Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGraph Inductive Biases in Transformers without Message Passing
Transformers for graph data are increasingly widely studied and successful in numerous learning tasks. Graph inductive biases are crucial for Graph Transformers, and previous works incorporate them using message-passing modules and/or positional encodings. However, Graph Transformers that use message-passing inherit known issues of message-passing, and differ significantly from Transformers used in other domains, thus making transfer of research advances more difficult. On the other hand, Graph Transformers without message-passing often perform poorly on smaller datasets, where inductive biases are more crucial. To bridge this gap, we propose the Graph Inductive bias Transformer (GRIT) -- a new Graph Transformer that incorporates graph inductive biases without using message passing. GRIT is based on several architectural changes that are each theoretically and empirically justified, including: learned relative positional encodings initialized with random walk probabilities, a flexible attention mechanism that updates node and node-pair representations, and injection of degree information in each layer. We prove that GRIT is expressive -- it can express shortest path distances and various graph propagation matrices. GRIT achieves state-of-the-art empirical performance across a variety of graph datasets, thus showing the power that Graph Transformers without message-passing can deliver.
DisWOT: Student Architecture Search for Distillation WithOut Training
Knowledge distillation (KD) is an effective training strategy to improve the lightweight student models under the guidance of cumbersome teachers. However, the large architecture difference across the teacher-student pairs limits the distillation gains. In contrast to previous adaptive distillation methods to reduce the teacher-student gap, we explore a novel training-free framework to search for the best student architectures for a given teacher. Our work first empirically show that the optimal model under vanilla training cannot be the winner in distillation. Secondly, we find that the similarity of feature semantics and sample relations between random-initialized teacher-student networks have good correlations with final distillation performances. Thus, we efficiently measure similarity matrixs conditioned on the semantic activation maps to select the optimal student via an evolutionary algorithm without any training. In this way, our student architecture search for Distillation WithOut Training (DisWOT) significantly improves the performance of the model in the distillation stage with at least 180times training acceleration. Additionally, we extend similarity metrics in DisWOT as new distillers and KD-based zero-proxies. Our experiments on CIFAR, ImageNet and NAS-Bench-201 demonstrate that our technique achieves state-of-the-art results on different search spaces. Our project and code are available at https://lilujunai.github.io/DisWOT-CVPR2023/.
FreezeNet: Full Performance by Reduced Storage Costs
Pruning generates sparse networks by setting parameters to zero. In this work we improve one-shot pruning methods, applied before training, without adding any additional storage costs while preserving the sparse gradient computations. The main difference to pruning is that we do not sparsify the network's weights but learn just a few key parameters and keep the other ones fixed at their random initialized value. This mechanism is called freezing the parameters. Those frozen weights can be stored efficiently with a single 32bit random seed number. The parameters to be frozen are determined one-shot by a single for- and backward pass applied before training starts. We call the introduced method FreezeNet. In our experiments we show that FreezeNets achieve good results, especially for extreme freezing rates. Freezing weights preserves the gradient flow throughout the network and consequently, FreezeNets train better and have an increased capacity compared to their pruned counterparts. On the classification tasks MNIST and CIFAR-10/100 we outperform SNIP, in this setting the best reported one-shot pruning method, applied before training. On MNIST, FreezeNet achieves 99.2% performance of the baseline LeNet-5-Caffe architecture, while compressing the number of trained and stored parameters by a factor of x 157.
Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires Data-Driven Priors
Modeling long-range dependencies across sequences is a longstanding goal in machine learning and has led to architectures, such as state space models, that dramatically outperform Transformers on long sequences. However, these impressive empirical gains have been by and large demonstrated on benchmarks (e.g. Long Range Arena), where models are randomly initialized and trained to predict a target label from an input sequence. In this work, we show that random initialization leads to gross overestimation of the differences between architectures and that pretraining with standard denoising objectives, using only the downstream task data, leads to dramatic gains across multiple architectures and to very small gaps between Transformers and state space models (SSMs). In stark contrast to prior works, we find vanilla Transformers to match the performance of S4 on Long Range Arena when properly pretrained, and we improve the best reported results of SSMs on the PathX-256 task by 20 absolute points. Subsequently, we analyze the utility of previously-proposed structured parameterizations for SSMs and show they become mostly redundant in the presence of data-driven initialization obtained through pretraining. Our work shows that, when evaluating different architectures on supervised tasks, incorporation of data-driven priors via pretraining is essential for reliable performance estimation, and can be done efficiently.
Random-LTD: Random and Layerwise Token Dropping Brings Efficient Training for Large-scale Transformers
Large-scale transformer models have become the de-facto architectures for various machine learning applications, e.g., CV and NLP. However, those large models also introduce prohibitive training costs. To mitigate this issue, we propose a novel random and layerwise token dropping method (random-LTD), which skips the computation of a subset of the input tokens at all middle layers. Particularly, random-LTD achieves considerable speedups and comparable accuracy as the standard training baseline. Compared to other token dropping methods, random-LTD does not require (1) any importance score-based metrics, (2) any special token treatment (e.g., [CLS]), and (3) many layers in full sequence length training except the first and the last layers. Besides, a new LayerToken learning rate schedule is proposed for pretraining problems that resolve the heavy tuning requirement for our proposed training mechanism. Finally, we demonstrate that random-LTD can be applied to broader applications, including GPT and BERT pretraining as well as ViT and GPT finetuning tasks. Our results show that random-LTD can save about 33.3% theoretical compute cost and 25.6% wall-clock training time while achieving similar zero-shot evaluations on GPT-31.3B as compared to baseline.
ZerO Initialization: Initializing Neural Networks with only Zeros and Ones
Deep neural networks are usually initialized with random weights, with adequately selected initial variance to ensure stable signal propagation during training. However, selecting the appropriate variance becomes challenging especially as the number of layers grows. In this work, we replace random weight initialization with a fully deterministic initialization scheme, viz., ZerO, which initializes the weights of networks with only zeros and ones (up to a normalization factor), based on identity and Hadamard transforms. Through both theoretical and empirical studies, we demonstrate that ZerO is able to train networks without damaging their expressivity. Applying ZerO on ResNet achieves state-of-the-art performance on various datasets, including ImageNet, which suggests random weights may be unnecessary for network initialization. In addition, ZerO has many benefits, such as training ultra deep networks (without batch-normalization), exhibiting low-rank learning trajectories that result in low-rank and sparse solutions, and improving training reproducibility.
One Initialization to Rule them All: Fine-tuning via Explained Variance Adaptation
Foundation models (FMs) are pre-trained on large-scale datasets and then fine-tuned on a downstream task for a specific application. The most successful and most commonly used fine-tuning method is to update the pre-trained weights via a low-rank adaptation (LoRA). LoRA introduces new weight matrices that are usually initialized at random with a uniform rank distribution across model weights. Recent works focus on weight-driven initialization or learning of adaptive ranks during training. Both approaches have only been investigated in isolation, resulting in slow convergence or a uniform rank distribution, in turn leading to sub-optimal performance. We propose to enhance LoRA by initializing the new weights in a data-driven manner by computing singular value decomposition on minibatches of activation vectors. Then, we initialize the LoRA matrices with the obtained right-singular vectors and re-distribute ranks among all weight matrices to explain the maximal amount of variance and continue the standard LoRA fine-tuning procedure. This results in our new method Explained Variance Adaptation (EVA). We apply EVA to a variety of fine-tuning tasks ranging from language generation and understanding to image classification and reinforcement learning. EVA exhibits faster convergence than competitors and attains the highest average score across a multitude of tasks per domain.
Leaping Into Memories: Space-Time Deep Feature Synthesis
The success of deep learning models has led to their adaptation and adoption by prominent video understanding methods. The majority of these approaches encode features in a joint space-time modality for which the inner workings and learned representations are difficult to visually interpret. We propose LEArned Preconscious Synthesis (LEAPS), an architecture-independent method for synthesizing videos from the internal spatiotemporal representations of models. Using a stimulus video and a target class, we prime a fixed space-time model and iteratively optimize a video initialized with random noise. Additional regularizers are used to improve the feature diversity of the synthesized videos alongside the cross-frame temporal coherence of motions. We quantitatively and qualitatively evaluate the applicability of LEAPS by inverting a range of spatiotemporal convolutional and attention-based architectures trained on Kinetics-400, which to the best of our knowledge has not been previously accomplished.
Mimetic Initialization of Self-Attention Layers
It is notoriously difficult to train Transformers on small datasets; typically, large pre-trained models are instead used as the starting point. We explore the weights of such pre-trained Transformers (particularly for vision) to attempt to find reasons for this discrepancy. Surprisingly, we find that simply initializing the weights of self-attention layers so that they "look" more like their pre-trained counterparts allows us to train vanilla Transformers faster and to higher final accuracies, particularly on vision tasks such as CIFAR-10 and ImageNet classification, where we see gains in accuracy of over 5% and 4%, respectively. Our initialization scheme is closed form, learning-free, and very simple: we set the product of the query and key weights to be approximately the identity, and the product of the value and projection weights to approximately the negative identity. As this mimics the patterns we saw in pre-trained Transformers, we call the technique "mimetic initialization".
Multi-layer random features and the approximation power of neural networks
A neural architecture with randomly initialized weights, in the infinite width limit, is equivalent to a Gaussian Random Field whose covariance function is the so-called Neural Network Gaussian Process kernel (NNGP). We prove that a reproducing kernel Hilbert space (RKHS) defined by the NNGP contains only functions that can be approximated by the architecture. To achieve a certain approximation error the required number of neurons in each layer is defined by the RKHS norm of the target function. Moreover, the approximation can be constructed from a supervised dataset by a random multi-layer representation of an input vector, together with training of the last layer's weights. For a 2-layer NN and a domain equal to an n-1-dimensional sphere in {mathbb R}^n, we compare the number of neurons required by Barron's theorem and by the multi-layer features construction. We show that if eigenvalues of the integral operator of the NNGP decay slower than k^{-n-2{3}} where k is an order of an eigenvalue, then our theorem guarantees a more succinct neural network approximation than Barron's theorem. We also make some computational experiments to verify our theoretical findings. Our experiments show that realistic neural networks easily learn target functions even when both theorems do not give any guarantees.
Random Search as a Baseline for Sparse Neural Network Architecture Search
Sparse neural networks have shown similar or better generalization performance than their dense counterparts while having higher parameter efficiency. This has motivated a number of works to learn or search for high performing sparse networks. While reports of task performance or efficiency gains are impressive, standard baselines are lacking leading to poor comparability and unreliable reproducibility across methods. In this work, we propose Random Search as a baseline algorithm for finding good sparse configurations and study its performance. We apply Random Search on the node space of an overparameterized network with the goal of finding better initialized sparse sub-networks that are positioned more advantageously in the loss landscape. We record the post-training performances of the found sparse networks and at various levels of sparsity, and compare against both their fully connected parent networks and random sparse configurations at the same sparsity levels. First, we demonstrate performance at different levels of sparsity and highlight that a significant level of performance can still be preserved even when the network is highly sparse. Second, we observe that for this sparse architecture search task, initialized sparse networks found by Random Search neither perform better nor converge more efficiently than their random counterparts. Thus we conclude that Random Search may be viewed as a reasonable neutral baseline for sparsity search methods.
Random Teachers are Good Teachers
In this work, we investigate the implicit regularization induced by teacher-student learning dynamics in self-distillation. To isolate its effect, we describe a simple experiment where we consider teachers at random initialization instead of trained teachers. Surprisingly, when distilling a student into such a random teacher, we observe that the resulting model and its representations already possess very interesting characteristics; (1) we observe a strong improvement of the distilled student over its teacher in terms of probing accuracy. (2) The learned representations are data-dependent and transferable between different tasks but deteriorate strongly if trained on random inputs. (3) The student checkpoint contains sparse subnetworks, so-called lottery tickets, and lies on the border of linear basins in the supervised loss landscape. These observations have interesting consequences for several important areas in machine learning: (1) Self-distillation can work solely based on the implicit regularization present in the gradient dynamics without relying on any dark knowledge, (2) self-supervised learning can learn features even in the absence of data augmentation and (3) training dynamics during the early phase of supervised training do not necessarily require label information. Finally, we shed light on an intriguing local property of the loss landscape: the process of feature learning is strongly amplified if the student is initialized closely to the teacher. These results raise interesting questions about the nature of the landscape that have remained unexplored so far. Code is available at https://github.com/safelix/dinopl.
PRANC: Pseudo RAndom Networks for Compacting deep models
We demonstrate that a deep model can be reparametrized as a linear combination of several randomly initialized and frozen deep models in the weight space. During training, we seek local minima that reside within the subspace spanned by these random models (i.e., `basis' networks). Our framework, PRANC, enables significant compaction of a deep model. The model can be reconstructed using a single scalar `seed,' employed to generate the pseudo-random `basis' networks, together with the learned linear mixture coefficients. In practical applications, PRANC addresses the challenge of efficiently storing and communicating deep models, a common bottleneck in several scenarios, including multi-agent learning, continual learners, federated systems, and edge devices, among others. In this study, we employ PRANC to condense image classification models and compress images by compacting their associated implicit neural networks. PRANC outperforms baselines with a large margin on image classification when compressing a deep model almost 100 times. Moreover, we show that PRANC enables memory-efficient inference by generating layer-wise weights on the fly. The source code of PRANC is here: https://github.com/UCDvision/PRANC
The Power of Linear Combinations: Learning with Random Convolutions
Following the traditional paradigm of convolutional neural networks (CNNs), modern CNNs manage to keep pace with more recent, for example transformer-based, models by not only increasing model depth and width but also the kernel size. This results in large amounts of learnable model parameters that need to be handled during training. While following the convolutional paradigm with the according spatial inductive bias, we question the significance of learned convolution filters. In fact, our findings demonstrate that many contemporary CNN architectures can achieve high test accuracies without ever updating randomly initialized (spatial) convolution filters. Instead, simple linear combinations (implemented through efficient 1times 1 convolutions) suffice to effectively recombine even random filters into expressive network operators. Furthermore, these combinations of random filters can implicitly regularize the resulting operations, mitigating overfitting and enhancing overall performance and robustness. Conversely, retaining the ability to learn filter updates can impair network performance. Lastly, although we only observe relatively small gains from learning 3times 3 convolutions, the learning gains increase proportionally with kernel size, owing to the non-idealities of the independent and identically distributed (i.i.d.) nature of default initialization techniques.
