision to systematically calibrate LLM responses by producing a risk score for every response, without any additional manual efforts. This is accomplished by learning a harmonizer model to align LLM output with other available supervision sources, which would assign higher risk scores to more uncertain LLM responses and facilitate error correction. Experiments on standard relation extraction tasks in biomedical and general domains demonstrate the promise of this approach, with our proposed risk scores highly correlated with the real error rate of LLMs. For the most uncertain test instances, dynamic prompting based on our proposed risk scores results in significant accuracy improvement for off-the-shelf LLMs, boosting GPT-3 results past state-of-the-art (SOTA) weak supervision and GPT-4 results past SOTA supervised results on challenging evaluation datasets.

Towards MLOps: A DevOps Tools Recommender System for Machine Learning System

Applying DevOps practices to machine learning system is termed as MLOps and machine learning systems evolve on new data unlike traditional systems on requirements. The objective of MLOps is to establish a connection between different open-source tools to construct a pipeline that can automatically perform steps to construct a dataset, train the machine learning model and deploy the model to the production as well as store different versions of model and dataset. Benefits of MLOps is to make sure the fast delivery of the new trained models to the production to have accurate results. Furthermore, MLOps practice impacts the overall quality of the software products and is completely dependent on open-source tools and selection of relevant open-source tools is considered as challenged while a generalized method to select an appropriate open-source tools is desirable. In this paper, we present a framework for recommendation system that processes the contextual information (e.g., nature of data, type of the data) of the machine learning project and recommends a relevant toolchain (tech-stack) for the operationalization of machine learning systems. To check the applicability of the proposed framework, four different approaches i.e., rule-based, random forest, decision trees and k-nearest neighbors were investigated where precision, recall and f-score is measured, the random forest out classed other approaches with highest f-score value of 0.66.

Machine Translation Meta Evaluation through Translation Accuracy Challenge Sets

Recent machine translation (MT) metrics calibrate their effectiveness by correlating with human judgement but without any insights about their behaviour across different error types. Challenge sets are used to probe specific dimensions of metric behaviour but there are very few such datasets and they either focus on a limited number of phenomena or a limited number of language pairs. We introduce ACES, a contrastive challenge set spanning 146 language pairs, aimed at discovering whether metrics can identify 68 translation accuracy errors. These phenomena range from simple alterations at the word/character level to more complex errors based on discourse and real-world knowledge. We conduct a large-scale study by benchmarking ACES on 50 metrics submitted to the WMT 2022 and 2023 metrics shared tasks. We benchmark metric performance, assess their incremental performance over successive campaigns, and measure their sensitivity to a range of linguistic phenomena. We also investigate claims that Large Language Models (LLMs) are effective as MT evaluators by evaluating on ACES. Our results demonstrate that different metric families struggle with different phenomena and that LLM-based methods fail to demonstrate reliable performance. Our analyses indicate that most metrics ignore the source sentence, tend to prefer surface-level overlap and end up incorporating properties of base models which are not always beneficial. We expand ACES to include error span annotations, denoted as SPAN-ACES and we use this dataset to evaluate span-based error metrics showing these metrics also need considerable improvement. Finally, we provide a set of recommendations for building better MT metrics, including focusing on error labels instead of scores, ensembling, designing strategies to explicitly focus on the source sentence, focusing on semantic content and choosing the right base model for representations.

Peering Through Preferences: Unraveling Feedback Acquisition for Aligning Large Language Models

Aligning large language models (LLMs) with human values and intents critically involves the use of human or AI feedback. While dense feedback annotations are expensive to acquire and integrate, sparse feedback presents a structural design choice between ratings (e.g., score Response A on a scale of 1-7) and rankings (e.g., is Response A better than Response B?). In this work, we analyze the effect of this design choice for the alignment and evaluation of LLMs. We uncover an inconsistency problem wherein the preferences inferred from ratings and rankings significantly disagree 60% for both human and AI annotators. Our subsequent analysis identifies various facets of annotator biases that explain this phenomena, such as human annotators would rate denser responses higher while preferring accuracy during pairwise judgments. To our surprise, we also observe that the choice of feedback protocol also has a significant effect on the evaluation of aligned LLMs. In particular, we find that LLMs that leverage rankings data for alignment (say model X) are preferred over those that leverage ratings data (say model Y), with a rank-based evaluation protocol (is X/Y's response better than reference response?) but not with a rating-based evaluation protocol (score Rank X/Y's response on a scale of 1-7). Our findings thus shed light on critical gaps in methods for evaluating the real-world utility of language models and their strong dependence on the feedback protocol used for alignment. Our code and data are available at https://github.com/Hritikbansal/sparse_feedback.