Teaching Arithmetic to Small Transformers
Large language models like GPT-4 exhibit emergent capabilities across general-purpose tasks, such as basic arithmetic, when trained on extensive text data, even though these tasks are not explicitly encoded by the unsupervised, next-token prediction objective. This study investigates how small transformers, trained from random initialization, can efficiently learn arithmetic operations such as addition, multiplication, and elementary functions like square root, using the next-token prediction objective. We first demonstrate that conventional training data is not the most effective for arithmetic learning, and simple formatting changes can significantly improve accuracy. This leads to sharp phase transitions as a function of training data scale, which, in some cases, can be explained through connections to low-rank matrix completion. Building on prior work, we then train on chain-of-thought style data that includes intermediate step results. Even in the complete absence of pretraining, this approach significantly and simultaneously improves accuracy, sample complexity, and convergence speed. We also study the interplay between arithmetic and text data during training and examine the effects of few-shot prompting, pretraining, and model scale. Additionally, we discuss length generalization challenges. Our work highlights the importance of high-quality, instructive data that considers the particular characteristics of the next-word prediction objective for rapidly eliciting arithmetic capabilities.
RandAR: Decoder-only Autoregressive Visual Generation in Random Orders
We introduce RandAR, a decoder-only visual autoregressive (AR) model capable of generating images in arbitrary token orders. Unlike previous decoder-only AR models that rely on a predefined generation order, RandAR removes this inductive bias, unlocking new capabilities in decoder-only generation. Our essential design enables random order by inserting a "position instruction token" before each image token to be predicted, representing the spatial location of the next image token. Trained on randomly permuted token sequences -- a more challenging task than fixed-order generation, RandAR achieves comparable performance to its conventional raster-order counterpart. More importantly, decoder-only transformers trained from random orders acquire new capabilities. For the efficiency bottleneck of AR models, RandAR adopts parallel decoding with KV-Cache at inference time, enjoying 2.5x acceleration without sacrificing generation quality. Additionally, RandAR supports inpainting, outpainting and resolution extrapolation in a zero-shot manner. We hope RandAR inspires new directions for decoder-only visual generation models and broadens their applications across diverse scenarios. Our project page is at https://rand-ar.github.io/.
Weight subcloning: direct initialization of transformers using larger pretrained ones
Training large transformer models from scratch for a target task requires lots of data and is computationally demanding. The usual practice of transfer learning overcomes this challenge by initializing the model with weights of a pretrained model of the same size and specification to increase the convergence and training speed. However, what if no pretrained model of the required size is available? In this paper, we introduce a simple yet effective technique to transfer the knowledge of a pretrained model to smaller variants. Our approach called weight subcloning expedites the training of scaled-down transformers by initializing their weights from larger pretrained models. Weight subcloning involves an operation on the pretrained model to obtain the equivalent initialized scaled-down model. It consists of two key steps: first, we introduce neuron importance ranking to decrease the embedding dimension per layer in the pretrained model. Then, we remove blocks from the transformer model to match the number of layers in the scaled-down network. The result is a network ready to undergo training, which gains significant improvements in training speed compared to random initialization. For instance, we achieve 4x faster training for vision transformers in image classification and language models designed for next token prediction.
DreamFusion: Text-to-3D using 2D Diffusion
Recent breakthroughs in text-to-image synthesis have been driven by diffusion models trained on billions of image-text pairs. Adapting this approach to 3D synthesis would require large-scale datasets of labeled 3D data and efficient architectures for denoising 3D data, neither of which currently exist. In this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion model to perform text-to-3D synthesis. We introduce a loss based on probability density distillation that enables the use of a 2D diffusion model as a prior for optimization of a parametric image generator. Using this loss in a DeepDream-like procedure, we optimize a randomly-initialized 3D model (a Neural Radiance Field, or NeRF) via gradient descent such that its 2D renderings from random angles achieve a low loss. The resulting 3D model of the given text can be viewed from any angle, relit by arbitrary illumination, or composited into any 3D environment. Our approach requires no 3D training data and no modifications to the image diffusion model, demonstrating the effectiveness of pretrained image diffusion models as priors.
Going Beyond Neural Network Feature Similarity: The Network Feature Complexity and Its Interpretation Using Category Theory
The behavior of neural networks still remains opaque, and a recently widely noted phenomenon is that networks often achieve similar performance when initialized with different random parameters. This phenomenon has attracted significant attention in measuring the similarity between features learned by distinct networks. However, feature similarity could be vague in describing the same feature since equivalent features hardly exist. In this paper, we expand the concept of equivalent feature and provide the definition of what we call functionally equivalent features. These features produce equivalent output under certain transformations. Using this definition, we aim to derive a more intrinsic metric for the so-called feature complexity regarding the redundancy of features learned by a neural network at each layer. We offer a formal interpretation of our approach through the lens of category theory, a well-developed area in mathematics. To quantify the feature complexity, we further propose an efficient algorithm named Iterative Feature Merging. Our experimental results validate our ideas and theories from various perspectives. We empirically demonstrate that the functionally equivalence widely exists among different features learned by the same neural network and we could reduce the number of parameters of the network without affecting the performance.The IFM shows great potential as a data-agnostic model prune method. We have also drawn several interesting empirical findings regarding the defined feature complexity.
Linear algebra with transformers
Transformers can learn to perform numerical computations from examples only. I study nine problems of linear algebra, from basic matrix operations to eigenvalue decomposition and inversion, and introduce and discuss four encoding schemes to represent real numbers. On all problems, transformers trained on sets of random matrices achieve high accuracies (over 90%). The models are robust to noise, and can generalize out of their training distribution. In particular, models trained to predict Laplace-distributed eigenvalues generalize to different classes of matrices: Wigner matrices or matrices with positive eigenvalues. The reverse is not true.
Taming Sparsely Activated Transformer with Stochastic Experts
Sparsely activated models (SAMs), such as Mixture-of-Experts (MoE), can easily scale to have outrageously large amounts of parameters without significant increase in computational cost. However, SAMs are reported to be parameter inefficient such that larger models do not always lead to better performance. While most on-going research focuses on improving SAMs models by exploring methods of routing inputs to experts, our analysis reveals that such research might not lead to the solution we expect, i.e., the commonly-used routing methods based on gating mechanisms do not work better than randomly routing inputs to experts. In this paper, we propose a new expert-based model, THOR (Transformer witH StOchastic ExpeRts). Unlike classic expert-based models, such as the Switch Transformer, experts in THOR are randomly activated for each input during training and inference. THOR models are trained using a consistency regularized loss, where experts learn not only from training data but also from other experts as teachers, such that all the experts make consistent predictions. We validate the effectiveness of THOR on machine translation tasks. Results show that THOR models are more parameter efficient in that they significantly outperform the Transformer and MoE models across various settings. For example, in multilingual translation, THOR outperforms the Switch Transformer by 2 BLEU scores, and obtains the same BLEU score as that of a state-of-the-art MoE model that is 18 times larger. Our code is publicly available at: https://github.com/microsoft/Stochastic-Mixture-of-Experts.
An Introduction to Transformers
The transformer is a neural network component that can be used to learn useful representations of sequences or sets of data-points. The transformer has driven recent advances in natural language processing, computer vision, and spatio-temporal modelling. There are many introductions to transformers, but most do not contain precise mathematical descriptions of the architecture and the intuitions behind the design choices are often also missing. Moreover, as research takes a winding path, the explanations for the components of the transformer can be idiosyncratic. In this note we aim for a mathematically precise, intuitive, and clean description of the transformer architecture. We will not discuss training as this is rather standard. We assume that the reader is familiar with fundamental topics in machine learning including multi-layer perceptrons, linear transformations, softmax functions and basic probability.
Transformer as Linear Expansion of Learngene
We propose expanding the shared Transformer module to produce and initialize Transformers of varying depths, enabling adaptation to diverse resource constraints. Drawing an analogy to genetic expansibility, we term such module as learngene. To identify the expansion mechanism, we delve into the relationship between the layer's position and its corresponding weight value, and find that linear function appropriately approximates this relationship. Building on this insight, we present Transformer as Linear Expansion of learnGene (TLEG), a novel approach for flexibly producing and initializing Transformers of diverse depths. Specifically, to learn learngene, we firstly construct an auxiliary Transformer linearly expanded from learngene, after which we train it through employing soft distillation. Subsequently, we can produce and initialize Transformers of varying depths via linearly expanding the well-trained learngene, thereby supporting diverse downstream scenarios. Extensive experiments on ImageNet-1K demonstrate that TLEG achieves comparable or better performance in contrast to many individual models trained from scratch, while reducing around 2x training cost. When transferring to several downstream classification datasets, TLEG surpasses existing initialization methods by a large margin (e.g., +6.87% on iNat 2019 and +7.66% on CIFAR-100). Under the situation where we need to produce models of varying depths adapting for different resource constraints, TLEG achieves comparable results while reducing around 19x parameters stored to initialize these models and around 5x pre-training costs, in contrast to the pre-training and fine-tuning approach. When transferring a fixed set of parameters to initialize different models, TLEG presents better flexibility and competitive performance while reducing around 2.9x parameters stored to initialize, compared to the pre-training approach.
A Practical Survey on Faster and Lighter Transformers
Recurrent neural networks are effective models to process sequences. However, they are unable to learn long-term dependencies because of their inherent sequential nature. As a solution, Vaswani et al. introduced the Transformer, a model solely based on the attention mechanism that is able to relate any two positions of the input sequence, hence modelling arbitrary long dependencies. The Transformer has improved the state-of-the-art across numerous sequence modelling tasks. However, its effectiveness comes at the expense of a quadratic computational and memory complexity with respect to the sequence length, hindering its adoption. Fortunately, the deep learning community has always been interested in improving the models' efficiency, leading to a plethora of solutions such as parameter sharing, pruning, mixed-precision, and knowledge distillation. Recently, researchers have directly addressed the Transformer's limitation by designing lower-complexity alternatives such as the Longformer, Reformer, Linformer, and Performer. However, due to the wide range of solutions, it has become challenging for researchers and practitioners to determine which methods to apply in practice in order to meet the desired trade-off between capacity, computation, and memory. This survey addresses this issue by investigating popular approaches to make Transformers faster and lighter and by providing a comprehensive explanation of the methods' strengths, limitations, and underlying assumptions.
What can a Single Attention Layer Learn? A Study Through the Random Features Lens
Attention layers -- which map a sequence of inputs to a sequence of outputs -- are core building blocks of the Transformer architecture which has achieved significant breakthroughs in modern artificial intelligence. This paper presents a rigorous theoretical study on the learning and generalization of a single multi-head attention layer, with a sequence of key vectors and a separate query vector as input. We consider the random feature setting where the attention layer has a large number of heads, with randomly sampled frozen query and key matrices, and trainable value matrices. We show that such a random-feature attention layer can express a broad class of target functions that are permutation invariant to the key vectors. We further provide quantitative excess risk bounds for learning these target functions from finite samples, using random feature attention with finitely many heads. Our results feature several implications unique to the attention structure compared with existing random features theory for neural networks, such as (1) Advantages in the sample complexity over standard two-layer random-feature networks; (2) Concrete and natural classes of functions that can be learned efficiently by a random-feature attention layer; and (3) The effect of the sampling distribution of the query-key weight matrix (the product of the query and key matrix), where Gaussian random weights with a non-zero mean result in better sample complexities over the zero-mean counterpart for learning certain natural target functions. Experiments on simulated data corroborate our theoretical findings and further illustrate the interplay between the sample size and the complexity of the target function.
Trained Transformers Learn Linear Models In-Context
Attention-based neural networks such as transformers have demonstrated a remarkable ability to exhibit in-context learning (ICL): Given a short prompt sequence of tokens from an unseen task, they can formulate relevant per-token and next-token predictions without any parameter updates. By embedding a sequence of labeled training data and unlabeled test data as a prompt, this allows for transformers to behave like supervised learning algorithms. Indeed, recent work has shown that when training transformer architectures over random instances of linear regression problems, these models' predictions mimic those of ordinary least squares. Towards understanding the mechanisms underlying this phenomenon, we investigate the dynamics of ICL in transformers with a single linear self-attention layer trained by gradient flow on linear regression tasks. We show that despite non-convexity, gradient flow with a suitable random initialization finds a global minimum of the objective function. At this global minimum, when given a test prompt of labeled examples from a new prediction task, the transformer achieves prediction error competitive with the best linear predictor over the test prompt distribution. We additionally characterize the robustness of the trained transformer to a variety of distribution shifts and show that although a number of shifts are tolerated, shifts in the covariate distribution of the prompts are not. Motivated by this, we consider a generalized ICL setting where the covariate distributions can vary across prompts. We show that although gradient flow succeeds at finding a global minimum in this setting, the trained transformer is still brittle under mild covariate shifts. We complement this finding with experiments on large, nonlinear transformer architectures which we show are more robust under covariate shifts.
DenseShift: Towards Accurate and Transferable Low-Bit Shift Network
Deploying deep neural networks on low-resource edge devices is challenging due to their ever-increasing resource requirements. Recent investigations propose multiplication-free neural networks to reduce computation and memory consumption. Shift neural network is one of the most effective tools towards these reductions. However, existing low-bit shift networks are not as accurate as their full precision counterparts and cannot efficiently transfer to a wide range of tasks due to their inherent design flaws. We propose DenseShift network that exploits the following novel designs. First, we demonstrate that the zero-weight values in low-bit shift networks are neither useful to the model capacity nor simplify the model inference. Therefore, we propose to use a zero-free shifting mechanism to simplify inference while increasing the model capacity. Second, we design a new metric to measure the weight freezing issue in training low-bit shift networks, and propose a sign-scale decomposition to improve the training efficiency. Third, we propose the low-variance random initialization strategy to improve the model's performance in transfer learning scenarios. We run extensive experiments on various computer vision and speech tasks. The experimental results show that DenseShift network significantly outperforms existing low-bit multiplication-free networks and can achieve competitive performance to the full-precision counterpart. It also exhibits strong transfer learning performance with no drop in accuracy.
Integrally Migrating Pre-trained Transformer Encoder-decoders for Visual Object Detection
Modern object detectors have taken the advantages of backbone networks pre-trained on large scale datasets. Except for the backbone networks, however, other components such as the detector head and the feature pyramid network (FPN) remain trained from scratch, which hinders fully tapping the potential of representation models. In this study, we propose to integrally migrate pre-trained transformer encoder-decoders (imTED) to a detector, constructing a feature extraction path which is ``fully pre-trained" so that detectors' generalization capacity is maximized. The essential differences between imTED with the baseline detector are twofold: (1) migrating the pre-trained transformer decoder to the detector head while removing the randomly initialized FPN from the feature extraction path; and (2) defining a multi-scale feature modulator (MFM) to enhance scale adaptability. Such designs not only reduce randomly initialized parameters significantly but also unify detector training with representation learning intendedly. Experiments on the MS COCO object detection dataset show that imTED consistently outperforms its counterparts by sim2.4 AP. Without bells and whistles, imTED improves the state-of-the-art of few-shot object detection by up to 7.6 AP. Code is available at https://github.com/LiewFeng/imTED.
Position Information Emerges in Causal Transformers Without Positional Encodings via Similarity of Nearby Embeddings
Transformers with causal attention can solve tasks that require positional information without using positional encodings. In this work, we propose and investigate a new hypothesis about how positional information can be stored without using explicit positional encoding. We observe that nearby embeddings are more similar to each other than faraway embeddings, allowing the transformer to potentially reconstruct the positions of tokens. We show that this pattern can occur in both the trained and the randomly initialized Transformer models with causal attention and no positional encodings over a common range of hyperparameters.
Transformers Can Achieve Length Generalization But Not Robustly
Length generalization, defined as the ability to extrapolate from shorter training sequences to longer test ones, is a significant challenge for language models. This issue persists even with large-scale Transformers handling relatively straightforward tasks. In this paper, we test the Transformer's ability of length generalization using the task of addition of two integers. We show that the success of length generalization is intricately linked to the data format and the type of position encoding. Using the right combination of data format and position encodings, we show for the first time that standard Transformers can extrapolate to a sequence length that is 2.5x the input length. Nevertheless, unlike in-distribution generalization, length generalization remains fragile, significantly influenced by factors like random weight initialization and training data order, leading to large variances across different random seeds.
On Layer Normalization in the Transformer Architecture
The Transformer is widely used in natural language processing tasks. To train a Transformer however, one usually needs a carefully designed learning rate warm-up stage, which is shown to be crucial to the final performance but will slow down the optimization and bring more hyper-parameter tunings. In this paper, we first study theoretically why the learning rate warm-up stage is essential and show that the location of layer normalization matters. Specifically, we prove with mean field theory that at initialization, for the original-designed Post-LN Transformer, which places the layer normalization between the residual blocks, the expected gradients of the parameters near the output layer are large. Therefore, using a large learning rate on those gradients makes the training unstable. The warm-up stage is practically helpful for avoiding this problem. On the other hand, our theory also shows that if the layer normalization is put inside the residual blocks (recently proposed as Pre-LN Transformer), the gradients are well-behaved at initialization. This motivates us to remove the warm-up stage for the training of Pre-LN Transformers. We show in our experiments that Pre-LN Transformers without the warm-up stage can reach comparable results with baselines while requiring significantly less training time and hyper-parameter tuning on a wide range of applications.
Understanding Addition in Transformers
Understanding the inner workings of machine learning models like Transformers is vital for their safe and ethical use. This paper provides a comprehensive analysis of a one-layer Transformer model trained to perform n-digit integer addition. Our findings suggest that the model dissects the task into parallel streams dedicated to individual digits, employing varied algorithms tailored to different positions within the digits. Furthermore, we identify a rare scenario characterized by high loss, which we explain. By thoroughly elucidating the model's algorithm, we provide new insights into its functioning. These findings are validated through rigorous testing and mathematical modeling, thereby contributing to the broader fields of model understanding and interpretability. Our approach opens the door for analyzing more complex tasks and multi-layer Transformer models.
Transformers Can Represent n-gram Language Models
Plenty of existing work has analyzed the abilities of the transformer architecture by describing its representational capacity with formal models of computation. However, the focus so far has been on analyzing the architecture in terms of language acceptance. We contend that this is an ill-suited problem in the study of language models (LMs), which are definitionally probability distributions over strings. In this paper, we focus on the relationship between transformer LMs and n-gram LMs, a simple and historically relevant class of language models. We show that transformer LMs using the hard or sparse attention mechanisms can exactly represent any n-gram LM, giving us a concrete lower bound on their probabilistic representational capacity. This provides a first step towards understanding the mechanisms that transformer LMs can use to represent probability distributions over strings.
The Shaped Transformer: Attention Models in the Infinite Depth-and-Width Limit
In deep learning theory, the covariance matrix of the representations serves as a proxy to examine the network's trainability. Motivated by the success of Transformers, we study the covariance matrix of a modified Softmax-based attention model with skip connections in the proportional limit of infinite-depth-and-width. We show that at initialization the limiting distribution can be described by a stochastic differential equation (SDE) indexed by the depth-to-width ratio. To achieve a well-defined stochastic limit, the Transformer's attention mechanism is modified by centering the Softmax output at identity, and scaling the Softmax logits by a width-dependent temperature parameter. We examine the stability of the network through the corresponding SDE, showing how the scale of both the drift and diffusion can be elegantly controlled with the aid of residual connections. The existence of a stable SDE implies that the covariance structure is well-behaved, even for very large depth and width, thus preventing the notorious issues of rank degeneracy in deep attention models. Finally, we show, through simulations, that the SDE provides a surprisingly good description of the corresponding finite-size model. We coin the name shaped Transformer for these architectural modifications.
LayerShuffle: Enhancing Robustness in Vision Transformers by Randomizing Layer Execution Order
Due to their architecture and how they are trained, artificial neural networks are typically not robust toward pruning, replacing, or shuffling layers at test time. However, such properties would be desirable for different applications, such as distributed neural network architectures where the order of execution cannot be guaranteed or parts of the network can fail during inference. In this work, we address these issues through a number of proposed training approaches for vision transformers whose most important component is randomizing the execution order of attention modules at training time. We show that with our proposed approaches, vision transformers are indeed capable to adapt to arbitrary layer execution orders at test time assuming one tolerates a reduction (about 20\%) in accuracy at the same model size. We also find that our trained models can be randomly merged with each other resulting in functional ("Frankenstein") models without loss of performance compared to the source models. Finally, we layer-prune our models at test time and find that their performance declines gracefully.
Unraveling the Gradient Descent Dynamics of Transformers
While the Transformer architecture has achieved remarkable success across various domains, a thorough theoretical foundation explaining its optimization dynamics is yet to be fully developed. In this study, we aim to bridge this understanding gap by answering the following two core questions: (1) Which types of Transformer architectures allow Gradient Descent (GD) to achieve guaranteed convergence? and (2) Under what initial conditions and architectural specifics does the Transformer achieve rapid convergence during training? By analyzing the loss landscape of a single Transformer layer using Softmax and Gaussian attention kernels, our work provides concrete answers to these questions. Our findings demonstrate that, with appropriate weight initialization, GD can train a Transformer model (with either kernel type) to achieve a global optimal solution, especially when the input embedding dimension is large. Nonetheless, certain scenarios highlight potential pitfalls: training a Transformer using the Softmax attention kernel may sometimes lead to suboptimal local solutions. In contrast, the Gaussian attention kernel exhibits a much favorable behavior. Our empirical study further validate the theoretical findings.
Latent Positional Information is in the Self-Attention Variance of Transformer Language Models Without Positional Embeddings
The use of positional embeddings in transformer language models is widely accepted. However, recent research has called into question the necessity of such embeddings. We further extend this inquiry by demonstrating that a randomly initialized and frozen transformer language model, devoid of positional embeddings, inherently encodes strong positional information through the shrinkage of self-attention variance. To quantify this variance, we derive the underlying distribution of each step within a transformer layer. Through empirical validation using a fully pretrained model, we show that the variance shrinkage effect still persists after extensive gradient updates. Our findings serve to justify the decision to discard positional embeddings and thus facilitate more efficient pretraining of transformer language models.
Breaking Symmetry When Training Transformers
As we show in this paper, the prediction for output token n+1 of Transformer architectures without one of the mechanisms of positional encodings and causal attention is invariant to permutations of input tokens 1, 2, ..., n-1. Usually, both mechanisms are employed and the symmetry with respect to the input tokens is broken. Recently, it has been shown that one can train Transformers without positional encodings. This must be enabled by the causal attention mechanism. In this paper, we elaborate on the argument that the causal connection mechanism must be responsible for the fact that Transformers are able to model input sequences where the order is important. Vertical "slices" of Transformers are all encouraged to represent the same location k in the input sequence. We hypothesize that residual connections contribute to this phenomenon, and demonstrate evidence for this.
Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
Increasing the size of a Transformer model does not always lead to enhanced performance. This phenomenon cannot be explained by the empirical scaling laws. Furthermore, improved generalization ability occurs as the model memorizes the training samples. We present a theoretical framework that sheds light on the memorization process and performance dynamics of transformer-based language models. We model the behavior of Transformers with associative memories using Hopfield networks, such that each transformer block effectively conducts an approximate nearest-neighbor search. Based on this, we design an energy function analogous to that in the modern continuous Hopfield network which provides an insightful explanation for the attention mechanism. Using the majorization-minimization technique, we construct a global energy function that captures the layered architecture of the Transformer. Under specific conditions, we show that the minimum achievable cross-entropy loss is bounded from below by a constant approximately equal to 1. We substantiate our theoretical results by conducting experiments with GPT-2 on various data sizes, as well as training vanilla Transformers on a dataset of 2M tokens.
How Powerful are Shallow Neural Networks with Bandlimited Random Weights?
We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.
Randomized Positional Encodings Boost Length Generalization of Transformers
Transformers have impressive generalization capabilities on tasks with a fixed context length. However, they fail to generalize to sequences of arbitrary length, even for seemingly simple tasks such as duplicating a string. Moreover, simply training on longer sequences is inefficient due to the quadratic computation complexity of the global attention mechanism. In this work, we demonstrate that this failure mode is linked to positional encodings being out-of-distribution for longer sequences (even for relative encodings) and introduce a novel family of positional encodings that can overcome this problem. Concretely, our randomized positional encoding scheme simulates the positions of longer sequences and randomly selects an ordered subset to fit the sequence's length. Our large-scale empirical evaluation of 6000 models across 15 algorithmic reasoning tasks shows that our method allows Transformers to generalize to sequences of unseen length (increasing test accuracy by 12.0% on average).
Kolmogorov-Arnold Transformer
Transformers stand as the cornerstone of mordern deep learning. Traditionally, these models rely on multi-layer perceptron (MLP) layers to mix the information between channels. In this paper, we introduce the Kolmogorov-Arnold Transformer (KAT), a novel architecture that replaces MLP layers with Kolmogorov-Arnold Network (KAN) layers to enhance the expressiveness and performance of the model. Integrating KANs into transformers, however, is no easy feat, especially when scaled up. Specifically, we identify three key challenges: (C1) Base function. The standard B-spline function used in KANs is not optimized for parallel computing on modern hardware, resulting in slower inference speeds. (C2) Parameter and Computation Inefficiency. KAN requires a unique function for each input-output pair, making the computation extremely large. (C3) Weight initialization. The initialization of weights in KANs is particularly challenging due to their learnable activation functions, which are critical for achieving convergence in deep neural networks. To overcome the aforementioned challenges, we propose three key solutions: (S1) Rational basis. We replace B-spline functions with rational functions to improve compatibility with modern GPUs. By implementing this in CUDA, we achieve faster computations. (S2) Group KAN. We share the activation weights through a group of neurons, to reduce the computational load without sacrificing performance. (S3) Variance-preserving initialization. We carefully initialize the activation weights to make sure that the activation variance is maintained across layers. With these designs, KAT scales effectively and readily outperforms traditional MLP-based transformers.
Stretching Each Dollar: Diffusion Training from Scratch on a Micro-Budget
As scaling laws in generative AI push performance, they also simultaneously concentrate the development of these models among actors with large computational resources. With a focus on text-to-image (T2I) generative models, we aim to address this bottleneck by demonstrating very low-cost training of large-scale T2I diffusion transformer models. As the computational cost of transformers increases with the number of patches in each image, we propose to randomly mask up to 75% of the image patches during training. We propose a deferred masking strategy that preprocesses all patches using a patch-mixer before masking, thus significantly reducing the performance degradation with masking, making it superior to model downscaling in reducing computational cost. We also incorporate the latest improvements in transformer architecture, such as the use of mixture-of-experts layers, to improve performance and further identify the critical benefit of using synthetic images in micro-budget training. Finally, using only 37M publicly available real and synthetic images, we train a 1.16 billion parameter sparse transformer with only \1,890 economical cost and achieve a 12.7 FID in zero-shot generation on the COCO dataset. Notably, our model achieves competitive FID and high-quality generations while incurring 118\times lower cost than stable diffusion models and 14\times lower cost than the current state-of-the-art approach that costs 28,400. We aim to release our end-to-end training pipeline to further democratize the training of large-scale diffusion models on micro-budgets.
Accelerating Large Language Model Decoding with Speculative Sampling
We present speculative sampling, an algorithm for accelerating transformer decoding by enabling the generation of multiple tokens from each transformer call. Our algorithm relies on the observation that the latency of parallel scoring of short continuations, generated by a faster but less powerful draft model, is comparable to that of sampling a single token from the larger target model. This is combined with a novel modified rejection sampling scheme which preserves the distribution of the target model within hardware numerics. We benchmark speculative sampling with Chinchilla, a 70 billion parameter language model, achieving a 2-2.5x decoding speedup in a distributed setup, without compromising the sample quality or making modifications to the model itself.
Composable Function-preserving Expansions for Transformer Architectures
Training state-of-the-art neural networks requires a high cost in terms of compute and time. Model scale is recognized to be a critical factor to achieve and improve the state-of-the-art. Increasing the scale of a neural network normally requires restarting from scratch by randomly initializing all the parameters of the model, as this implies a change of architecture's parameters that does not allow for a straightforward transfer of knowledge from smaller size models. In this work, we propose six composable transformations to incrementally increase the size of transformer-based neural networks while preserving functionality, allowing to expand the capacity of the model as needed. We provide proof of exact function preservation under minimal initialization constraints for each transformation. The proposed methods may enable efficient training pipelines for larger and more powerful models by progressively expanding the architecture throughout training.
Looped Transformers are Better at Learning Learning Algorithms
Transformers have demonstrated effectiveness in in-context solving data-fitting problems from various (latent) models, as reported by Garg et al. However, the absence of an inherent iterative structure in the transformer architecture presents a challenge in emulating the iterative algorithms, which are commonly employed in traditional machine learning methods. To address this, we propose the utilization of looped transformer architecture and its associated training methodology, with the aim of incorporating iterative characteristics into the transformer architectures. Experimental results suggest that the looped transformer achieves performance comparable to the standard transformer in solving various data-fitting problems, while utilizing less than 10\% of the parameter count.
Towards Better Understanding of In-Context Learning Ability from In-Context Uncertainty Quantification
Predicting simple function classes has been widely used as a testbed for developing theory and understanding of the trained Transformer's in-context learning (ICL) ability. In this paper, we revisit the training of Transformers on linear regression tasks, and different from all the existing literature, we consider a bi-objective prediction task of predicting both the conditional expectation E[Y|X] and the conditional variance Var(Y|X). This additional uncertainty quantification objective provides a handle to (i) better design out-of-distribution experiments to distinguish ICL from in-weight learning (IWL) and (ii) make a better separation between the algorithms with and without using the prior information of the training distribution. Theoretically, we show that the trained Transformer reaches near Bayes-optimum, suggesting the usage of the information of the training distribution. Our method can be extended to other cases. Specifically, with the Transformer's context window S, we prove a generalization bound of mathcal{O}(min{S, T/(n T)}) on n tasks with sequences of length T, providing sharper analysis compared to previous results of mathcal{O}(1/n). Empirically, we illustrate that while the trained Transformer behaves as the Bayes-optimal solution as a natural consequence of supervised training in distribution, it does not necessarily perform a Bayesian inference when facing task shifts, in contrast to the equivalence between these two proposed in many existing literature. We also demonstrate the trained Transformer's ICL ability over covariates shift and prompt-length shift and interpret them as a generalization over a meta distribution.
Toward a Theory of Tokenization in LLMs
While there has been a large body of research attempting to circumvent tokenization for language modeling (Clark et al., 2022; Xue et al., 2022), the current consensus is that it is a necessary initial step for designing state-of-the-art performant language models. In this paper, we investigate tokenization from a theoretical point of view by studying the behavior of transformers on simple data generating processes. When trained on data drawn from certain simple k^{th}-order Markov processes for k > 1, transformers exhibit a surprising phenomenon - in the absence of tokenization, they empirically fail to learn the right distribution and predict characters according to a unigram model (Makkuva et al., 2024). With the addition of tokenization, however, we empirically observe that transformers break through this barrier and are able to model the probabilities of sequences drawn from the source near-optimally, achieving small cross-entropy loss. With this observation as starting point, we study the end-to-end cross-entropy loss achieved by transformers with and without tokenization. With the appropriate tokenization, we show that even the simplest unigram models (over tokens) learnt by transformers are able to model the probability of sequences drawn from k^{th}-order Markov sources near optimally. Our analysis provides a justification for the use of tokenization in practice through studying the behavior of transformers on Markovian data.
Arbitrary Length Generalization for Addition
This paper introduces a novel training methodology that enables a small Transformer model to generalize the addition of two-digit numbers to numbers with unseen lengths of digits. The proposed approach employs an autoregressive generation technique, processing from right to left, which mimics a common manual method for adding large numbers. To the best of my knowledge, this methodology has not been previously explored in the literature. All results are reproducible, and the corresponding R code is available at: https://github.com/AGPatriota/ALGA-R/.
Can Transformers Learn Sequential Function Classes In Context?
In-context learning (ICL) has revolutionized the capabilities of transformer models in NLP. In our project, we extend the understanding of the mechanisms underpinning ICL by exploring whether transformers can learn from sequential, non-textual function class data distributions. We introduce a novel sliding window sequential function class and employ toy-sized transformers with a GPT-2 architecture to conduct our experiments. Our analysis indicates that these models can indeed leverage ICL when trained on non-textual sequential function classes. Additionally, our experiments with randomized y-label sequences highlights that transformers retain some ICL capabilities even when the label associations are obfuscated. We provide evidence that transformers can reason with and understand sequentiality encoded within function classes, as reflected by the effective learning of our proposed tasks. Our results also show that the performance deteriorated with increasing randomness in the labels, though not to the extent one might expect, implying a potential robustness of learned sequentiality against label noise. Future research may want to look into how previous explanations of transformers, such as induction heads and task vectors, relate to sequentiality in ICL in these toy examples. Our investigation lays the groundwork for further research into how transformers process and perceive sequential data.
Scan and Snap: Understanding Training Dynamics and Token Composition in 1-layer Transformer
Transformer architecture has shown impressive performance in multiple research domains and has become the backbone of many neural network models. However, there is limited understanding on how it works. In particular, with a simple predictive loss, how the representation emerges from the gradient training dynamics remains a mystery. In this paper, for 1-layer transformer with one self-attention layer plus one decoder layer, we analyze its SGD training dynamics for the task of next token prediction in a mathematically rigorous manner. We open the black box of the dynamic process of how the self-attention layer combines input tokens, and reveal the nature of underlying inductive bias. More specifically, with the assumption (a) no positional encoding, (b) long input sequence, and (c) the decoder layer learns faster than the self-attention layer, we prove that self-attention acts as a discriminative scanning algorithm: starting from uniform attention, it gradually attends more to distinct key tokens for a specific next token to be predicted, and pays less attention to common key tokens that occur across different next tokens. Among distinct tokens, it progressively drops attention weights, following the order of low to high co-occurrence between the key and the query token in the training set. Interestingly, this procedure does not lead to winner-takes-all, but decelerates due to a phase transition that is controllable by the learning rates of the two layers, leaving (almost) fixed token combination. We verify this \emph{scan and snap} dynamics on synthetic and real-world data (WikiText).
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale
Large language models have been widely adopted but require significant GPU memory for inference. We develop a procedure for Int8 matrix multiplication for feed-forward and attention projection layers in transformers, which cut the memory needed for inference by half while retaining full precision performance. With our method, a 175B parameter 16/32-bit checkpoint can be loaded, converted to Int8, and used immediately without performance degradation. This is made possible by understanding and working around properties of highly systematic emergent features in transformer language models that dominate attention and transformer predictive performance. To cope with these features, we develop a two-part quantization procedure, LLM.int8(). We first use vector-wise quantization with separate normalization constants for each inner product in the matrix multiplication, to quantize most of the features. However, for the emergent outliers, we also include a new mixed-precision decomposition scheme, which isolates the outlier feature dimensions into a 16-bit matrix multiplication while still more than 99.9% of values are multiplied in 8-bit. Using LLM.int8(), we show empirically it is possible to perform inference in LLMs with up to 175B parameters without any performance degradation. This result makes such models much more accessible, for example making it possible to use OPT-175B/BLOOM on a single server with consumer GPUs. We open-source our software.
MaskGIT: Masked Generative Image Transformer
Generative transformers have experienced rapid popularity growth in the computer vision community in synthesizing high-fidelity and high-resolution images. The best generative transformer models so far, however, still treat an image naively as a sequence of tokens, and decode an image sequentially following the raster scan ordering (i.e. line-by-line). We find this strategy neither optimal nor efficient. This paper proposes a novel image synthesis paradigm using a bidirectional transformer decoder, which we term MaskGIT. During training, MaskGIT learns to predict randomly masked tokens by attending to tokens in all directions. At inference time, the model begins with generating all tokens of an image simultaneously, and then refines the image iteratively conditioned on the previous generation. Our experiments demonstrate that MaskGIT significantly outperforms the state-of-the-art transformer model on the ImageNet dataset, and accelerates autoregressive decoding by up to 64x. Besides, we illustrate that MaskGIT can be easily extended to various image editing tasks, such as inpainting, extrapolation, and image manipulation.
Making the Most of your Model: Methods for Finetuning and Applying Pretrained Transformers
This thesis provides methods and analysis of models which make progress on this goal. The techniques outlined are task agnostic, and should provide benefit when used with nearly any transformer LM. We introduce two new finetuning methods which add new capabilities to the models they are used on. The first adds a recurrence mechanism, which removes the fixed-window sized constraint and improves the efficiency of a transformer decoder. The second allows masked language models (MLMs) to be used for initialization of both the encoder and decoder of a non-autoregressive sequence-to-sequence transformer, opening up generative applications of models which were previously only used for natural language understanding tasks. We also introduce two new techniques for improving the quality of predictions of any transformer decoder without additional finetuning. One, hidden state optimization, can be applied to any transformer decoder to improve the quality of predictions at inference time, especially for few-shot classification. The other, conditional beam search, allows practitioners to search for natural language generation (NLG) model outputs with high likelihood while conditioning on the event that the output is not degenerate (e.g. empty, repetitive, etc.). Finally, we provide theoretical and empirical insights on the divergence of model-likelihood and output quality which has widely been observed in prior work. These insights apply to any model which represents a distribution over text, and apply to language models which are not transformers or even autoregressive. We argue that the NLP community has, to some extent, misunderstood the implications of these findings, and encourage a point of view which has more nuance.
Emergent properties with repeated examples
We study the performance of transformers as a function of the number of repetitions of training examples with algorithmically generated datasets. On three problems of mathematics: the greatest common divisor, modular multiplication, and matrix eigenvalues, we show that for a fixed number of training steps, models trained on smaller sets of repeated examples outperform models trained on larger sets of single-use examples. We also demonstrate that two-set training - repeated use of a small random subset of examples, along normal sampling on the rest of the training set - provides for faster learning and better performance. This highlights that the benefits of repetition can outweigh those of data diversity. These datasets and problems provide a controlled setting to shed light on the still poorly understood interplay between generalization and memorization in deep learning.
DSFormer: Effective Compression of Text-Transformers by Dense-Sparse Weight Factorization
With the tremendous success of large transformer models in natural language understanding, down-sizing them for cost-effective deployments has become critical. Recent studies have explored the low-rank weight factorization techniques which are efficient to train, and apply out-of-the-box to any transformer architecture. Unfortunately, the low-rank assumption tends to be over-restrictive and hinders the expressiveness of the compressed model. This paper proposes, DSFormer, a simple alternative factorization scheme which expresses a target weight matrix as the product of a small dense and a semi-structured sparse matrix. The resulting approximation is more faithful to the weight distribution in transformers and therefore achieves a stronger efficiency-accuracy trade-off. Another concern with existing factorizers is their dependence on a task-unaware initialization step which degrades the accuracy of the resulting model. DSFormer addresses this issue through a novel Straight-Through Factorizer (STF) algorithm that jointly learns all the weight factorizations to directly maximize the final task accuracy. Extensive experiments on multiple natural language understanding benchmarks demonstrate that DSFormer obtains up to 40% better compression than the state-of-the-art low-rank factorizers, leading semi-structured sparsity baselines and popular knowledge distillation approaches. Our approach is also orthogonal to mainstream compressors and offers up to 50% additional compression when added to popular distilled, layer-shared and quantized transformers. We empirically evaluate the benefits of STF over conventional optimization practices.
The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers
This paper studies the curious phenomenon for machine learning models with Transformer architectures that their activation maps are sparse. By activation map we refer to the intermediate output of the multi-layer perceptrons (MLPs) after a ReLU activation function, and by sparse we mean that on average very few entries (e.g., 3.0% for T5-Base and 6.3% for ViT-B16) are nonzero for each input to MLP. Moreover, larger Transformers with more layers and wider MLP hidden dimensions are sparser as measured by the percentage of nonzero entries. Through extensive experiments we demonstrate that the emergence of sparsity is a prevalent phenomenon that occurs for both natural language processing and vision tasks, on both training and evaluation data, for Transformers of various configurations, at layers of all depth levels, as well as for other architectures including MLP-mixers and 2-layer MLPs. We show that sparsity also emerges using training datasets with random labels, or with random inputs, or with infinite amount of data, demonstrating that sparsity is not a result of a specific family of datasets. We discuss how sparsity immediately implies a way to significantly reduce the FLOP count and improve efficiency for Transformers. Moreover, we demonstrate perhaps surprisingly that enforcing an even sparser activation via Top-k thresholding with a small value of k brings a collection of desired but missing properties for Transformers, namely less sensitivity to noisy training data, more robustness to input corruptions, and better calibration for their prediction confidence.
Learning Transformer Programs
Recent research in mechanistic interpretability has attempted to reverse-engineer Transformer models by carefully inspecting network weights and activations. However, these approaches require considerable manual effort and still fall short of providing complete, faithful descriptions of the underlying algorithms. In this work, we introduce a procedure for training Transformers that are mechanistically interpretable by design. We build on RASP [Weiss et al., 2021], a programming language that can be compiled into Transformer weights. Instead of compiling human-written programs into Transformers, we design a modified Transformer that can be trained using gradient-based optimization and then automatically converted into a discrete, human-readable program. We refer to these models as Transformer Programs. To validate our approach, we learn Transformer Programs for a variety of problems, including an in-context learning task, a suite of algorithmic problems (e.g. sorting, recognizing Dyck languages), and NLP tasks including named entity recognition and text classification. The Transformer Programs can automatically find reasonable solutions, performing on par with standard Transformers of comparable size; and, more importantly, they are easy to interpret. To demonstrate these advantages, we convert Transformers into Python programs and use off-the-shelf code analysis tools to debug model errors and identify the "circuits" used to solve different sub-problems. We hope that Transformer Programs open a new path toward the goal of intrinsically interpretable machine learning.
Ask, and it shall be given: Turing completeness of prompting
Since the success of GPT, large language models (LLMs) have been revolutionizing machine learning and have initiated the so-called LLM prompting paradigm. In the era of LLMs, people train a single general-purpose LLM and provide the LLM with different prompts to perform different tasks. However, such empirical success largely lacks theoretical understanding. Here, we present the first theoretical study on the LLM prompting paradigm to the best of our knowledge. In this work, we show that prompting is in fact Turing-complete: there exists a finite-size Transformer such that for any computable function, there exists a corresponding prompt following which the Transformer computes the function. Furthermore, we show that even though we use only a single finite-size Transformer, it can still achieve nearly the same complexity bounds as that of the class of all unbounded-size Transformers. Overall, our result reveals that prompting can enable a single finite-size Transformer to be efficiently universal, which establishes a theoretical underpinning for prompt engineering in practice.
A Survey of Techniques for Optimizing Transformer Inference
Recent years have seen a phenomenal rise in performance and applications of transformer neural networks. The family of transformer networks, including Bidirectional Encoder Representations from Transformer (BERT), Generative Pretrained Transformer (GPT) and Vision Transformer (ViT), have shown their effectiveness across Natural Language Processing (NLP) and Computer Vision (CV) domains. Transformer-based networks such as ChatGPT have impacted the lives of common men. However, the quest for high predictive performance has led to an exponential increase in transformers' memory and compute footprint. Researchers have proposed techniques to optimize transformer inference at all levels of abstraction. This paper presents a comprehensive survey of techniques for optimizing the inference phase of transformer networks. We survey techniques such as knowledge distillation, pruning, quantization, neural architecture search and lightweight network design at the algorithmic level. We further review hardware-level optimization techniques and the design of novel hardware accelerators for transformers. We summarize the quantitative results on the number of parameters/FLOPs and accuracy of several models/techniques to showcase the tradeoff exercised by them. We also outline future directions in this rapidly evolving field of research. We believe that this survey will educate both novice and seasoned researchers and also spark a plethora of research efforts in this field.
Transformers in Time-series Analysis: A Tutorial
Transformer architecture has widespread applications, particularly in Natural Language Processing and computer vision. Recently Transformers have been employed in various aspects of time-series analysis. This tutorial provides an overview of the Transformer architecture, its applications, and a collection of examples from recent research papers in time-series analysis. We delve into an explanation of the core components of the Transformer, including the self-attention mechanism, positional encoding, multi-head, and encoder/decoder. Several enhancements to the initial, Transformer architecture are highlighted to tackle time-series tasks. The tutorial also provides best practices and techniques to overcome the challenge of effectively training Transformers for time-series analysis.
The Transient Nature of Emergent In-Context Learning in Transformers
Transformer neural networks can exhibit a surprising capacity for in-context learning (ICL) despite not being explicitly trained for it. Prior work has provided a deeper understanding of how ICL emerges in transformers, e.g. through the lens of mechanistic interpretability, Bayesian inference, or by examining the distributional properties of training data. However, in each of these cases, ICL is treated largely as a persistent phenomenon; namely, once ICL emerges, it is assumed to persist asymptotically. Here, we show that the emergence of ICL during transformer training is, in fact, often transient. We train transformers on synthetic data designed so that both ICL and in-weights learning (IWL) strategies can lead to correct predictions. We find that ICL first emerges, then disappears and gives way to IWL, all while the training loss decreases, indicating an asymptotic preference for IWL. The transient nature of ICL is observed in transformers across a range of model sizes and datasets, raising the question of how much to "overtrain" transformers when seeking compact, cheaper-to-run models. We find that L2 regularization may offer a path to more persistent ICL that removes the need for early stopping based on ICL-style validation tasks. Finally, we present initial evidence that ICL transience may be caused by competition between ICL and IWL circuits.
Primer: Searching for Efficient Transformers for Language Modeling
Large Transformer models have been central to recent advances in natural language processing. The training and inference costs of these models, however, have grown rapidly and become prohibitively expensive. Here we aim to reduce the costs of Transformers by searching for a more efficient variant. Compared to previous approaches, our search is performed at a lower level, over the primitives that define a Transformer TensorFlow program. We identify an architecture, named Primer, that has a smaller training cost than the original Transformer and other variants for auto-regressive language modeling. Primer's improvements can be mostly attributed to two simple modifications: squaring ReLU activations and adding a depthwise convolution layer after each Q, K, and V projection in self-attention. Experiments show Primer's gains over Transformer increase as compute scale grows and follow a power law with respect to quality at optimal model sizes. We also verify empirically that Primer can be dropped into different codebases to significantly speed up training without additional tuning. For example, at a 500M parameter size, Primer improves the original T5 architecture on C4 auto-regressive language modeling, reducing the training cost by 4X. Furthermore, the reduced training cost means Primer needs much less compute to reach a target one-shot performance. For instance, in a 1.9B parameter configuration similar to GPT-3 XL, Primer uses 1/3 of the training compute to achieve the same one-shot performance as Transformer. We open source our models and several comparisons in T5 to help with reproducibility.
Stabilizing Transformer Training by Preventing Attention Entropy Collapse
Training stability is of great importance to Transformers. In this work, we investigate the training dynamics of Transformers by examining the evolution of the attention layers. In particular, we track the attention entropy for each attention head during the course of training, which is a proxy for model sharpness. We identify a common pattern across different architectures and tasks, where low attention entropy is accompanied by high training instability, which can take the form of oscillating loss or divergence. We denote the pathologically low attention entropy, corresponding to highly concentrated attention scores, as entropy collapse. As a remedy, we propose sigmaReparam, a simple and efficient solution where we reparametrize all linear layers with spectral normalization and an additional learned scalar. We demonstrate that the proposed reparameterization successfully prevents entropy collapse in the attention layers, promoting more stable training. Additionally, we prove a tight lower bound of the attention entropy, which decreases exponentially fast with the spectral norm of the attention logits, providing additional motivation for our approach. We conduct experiments with sigmaReparam on image classification, image self-supervised learning, machine translation, automatic speech recognition, and language modeling tasks, across Transformer architectures. We show that sigmaReparam provides stability and robustness with respect to the choice of hyperparameters, going so far as enabling training (a) a Vision Transformer to competitive performance without warmup, weight decay, layer normalization or adaptive optimizers; (b) deep architectures in machine translation and (c) speech recognition to competitive performance without warmup and adaptive optimizers.
An Image is Worth More Than 16x16 Patches: Exploring Transformers on Individual Pixels
This work does not introduce a new method. Instead, we present an interesting finding that questions the necessity of the inductive bias -- locality in modern computer vision architectures. Concretely, we find that vanilla Transformers can operate by directly treating each individual pixel as a token and achieve highly performant results. This is substantially different from the popular design in Vision Transformer, which maintains the inductive bias from ConvNets towards local neighborhoods (e.g. by treating each 16x16 patch as a token). We mainly showcase the effectiveness of pixels-as-tokens across three well-studied tasks in computer vision: supervised learning for object classification, self-supervised learning via masked autoencoding, and image generation with diffusion models. Although directly operating on individual pixels is less computationally practical, we believe the community must be aware of this surprising piece of knowledge when devising the next generation of neural architectures for computer vision.
On the Expressive Power of a Variant of the Looped Transformer
Besides natural language processing, transformers exhibit extraordinary performance in solving broader applications, including scientific computing and computer vision. Previous works try to explain this from the expressive power and capability perspectives that standard transformers are capable of performing some algorithms. To empower transformers with algorithmic capabilities and motivated by the recently proposed looped transformer (Yang et al., 2024; Giannou et al., 2023), we design a novel transformer block, dubbed Algorithm Transformer (abbreviated as AlgoFormer). Compared with the standard transformer and vanilla looped transformer, the proposed AlgoFormer can achieve significantly higher expressiveness in algorithm representation when using the same number of parameters. In particular, inspired by the structure of human-designed learning algorithms, our transformer block consists of a pre-transformer that is responsible for task pre-processing, a looped transformer for iterative optimization algorithms, and a post-transformer for producing the desired results after post-processing. We provide theoretical evidence of the expressive power of the AlgoFormer in solving some challenging problems, mirroring human-designed algorithms. Furthermore, some theoretical and empirical results are presented to show that the designed transformer has the potential to be smarter than human-designed algorithms. Experimental results demonstrate the empirical superiority of the proposed transformer in that it outperforms the standard transformer and vanilla looped transformer in some challenging tasks.
Injecting a Structural Inductive Bias into a Seq2Seq Model by Simulation
Strong inductive biases enable learning from little data and help generalization outside of the training distribution. Popular neural architectures such as Transformers lack strong structural inductive biases for seq2seq NLP tasks on their own. Consequently, they struggle with systematic generalization beyond the training distribution, e.g. with extrapolating to longer inputs, even when pre-trained on large amounts of text. We show how a structural inductive bias can be efficiently injected into a seq2seq model by pre-training it to simulate structural transformations on synthetic data. Specifically, we inject an inductive bias towards Finite State Transducers (FSTs) into a Transformer by pre-training it to simulate FSTs given their descriptions. Our experiments show that our method imparts the desired inductive bias, resulting in improved systematic generalization and better few-shot learning for FST-like tasks. Our analysis shows that fine-tuned models accurately capture the state dynamics of the unseen underlying FSTs, suggesting that the simulation process is internalized by the fine-tuned model.
NoisyQuant: Noisy Bias-Enhanced Post-Training Activation Quantization for Vision Transformers
The complicated architecture and high training cost of vision transformers urge the exploration of post-training quantization. However, the heavy-tailed distribution of vision transformer activations hinders the effectiveness of previous post-training quantization methods, even with advanced quantizer designs. Instead of tuning the quantizer to better fit the complicated activation distribution, this paper proposes NoisyQuant, a quantizer-agnostic enhancement for the post-training activation quantization performance of vision transformers. We make a surprising theoretical discovery that for a given quantizer, adding a fixed Uniform noisy bias to the values being quantized can significantly reduce the quantization error under provable conditions. Building on the theoretical insight, NoisyQuant achieves the first success on actively altering the heavy-tailed activation distribution with additive noisy bias to fit a given quantizer. Extensive experiments show NoisyQuant largely improves the post-training quantization performance of vision transformer with minimal computation overhead. For instance, on linear uniform 6-bit activation quantization, NoisyQuant improves SOTA top-1 accuracy on ImageNet by up to 1.7%, 1.1% and 0.5% for ViT, DeiT, and Swin Transformer respectively, achieving on-par or even higher performance than previous nonlinear, mixed-precision quantization.
Training Transformers with 4-bit Integers
Quantizing the activation, weight, and gradient to 4-bit is promising to accelerate neural network training. However, existing 4-bit training methods require custom numerical formats which are not supported by contemporary hardware. In this work, we propose a training method for transformers with all matrix multiplications implemented with the INT4 arithmetic. Training with an ultra-low INT4 precision is challenging. To achieve this, we carefully analyze the specific structures of activation and gradients in transformers to propose dedicated quantizers for them. For forward propagation, we identify the challenge of outliers and propose a Hadamard quantizer to suppress the outliers. For backpropagation, we leverage the structural sparsity of gradients by proposing bit splitting and leverage score sampling techniques to quantize gradients accurately. Our algorithm achieves competitive accuracy on a wide range of tasks including natural language understanding, machine translation, and image classification. Unlike previous 4-bit training methods, our algorithm can be implemented on the current generation of GPUs. Our prototypical linear operator implementation is up to 2.2 times faster than the FP16 counterparts and speeds up the training by up to 35.1%.
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting
Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L log L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.
A Survey of Transformers
Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.
Towards Understanding How Transformer Perform Multi-step Reasoning with Matching Operation
Large language models have consistently struggled with complex reasoning tasks, such as mathematical problem-solving. Investigating the internal reasoning mechanisms of these models can help us design better model architectures and training strategies, ultimately enhancing their reasoning capabilities. In this study, we examine the matching mechanism employed by Transformer for multi-step reasoning on a constructed dataset. We investigate factors that influence the model's matching mechanism and discover that small initialization and post-LayerNorm can facilitate the formation of the matching mechanism, thereby enhancing the model's reasoning ability. Moreover, we propose a method to improve the model's reasoning capability by adding orthogonal noise. Finally, we investigate the parallel reasoning mechanism of Transformers and propose a conjecture on the upper bound of the model's reasoning ability based on this phenomenon. These insights contribute to a deeper understanding of the reasoning processes in large language models and guide designing more effective reasoning architectures and training strategies.
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling
Transformer-based models are widely used in natural language processing (NLP). Central to the transformer model is the self-attention mechanism, which captures the interactions of token pairs in the input sequences and depends quadratically on the sequence length. Training such models on longer sequences is expensive. In this paper, we show that a Bernoulli sampling attention mechanism based on Locality Sensitive Hashing (LSH), decreases the quadratic complexity of such models to linear. We bypass the quadratic cost by considering self-attention as a sum of individual tokens associated with Bernoulli random variables that can, in principle, be sampled at once by a single hash (although in practice, this number may be a small constant). This leads to an efficient sampling scheme to estimate self-attention which relies on specific modifications of LSH (to enable deployment on GPU architectures). We evaluate our algorithm on the GLUE benchmark with standard 512 sequence length where we see favorable performance relative to a standard pretrained Transformer. On the Long Range Arena (LRA) benchmark, for evaluating performance on long sequences, our method achieves results consistent with softmax self-attention but with sizable speed-ups and memory savings and often outperforms other efficient self-attention methods. Our code is available at https://github.com/mlpen/YOSO
IceFormer: Accelerated Inference with Long-Sequence Transformers on CPUs
One limitation of existing Transformer-based models is that they cannot handle very long sequences as input since their self-attention operations exhibit quadratic time and space complexity. This problem becomes especially acute when Transformers are deployed on hardware platforms equipped only with CPUs. To address this issue, we propose a novel method for accelerating self-attention at inference time that works with pretrained Transformer models out-of-the-box without requiring retraining. We experiment using our method to accelerate various long-sequence Transformers, including a leading LLaMA 2-based LLM, on various benchmarks and demonstrate a greater speedup of 2.73x - 7.63x while retaining 98.6% - 99.6% of the accuracy of the original pretrained models. The code is available on our project website at https://yuzhenmao.github.io/IceFormer/.
Quantizable Transformers: Removing Outliers by Helping Attention Heads Do Nothing
Transformer models have been widely adopted in various domains over the last years, and especially large language models have advanced the field of AI significantly. Due to their size, the capability of these networks has increased tremendously, but this has come at the cost of a significant increase in necessary compute. Quantization is one of the most effective ways to reduce the computational time and memory consumption of neural networks. Many studies have shown, however, that modern transformer models tend to learn strong outliers in their activations, making them difficult to quantize. To retain acceptable performance, the existence of these outliers requires activations to be in higher bitwidth or the use of different numeric formats, extra fine-tuning, or other workarounds. We show that strong outliers are related to very specific behavior of attention heads that try to learn a "no-op" or just a partial update of the residual. To achieve the exact zeros needed in the attention matrix for a no-update, the input to the softmax is pushed to be larger and larger during training, causing outliers in other parts of the network. Based on these observations, we propose two simple (independent) modifications to the attention mechanism - clipped softmax and gated attention. We empirically show that models pre-trained using our methods learn significantly smaller outliers while maintaining and sometimes even improving the floating-point task performance. This enables us to quantize transformers to full INT8 quantization of the activations without any additional effort. We demonstrate the effectiveness of our methods on both language models (BERT, OPT) and vision transformers.
Emergence of Segmentation with Minimalistic White-Box Transformers
Transformer-like models for vision tasks have recently proven effective for a wide range of downstream applications such as segmentation and detection. Previous works have shown that segmentation properties emerge in vision transformers (ViTs) trained using self-supervised methods such as DINO, but not in those trained on supervised classification tasks. In this study, we probe whether segmentation emerges in transformer-based models solely as a result of intricate self-supervised learning mechanisms, or if the same emergence can be achieved under much broader conditions through proper design of the model architecture. Through extensive experimental results, we demonstrate that when employing a white-box transformer-like architecture known as CRATE, whose design explicitly models and pursues low-dimensional structures in the data distribution, segmentation properties, at both the whole and parts levels, already emerge with a minimalistic supervised training recipe. Layer-wise finer-grained analysis reveals that the emergent properties strongly corroborate the designed mathematical functions of the white-box network. Our results suggest a path to design white-box foundation models that are simultaneously highly performant and mathematically fully interpretable. Code is at https://github.com/Ma-Lab-Berkeley/CRATE.
Transformers can optimally learn regression mixture models
Mixture models arise in many regression problems, but most methods have seen limited adoption partly due to these algorithms' highly-tailored and model-specific nature. On the other hand, transformers are flexible, neural sequence models that present the intriguing possibility of providing general-purpose prediction methods, even in this mixture setting. In this work, we investigate the hypothesis that transformers can learn an optimal predictor for mixtures of regressions. We construct a generative process for a mixture of linear regressions for which the decision-theoretic optimal procedure is given by data-driven exponential weights on a finite set of parameters. We observe that transformers achieve low mean-squared error on data generated via this process. By probing the transformer's output at inference time, we also show that transformers typically make predictions that are close to the optimal predictor. Our experiments also demonstrate that transformers can learn mixtures of regressions in a sample-efficient fashion and are somewhat robust to distribution shifts. We complement our experimental observations by proving constructively that the decision-theoretic optimal procedure is indeed implementable by a transformer.
Linear attention is (maybe) all you need (to understand transformer optimization)
Transformer training is notoriously difficult, requiring a careful design of optimizers and use of various heuristics. We make progress towards understanding the subtleties of training Transformers by carefully studying a simple yet canonical linearized shallow Transformer model. Specifically, we train linear Transformers to solve regression tasks, inspired by J.~von Oswald et al.~(ICML 2023), and K.~Ahn et al.~(NeurIPS 2023). Most importantly, we observe that our proposed linearized models can reproduce several prominent aspects of Transformer training dynamics. Consequently, the results obtained in this paper suggest that a simple linearized Transformer model could actually be a valuable, realistic abstraction for understanding Transformer optimization.
LEMON: Lossless model expansion
Scaling of deep neural networks, especially Transformers, is pivotal for their surging performance and has further led to the emergence of sophisticated reasoning capabilities in foundation models. Such scaling generally requires training large models from scratch with random initialization, failing to leverage the knowledge acquired by their smaller counterparts, which are already resource-intensive to obtain. To tackle this inefficiency, we present LosslEss MOdel ExpansioN (LEMON), a recipe to initialize scaled models using the weights of their smaller but pre-trained counterparts. This is followed by model training with an optimized learning rate scheduler tailored explicitly for the scaled models, substantially reducing the training time compared to training from scratch. Notably, LEMON is versatile, ensuring compatibility with various network structures, including models like Vision Transformers and BERT. Our empirical results demonstrate that LEMON reduces computational costs by 56.7% for Vision Transformers and 33.2% for BERT when compared to training from scratch.
Approximation and Estimation Ability of Transformers for Sequence-to-Sequence Functions with Infinite Dimensional Input
Despite the great success of Transformer networks in various applications such as natural language processing and computer vision, their theoretical aspects are not well understood. In this paper, we study the approximation and estimation ability of Transformers as sequence-to-sequence functions with infinite dimensional inputs. Although inputs and outputs are both infinite dimensional, we show that when the target function has anisotropic smoothness, Transformers can avoid the curse of dimensionality due to their feature extraction ability and parameter sharing property. In addition, we show that even if the smoothness changes depending on each input, Transformers can estimate the importance of features for each input and extract important features dynamically. Then, we proved that Transformers achieve similar convergence rate as in the case of the fixed smoothness. Our theoretical results support the practical success of Transformers for high dimensional data.
A Survey on Transformer Compression
Large models based on the Transformer architecture play increasingly vital roles in artificial intelligence, particularly within the realms of natural language processing (NLP) and computer vision (CV). Model compression methods reduce their memory and computational cost, which is a necessary step to implement the transformer models on practical devices. Given the unique architecture of transformer, featuring alternative attention and Feedforward Neural Network (FFN) modules, specific compression techniques are required. The efficiency of these compression methods is also paramount, as it is usually impractical to retrain large models on the entire training dataset.This survey provides a comprehensive review of recent compression methods, with a specific focus on their application to transformer models. The compression methods are primarily categorized into pruning, quantization, knowledge distillation, and efficient architecture design. In each category, we discuss compression methods for both CV and NLP tasks, highlighting common underlying principles. At last, we delve into the relation between various compression methods, and discuss the further directions in this domain.
Overcoming a Theoretical Limitation of Self-Attention
Although transformers are remarkably effective for many tasks, there are some surprisingly easy-looking regular languages that they struggle with. Hahn shows that for languages where acceptance depends on a single input symbol, a transformer's classification decisions become less and less confident (that is, with cross-entropy approaching 1 bit per string) as input strings get longer and longer. We examine this limitation using two languages: PARITY, the language of bit strings with an odd number of 1s, and FIRST, the language of bit strings starting with a 1. We demonstrate three ways of overcoming the limitation suggested by Hahn's lemma. First, we settle an open question by constructing a transformer that recognizes PARITY with perfect accuracy, and similarly for FIRST. Second, we use layer normalization to bring the cross-entropy of both models arbitrarily close to zero. Third, when transformers need to focus on a single position, as for FIRST, we find that they can fail to generalize to longer strings; we offer a simple remedy to this problem that also improves length generalization in machine translation.
Transformer Layers as Painters
Despite their nearly universal adoption for large language models, the internal workings of transformers are not well understood. We aim to better understand the impact of removing or reorganizing information throughout the layers of a pretrained transformer. Such an understanding could both yield better usage of existing models as well as to make architectural improvements to produce new variants. We present a series of empirical studies on frozen models that show that the lower and final layers of pretrained transformers differ from middle layers, but that middle layers have a surprising amount of uniformity. We further show that some classes of problems have robustness to skipping layers, running the layers in an order different from how they were trained, or running the layers in parallel. Our observations suggest that even frozen pretrained models may gracefully trade accuracy for latency by skipping layers or running layers in parallel.
TREAD: Token Routing for Efficient Architecture-agnostic Diffusion Training
Diffusion models have emerged as the mainstream approach for visual generation. However, these models usually suffer from sample inefficiency and high training costs. This issue is particularly pronounced in the standard diffusion transformer architecture due to its quadratic complexity relative to input length. Recent works have addressed this by reducing the number of tokens processed in the model, often through masking. In contrast, this work aims to improve the training efficiency of the diffusion backbone by using predefined routes that store this information until it is reintroduced to deeper layers of the model, rather than discarding these tokens entirely. Further, we combine multiple routes and introduce an adapted auxiliary loss that accounts for all applied routes. Our method is not limited to the common transformer-based model - it can also be applied to state-space models. Unlike most current approaches, TREAD achieves this without architectural modifications. Finally, we show that our method reduces the computational cost and simultaneously boosts model performance on the standard benchmark ImageNet-1K 256 x 256 in class-conditional synthesis. Both of these benefits multiply to a convergence speedup of 9.55x at 400K training iterations compared to DiT and 25.39x compared to the best benchmark performance of DiT at 7M training iterations.
Randomized Autoregressive Visual Generation
This paper presents Randomized AutoRegressive modeling (RAR) for visual generation, which sets a new state-of-the-art performance on the image generation task while maintaining full compatibility with language modeling frameworks. The proposed RAR is simple: during a standard autoregressive training process with a next-token prediction objective, the input sequence-typically ordered in raster form-is randomly permuted into different factorization orders with a probability r, where r starts at 1 and linearly decays to 0 over the course of training. This annealing training strategy enables the model to learn to maximize the expected likelihood over all factorization orders and thus effectively improve the model's capability of modeling bidirectional contexts. Importantly, RAR preserves the integrity of the autoregressive modeling framework, ensuring full compatibility with language modeling while significantly improving performance in image generation. On the ImageNet-256 benchmark, RAR achieves an FID score of 1.48, not only surpassing prior state-of-the-art autoregressive image generators but also outperforming leading diffusion-based and masked transformer-based methods. Code and models will be made available at https://github.com/bytedance/1d-tokenizer
Towards Revealing the Mystery behind Chain of Thought: A Theoretical Perspective
Recent studies have discovered that Chain-of-Thought prompting (CoT) can dramatically improve the performance of Large Language Models (LLMs), particularly when dealing with complex tasks involving mathematics or reasoning. Despite the enormous empirical success, the underlying mechanisms behind CoT and how it unlocks the potential of LLMs remain elusive. In this paper, we take a first step towards theoretically answering these questions. Specifically, we examine the expressivity of LLMs with CoT in solving fundamental mathematical and decision-making problems. By using circuit complexity theory, we first give impossibility results showing that bounded-depth Transformers are unable to directly produce correct answers for basic arithmetic/equation tasks unless the model size grows super-polynomially with respect to the input length. In contrast, we then prove by construction that autoregressive Transformers of constant size suffice to solve both tasks by generating CoT derivations using a commonly used math language format. Moreover, we show LLMs with CoT can handle a general class of decision-making problems known as Dynamic Programming, thus justifying its power in tackling complex real-world tasks. Finally, an extensive set of experiments show that, while Transformers always fail to directly predict the answers, they can consistently learn to generate correct solutions step-by-step given sufficient CoT demonstrations.
Multi Resolution Analysis (MRA) for Approximate Self-Attention
Transformers have emerged as a preferred model for many tasks in natural langugage processing and vision. Recent efforts on training and deploying Transformers more efficiently have identified many strategies to approximate the self-attention matrix, a key module in a Transformer architecture. Effective ideas include various prespecified sparsity patterns, low-rank basis expansions and combinations thereof. In this paper, we revisit classical Multiresolution Analysis (MRA) concepts such as Wavelets, whose potential value in this setting remains underexplored thus far. We show that simple approximations based on empirical feedback and design choices informed by modern hardware and implementation challenges, eventually yield a MRA-based approach for self-attention with an excellent performance profile across most criteria of interest. We undertake an extensive set of experiments and demonstrate that this multi-resolution scheme outperforms most efficient self-attention proposals and is favorable for both short and long sequences. Code is available at https://github.com/mlpen/mra-attention.
Data Distributional Properties Drive Emergent In-Context Learning in Transformers
Large transformer-based models are able to perform in-context few-shot learning, without being explicitly trained for it. This observation raises the question: what aspects of the training regime lead to this emergent behavior? Here, we show that this behavior is driven by the distributions of the training data itself. In-context learning emerges when the training data exhibits particular distributional properties such as burstiness (items appear in clusters rather than being uniformly distributed over time) and having large numbers of rarely occurring classes. In-context learning also emerges more strongly when item meanings or interpretations are dynamic rather than fixed. These properties are exemplified by natural language, but are also inherent to naturalistic data in a wide range of other domains. They also depart significantly from the uniform, i.i.d. training distributions typically used for standard supervised learning. In our initial experiments, we found that in-context learning traded off against more conventional weight-based learning, and models were unable to achieve both simultaneously. However, our later experiments uncovered that the two modes of learning could co-exist in a single model when it was trained on data following a skewed Zipfian distribution -- another common property of naturalistic data, including language. In further experiments, we found that naturalistic data distributions were only able to elicit in-context learning in transformers, and not in recurrent models. In sum, our findings indicate how the transformer architecture works together with particular properties of the training data to drive the intriguing emergent in-context learning behaviour of large language models, and how future work might encourage both in-context and in-weights learning in domains beyond language.
iTransformer: Inverted Transformers Are Effective for Time Series Forecasting
The recent boom of linear forecasting models questions the ongoing passion for architectural modifications of Transformer-based forecasters. These forecasters leverage Transformers to model the global dependencies over temporal tokens of time series, with each token formed by multiple variates of the same timestamp. However, Transformers are challenged in forecasting series with larger lookback windows due to performance degradation and computation explosion. Besides, the embedding for each temporal token fuses multiple variates that represent potential delayed events and distinct physical measurements, which may fail in learning variate-centric representations and result in meaningless attention maps. In this work, we reflect on the competent duties of Transformer components and repurpose the Transformer architecture without any modification to the basic components. We propose iTransformer that simply applies the attention and feed-forward network on the inverted dimensions. Specifically, the time points of individual series are embedded into variate tokens which are utilized by the attention mechanism to capture multivariate correlations; meanwhile, the feed-forward network is applied for each variate token to learn nonlinear representations. The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting. Code is available at this repository: https://github.com/thuml/iTransformer.
The Shape of Learning: Anisotropy and Intrinsic Dimensions in Transformer-Based Models
In this study, we present an investigation into the anisotropy dynamics and intrinsic dimension of embeddings in transformer architectures, focusing on the dichotomy between encoders and decoders. Our findings reveal that the anisotropy profile in transformer decoders exhibits a distinct bell-shaped curve, with the highest anisotropy concentrations in the middle layers. This pattern diverges from the more uniformly distributed anisotropy observed in encoders. In addition, we found that the intrinsic dimension of embeddings increases in the initial phases of training, indicating an expansion into higher-dimensional space. Which is then followed by a compression phase towards the end of training with dimensionality decrease, suggesting a refinement into more compact representations. Our results provide fresh insights to the understanding of encoders and decoders embedding properties.
Fourier Transformer: Fast Long Range Modeling by Removing Sequence Redundancy with FFT Operator
The transformer model is known to be computationally demanding, and prohibitively costly for long sequences, as the self-attention module uses a quadratic time and space complexity with respect to sequence length. Many researchers have focused on designing new forms of self-attention or introducing new parameters to overcome this limitation, however a large portion of them prohibits the model to inherit weights from large pretrained models. In this work, the transformer's inefficiency has been taken care of from another perspective. We propose Fourier Transformer, a simple yet effective approach by progressively removing redundancies in hidden sequence using the ready-made Fast Fourier Transform (FFT) operator to perform Discrete Cosine Transformation (DCT). Fourier Transformer is able to significantly reduce computational costs while retain the ability to inherit from various large pretrained models. Experiments show that our model achieves state-of-the-art performances among all transformer-based models on the long-range modeling benchmark LRA with significant improvement in both speed and space. For generative seq-to-seq tasks including CNN/DailyMail and ELI5, by inheriting the BART weights our model outperforms the standard BART and other efficient models. Our code is publicly available at \url{https://github.com/LUMIA-Group/FourierTransformer}
Dissecting Multiplication in Transformers: Insights into LLMs
Transformer-based large language models have achieved remarkable performance across various natural language processing tasks. However, they often struggle with seemingly easy tasks like arithmetic despite their vast capabilities. This stark disparity raise human's concerns about their safe and ethical use, hinder their widespread adoption.In this paper, we focus on a typical arithmetic task, integer multiplication, to explore and explain the imperfection of transformers in this domain. We provide comprehensive analysis of a vanilla transformer trained to perform n-digit integer multiplication. Our observations indicate that the model decomposes multiplication task into multiple parallel subtasks, sequentially optimizing each subtask for each digit to complete the final multiplication. Based on observation and analysis, we infer the reasons of transformers deficiencies in multiplication tasks lies in their difficulty in calculating successive carryovers and caching intermediate results, and confirmed this inference through experiments. Guided by these findings, we propose improvements to enhance transformers performance on multiplication tasks. These enhancements are validated through rigorous testing and mathematical modeling, not only enhance transformer's interpretability, but also improve its performance, e.g., we achieve over 99.9% accuracy on 5-digit integer multiplication with a tiny transformer, outperform LLMs GPT-4. Our method contributes to the broader fields of model understanding and interpretability, paving the way for analyzing more complex tasks and Transformer models. This work underscores the importance of explainable AI, helping to build trust in large language models and promoting their adoption in critical applications.
Latent State Models of Training Dynamics
The impact of randomness on model training is poorly understood. How do differences in data order and initialization actually manifest in the model, such that some training runs outperform others or converge faster? Furthermore, how can we interpret the resulting training dynamics and the phase transitions that characterize different trajectories? To understand the effect of randomness on the dynamics and outcomes of neural network training, we train models multiple times with different random seeds and compute a variety of metrics throughout training, such as the L_2 norm, mean, and variance of the neural network's weights. We then fit a hidden Markov model (HMM) over the resulting sequences of metrics. The HMM represents training as a stochastic process of transitions between latent states, providing an intuitive overview of significant changes during training. Using our method, we produce a low-dimensional, discrete representation of training dynamics on grokking tasks, image classification, and masked language modeling. We use the HMM representation to study phase transitions and identify latent "detour" states that slow down convergence.
On Learning the Transformer Kernel
In this work we introduce KERNELIZED TRANSFORMER, a generic, scalable, data driven framework for learning the kernel function in Transformers. Our framework approximates the Transformer kernel as a dot product between spectral feature maps and learns the kernel by learning the spectral distribution. This not only helps in learning a generic kernel end-to-end, but also reduces the time and space complexity of Transformers from quadratic to linear. We show that KERNELIZED TRANSFORMERS achieve performance comparable to existing efficient Transformer architectures, both in terms of accuracy as well as computational efficiency. Our study also demonstrates that the choice of the kernel has a substantial impact on performance, and kernel learning variants are competitive alternatives to fixed kernel Transformers, both in long as well as short sequence tasks.
Thinking Like Transformers
What is the computational model behind a Transformer? Where recurrent neural networks have direct parallels in finite state machines, allowing clear discussion and thought around architecture variants or trained models, Transformers have no such familiar parallel. In this paper we aim to change that, proposing a computational model for the transformer-encoder in the form of a programming language. We map the basic components of a transformer-encoder -- attention and feed-forward computation -- into simple primitives, around which we form a programming language: the Restricted Access Sequence Processing Language (RASP). We show how RASP can be used to program solutions to tasks that could conceivably be learned by a Transformer, and how a Transformer can be trained to mimic a RASP solution. In particular, we provide RASP programs for histograms, sorting, and Dyck-languages. We further use our model to relate their difficulty in terms of the number of required layers and attention heads: analyzing a RASP program implies a maximum number of heads and layers necessary to encode a task in a transformer. Finally, we see how insights gained from our abstraction might be used to explain phenomena seen in recent works.
Reformer: The Efficient Transformer
Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its complexity from O(L^2) to O(Llog L), where L is the length of the sequence. Furthermore, we use reversible residual layers instead of the standard residuals, which allows storing activations only once in the training process instead of N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models while being much more memory-efficient and much faster on long sequences.
The Expressive Power of Transformers with Chain of Thought
Recent theoretical work has identified surprisingly simple reasoning problems, such as checking if two nodes in a graph are connected or simulating finite-state machines, that are provably unsolvable by standard transformers that answer immediately after reading their input. However, in practice, transformers' reasoning can be improved by allowing them to use a "chain of thought" or "scratchpad", i.e., generate and condition on a sequence of intermediate tokens before answering. Motivated by this, we ask: Does such intermediate generation fundamentally extend the computational power of a decoder-only transformer? We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation. For instance, we find that transformer decoders with a logarithmic number of decoding steps (w.r.t. the input length) push the limits of standard transformers only slightly, while a linear number of decoding steps, assuming a slight generalization to standard pre-norm, adds a clear new ability (under standard complexity conjectures): recognizing all regular languages. Our results also imply that linear steps keep transformer decoders within context-sensitive languages, and polynomial steps with generalized pre-norm make them recognize exactly the class of polynomial-time solvable problems -- the first exact characterization of a type of transformers in terms of standard complexity classes. Together, our results provide a nuanced framework for understanding how the length of a transformer's chain of thought or scratchpad impacts its reasoning power.
FIT: Far-reaching Interleaved Transformers
We present FIT: a transformer-based architecture with efficient self-attention and adaptive computation. Unlike original transformers, which operate on a single sequence of data tokens, we divide the data tokens into groups, with each group being a shorter sequence of tokens. We employ two types of transformer layers: local layers operate on data tokens within each group, while global layers operate on a smaller set of introduced latent tokens. These layers, comprising the same set of self-attention and feed-forward layers as standard transformers, are interleaved, and cross-attention is used to facilitate information exchange between data and latent tokens within the same group. The attention complexity is O(n^2) locally within each group of size n, but can reach O(L^{{4}/{3}}) globally for sequence length of L. The efficiency can be further enhanced by relying more on global layers that perform adaptive computation using a smaller set of latent tokens. FIT is a versatile architecture and can function as an encoder, diffusion decoder, or autoregressive decoder. We provide initial evidence demonstrating its effectiveness in high-resolution image understanding and generation tasks. Notably, FIT exhibits potential in performing end-to-end training on gigabit-scale data, such as 6400times6400 images, or 160K tokens (after patch tokenization), within a memory capacity of 16GB, without requiring specific optimizations or model parallelism.
Foundation Transformers
A big convergence of model architectures across language, vision, speech, and multimodal is emerging. However, under the same name "Transformers", the above areas use different implementations for better performance, e.g., Post-LayerNorm for BERT, and Pre-LayerNorm for GPT and vision Transformers. We call for the development of Foundation Transformer for true general-purpose modeling, which serves as a go-to architecture for various tasks and modalities with guaranteed training stability. In this work, we introduce a Transformer variant, named Magneto, to fulfill the goal. Specifically, we propose Sub-LayerNorm for good expressivity, and the initialization strategy theoretically derived from DeepNet for stable scaling up. Extensive experiments demonstrate its superior performance and better stability than the de facto Transformer variants designed for various applications, including language modeling (i.e., BERT, and GPT), machine translation, vision pretraining (i.e., BEiT), speech recognition, and multimodal pretraining (i.e., BEiT-3).
Scaling Up Probabilistic Circuits by Latent Variable Distillation
Probabilistic Circuits (PCs) are a unified framework for tractable probabilistic models that support efficient computation of various probabilistic queries (e.g., marginal probabilities). One key challenge is to scale PCs to model large and high-dimensional real-world datasets: we observe that as the number of parameters in PCs increases, their performance immediately plateaus. This phenomenon suggests that the existing optimizers fail to exploit the full expressive power of large PCs. We propose to overcome such bottleneck by latent variable distillation: we leverage the less tractable but more expressive deep generative models to provide extra supervision over the latent variables of PCs. Specifically, we extract information from Transformer-based generative models to assign values to latent variables of PCs, providing guidance to PC optimizers. Experiments on both image and language modeling benchmarks (e.g., ImageNet and WikiText-2) show that latent variable distillation substantially boosts the performance of large PCs compared to their counterparts without latent variable distillation. In particular, on the image modeling benchmarks, PCs achieve competitive performance against some of the widely-used deep generative models, including variational autoencoders and flow-based models, opening up new avenues for tractable generative modeling.
MetaFormer Is Actually What You Need for Vision
Transformers have shown great potential in computer vision tasks. A common belief is their attention-based token mixer module contributes most to their competence. However, recent works show the attention-based module in Transformers can be replaced by spatial MLPs and the resulted models still perform quite well. Based on this observation, we hypothesize that the general architecture of the Transformers, instead of the specific token mixer module, is more essential to the model's performance. To verify this, we deliberately replace the attention module in Transformers with an embarrassingly simple spatial pooling operator to conduct only basic token mixing. Surprisingly, we observe that the derived model, termed as PoolFormer, achieves competitive performance on multiple computer vision tasks. For example, on ImageNet-1K, PoolFormer achieves 82.1% top-1 accuracy, surpassing well-tuned Vision Transformer/MLP-like baselines DeiT-B/ResMLP-B24 by 0.3%/1.1% accuracy with 35%/52% fewer parameters and 50%/62% fewer MACs. The effectiveness of PoolFormer verifies our hypothesis and urges us to initiate the concept of "MetaFormer", a general architecture abstracted from Transformers without specifying the token mixer. Based on the extensive experiments, we argue that MetaFormer is the key player in achieving superior results for recent Transformer and MLP-like models on vision tasks. This work calls for more future research dedicated to improving MetaFormer instead of focusing on the token mixer modules. Additionally, our proposed PoolFormer could serve as a starting baseline for future MetaFormer architecture design. Code is available at https://github.com/sail-sg/poolformer.
Towards Automated Circuit Discovery for Mechanistic Interpretability
Through considerable effort and intuition, several recent works have reverse-engineered nontrivial behaviors of transformer models. This paper systematizes the mechanistic interpretability process they followed. First, researchers choose a metric and dataset that elicit the desired model behavior. Then, they apply activation patching to find which abstract neural network units are involved in the behavior. By varying the dataset, metric, and units under investigation, researchers can understand the functionality of each component. We automate one of the process' steps: to identify the circuit that implements the specified behavior in the model's computational graph. We propose several algorithms and reproduce previous interpretability results to validate them. For example, the ACDC algorithm rediscovered 5/5 of the component types in a circuit in GPT-2 Small that computes the Greater-Than operation. ACDC selected 68 of the 32,000 edges in GPT-2 Small, all of which were manually found by previous work. Our code is available at https://github.com/ArthurConmy/Automatic-Circuit-Discovery.
CARD: Channel Aligned Robust Blend Transformer for Time Series Forecasting
Recent studies have demonstrated the great power of Transformer models for time series forecasting. One of the key elements that lead to the transformer's success is the channel-independent (CI) strategy to improve the training robustness. However, the ignorance of the correlation among different channels in CI would limit the model's forecasting capacity. In this work, we design a special Transformer, i.e., Channel Aligned Robust Blend Transformer (CARD for short), that addresses key shortcomings of CI type Transformer in time series forecasting. First, CARD introduces a channel-aligned attention structure that allows it to capture both temporal correlations among signals and dynamical dependence among multiple variables over time. Second, in order to efficiently utilize the multi-scale knowledge, we design a token blend module to generate tokens with different resolutions. Third, we introduce a robust loss function for time series forecasting to alleviate the potential overfitting issue. This new loss function weights the importance of forecasting over a finite horizon based on prediction uncertainties. Our evaluation of multiple long-term and short-term forecasting datasets demonstrates that CARD significantly outperforms state-of-the-art time series forecasting methods. The code is available at the following repository:https://github.com/wxie9/CARD
Transformer Explainer: Interactive Learning of Text-Generative Models
Transformers have revolutionized machine learning, yet their inner workings remain opaque to many. We present Transformer Explainer, an interactive visualization tool designed for non-experts to learn about Transformers through the GPT-2 model. Our tool helps users understand complex Transformer concepts by integrating a model overview and enabling smooth transitions across abstraction levels of mathematical operations and model structures. It runs a live GPT-2 instance locally in the user's browser, empowering users to experiment with their own input and observe in real-time how the internal components and parameters of the Transformer work together to predict the next tokens. Our tool requires no installation or special hardware, broadening the public's education access to modern generative AI techniques. Our open-sourced tool is available at https://poloclub.github.io/transformer-explainer/. A video demo is available at https://youtu.be/ECR4oAwocjs.
Learned Token Pruning for Transformers
Deploying transformer models in practice is challenging due to their inference cost, which scales quadratically with input sequence length. To address this, we present a novel Learned Token Pruning (LTP) method which adaptively removes unimportant tokens as an input sequence passes through transformer layers. In particular, LTP prunes tokens with an attention score below a threshold value which is learned for each layer during training. Our threshold-based method allows the length of the pruned sequence to vary adaptively based on the input sequence, and avoids algorithmically expensive operations such as top-k token selection. We extensively test the performance of LTP on GLUE tasks and show that our method outperforms the prior state-of-the-art token pruning methods by up to ~2.5% higher accuracy with the same amount of FLOPs. In particular, LTP achieves up to 2.1x FLOPs reduction with less than 1% accuracy drop, which results in up to 1.9x and 2.0x throughput improvement on Intel Haswell CPUs and NVIDIA V100 GPUs, respectively. Furthermore, we demonstrate that LTP is more robust than prior methods to variations on input sentence lengths. Our code has been developed in PyTorch and has been open-sourced.
The Information Pathways Hypothesis: Transformers are Dynamic Self-Ensembles
Transformers use the dense self-attention mechanism which gives a lot of flexibility for long-range connectivity. Over multiple layers of a deep transformer, the number of possible connectivity patterns increases exponentially. However, very few of these contribute to the performance of the network, and even fewer are essential. We hypothesize that there are sparsely connected sub-networks within a transformer, called information pathways which can be trained independently. However, the dynamic (i.e., input-dependent) nature of these pathways makes it difficult to prune dense self-attention during training. But the overall distribution of these pathways is often predictable. We take advantage of this fact to propose Stochastically Subsampled self-Attention (SSA) - a general-purpose training strategy for transformers that can reduce both the memory and computational cost of self-attention by 4 to 8 times during training while also serving as a regularization method - improving generalization over dense training. We show that an ensemble of sub-models can be formed from the subsampled pathways within a network, which can achieve better performance than its densely attended counterpart. We perform experiments on a variety of NLP, computer vision and graph learning tasks in both generative and discriminative settings to provide empirical evidence for our claims and show the effectiveness of the proposed method.
Transformers are Multi-State RNNs
Transformers are considered conceptually different compared to the previous generation of state-of-the-art NLP models - recurrent neural networks (RNNs). In this work, we demonstrate that decoder-only transformers can in fact be conceptualized as infinite multi-state RNNs - an RNN variant with unlimited hidden state size. We further show that pretrained transformers can be converted into finite multi-state RNNs by fixing the size of their hidden state. We observe that several existing transformers cache compression techniques can be framed as such conversion policies, and introduce a novel policy, TOVA, which is simpler compared to these policies. Our experiments with several long range tasks indicate that TOVA outperforms all other baseline policies, while being nearly on par with the full (infinite) model, and using in some cases only 1{8} of the original cache size. Our results indicate that transformer decoder LLMs often behave in practice as RNNs. They also lay out the option of mitigating one of their most painful computational bottlenecks - the size of their cache memory. We publicly release our code at https://github.com/schwartz-lab-NLP/TOVA.
Transfer training from smaller language model
Large language models have led to state-of-the-art accuracies across a range of tasks. However,training large language model needs massive computing resource, as more and more open source pre-training models are available, it is worthy to study how to take full advantage of available model. We find a method to save training time and resource cost by changing the small well-trained model to large model. We initialize a larger target model from a smaller source model by copy weight values from source model and padding with zeros or small initialization values on it to make the source and target model have approximate outputs, which is valid due to block matrix multiplication and residual connection in transformer structure. We test the target model on several data sets and find it is still comparable with the source model. When we continue training the target model, the training loss can start from a smaller value.
Tighter Bounds on the Expressivity of Transformer Encoders
Characterizing neural networks in terms of better-understood formal systems has the potential to yield new insights into the power and limitations of these networks. Doing so for transformers remains an active area of research. Bhattamishra and others have shown that transformer encoders are at least as expressive as a certain kind of counter machine, while Merrill and Sabharwal have shown that fixed-precision transformer encoders recognize only languages in uniform TC^0. We connect and strengthen these results by identifying a variant of first-order logic with counting quantifiers that is simultaneously an upper bound for fixed-precision transformer encoders and a lower bound for transformer encoders. This brings us much closer than before to an exact characterization of the languages that transformer encoders recognize.
Mixture-of-Depths: Dynamically allocating compute in transformer-based language models
Transformer-based language models spread FLOPs uniformly across input sequences. In this work we demonstrate that transformers can instead learn to dynamically allocate FLOPs (or compute) to specific positions in a sequence, optimising the allocation along the sequence for different layers across the model depth. Our method enforces a total compute budget by capping the number of tokens (k) that can participate in the self-attention and MLP computations at a given layer. The tokens to be processed are determined by the network using a top-k routing mechanism. Since k is defined a priori, this simple procedure uses a static computation graph with known tensor sizes, unlike other conditional computation techniques. Nevertheless, since the identities of the k tokens are fluid, this method can expend FLOPs non-uniformly across the time and model depth dimensions. Thus, compute expenditure is entirely predictable in sum total, but dynamic and context-sensitive at the token-level. Not only do models trained in this way learn to dynamically allocate compute, they do so efficiently. These models match baseline performance for equivalent FLOPS and wall-clock times to train, but require a fraction of the FLOPs per forward pass, and can be upwards of 50\% faster to step during post-training sampling.
Simplicity Bias of Transformers to Learn Low Sensitivity Functions
Transformers achieve state-of-the-art accuracy and robustness across many tasks, but an understanding of the inductive biases that they have and how those biases are different from other neural network architectures remains elusive. Various neural network architectures such as fully connected networks have been found to have a simplicity bias towards simple functions of the data; one version of this simplicity bias is a spectral bias to learn simple functions in the Fourier space. In this work, we identify the notion of sensitivity of the model to random changes in the input as a notion of simplicity bias which provides a unified metric to explain the simplicity and spectral bias of transformers across different data modalities. We show that transformers have lower sensitivity than alternative architectures, such as LSTMs, MLPs and CNNs, across both vision and language tasks. We also show that low-sensitivity bias correlates with improved robustness; furthermore, it can also be used as an efficient intervention to further improve the robustness of transformers.
Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens
Transformer models are foundational to natural language processing (NLP) and computer vision. Despite various recent works devoted to reducing the quadratic cost of such models (as a function of the sequence length n), dealing with ultra long sequences efficiently (e.g., with more than 16K tokens) remains challenging. Applications such as answering questions based on an entire book or summarizing a scientific article are inefficient or infeasible. In this paper, we propose to significantly reduce the dependency of a Transformer model's complexity on n, by compressing the input into a representation whose size r is independent of n at each layer. Specifically, by exploiting the fact that in many tasks, only a small subset of special tokens (we call VIP-tokens) are most relevant to the final prediction, we propose a VIP-token centric compression (Vcc) scheme which selectively compresses the input sequence based on their impact on approximating the representation of these VIP-tokens. Compared with competitive baselines, the proposed algorithm not only is efficient (achieving more than 3times efficiency improvement compared to baselines on 4K and 16K lengths), but also achieves competitive or better performance on a large number of tasks. Further, we show that our algorithm can be scaled to 128K tokens (or more) while consistently offering accuracy improvement.
Calibration of Natural Language Understanding Models with Venn--ABERS Predictors
Transformers, currently the state-of-the-art in natural language understanding (NLU) tasks, are prone to generate uncalibrated predictions or extreme probabilities, making the process of taking different decisions based on their output relatively difficult. In this paper we propose to build several inductive Venn--ABERS predictors (IVAP), which are guaranteed to be well calibrated under minimal assumptions, based on a selection of pre-trained transformers. We test their performance over a set of diverse NLU tasks and show that they are capable of producing well-calibrated probabilistic predictions that are uniformly spread over the [0,1] interval -- all while retaining the original model's predictive accuracy.
Attention Is Not All You Need Anymore
In recent years, the popular Transformer architecture has achieved great success in many application areas, including natural language processing and computer vision. Many existing works aim to reduce the computational and memory complexity of the self-attention mechanism in the Transformer by trading off performance. However, performance is key for the continuing success of the Transformer. In this paper, a family of drop-in replacements for the self-attention mechanism in the Transformer, called the Extractors, is proposed. Four types of the Extractors, namely the super high-performance Extractor (SHE), the higher-performance Extractor (HE), the worthwhile Extractor (WE), and the minimalist Extractor (ME), are proposed as examples. Experimental results show that replacing the self-attention mechanism with the SHE evidently improves the performance of the Transformer, whereas the simplified versions of the SHE, i.e., the HE, the WE, and the ME, perform close to or better than the self-attention mechanism with less computational and memory complexity. Furthermore, the proposed Extractors have the potential or are able to run faster than the self-attention mechanism since their critical paths of computation are much shorter. Additionally, the sequence prediction problem in the context of text generation is formulated using variable-length discrete-time Markov chains, and the Transformer is reviewed based on our understanding.
The Nature of Mathematical Modeling and Probabilistic Optimization Engineering in Generative AI
In this paper, we give an in-depth analysis on the mathematical problem formulations and the probabilistic optimization explorations for some of the key components in Transformer model [33] in the field of generative AI. We explore and discuss some potential further enhancement for current state of the art methods for some key underlying technologies of generative AI models from algorithmic and probabilistic optimization perspective. In particular, we present an optimal solution for sub-word encoding (SWE) based on similar initial settings as that of byte-pair encoding (BPE) algorithm in [9] with similar objectives as that of WordPiece approach in [28, 31] to maximize the likelihood of the training data. We also present cross entropy optimization method to optimize hyperparameters for word2vec model [17]. In addition, we propose a factored combination of rotary positional encoding (RoPE) [32] and attention with linear biases (ALiBi) [23] with a harmonic series. We also present a probabilistic FlashAttention [6, 7] (PrFlashAttention) method with a probability distribution over block distances in the matrix to decide which block is likely to participate in a given round of attention computation while maintaining the lower triangle shape of the tensor for autoregressive language models by re-shaping the tensors. Finally, we present staircase adaptive quantization (SAQ) of key-value (KV) cache for multi-query attention (MQA) based on the framework presented in [16] to have gradual quantization degradation while achieving reasonable model quality and cost savings.
DenseFormer: Enhancing Information Flow in Transformers via Depth Weighted Averaging
The transformer architecture by Vaswani et al. (2017) is now ubiquitous across application domains, from natural language processing to speech processing and image understanding. We propose DenseFormer, a simple modification to the standard architecture that improves the perplexity of the model without increasing its size -- adding a few thousand parameters for large-scale models in the 100B parameters range. Our approach relies on an additional averaging step after each transformer block, which computes a weighted average of current and past representations -- we refer to this operation as Depth-Weighted-Average (DWA). The learned DWA weights exhibit coherent patterns of information flow, revealing the strong and structured reuse of activations from distant layers. Experiments demonstrate that DenseFormer is more data efficient, reaching the same perplexity of much deeper transformer models, and that for the same perplexity, these new models outperform transformer baselines in terms of memory efficiency and inference time.
Global Lyapunov functions: a long-standing open problem in mathematics, with symbolic transformers
Despite their spectacular progress, language models still struggle on complex reasoning tasks, such as advanced mathematics. We consider a long-standing open problem in mathematics: discovering a Lyapunov function that ensures the global stability of a dynamical system. This problem has no known general solution, and algorithmic solvers only exist for some small polynomial systems. We propose a new method for generating synthetic training samples from random solutions, and show that sequence-to-sequence transformers trained on such datasets perform better than algorithmic solvers and humans on polynomial systems, and can discover new Lyapunov functions for non-polynomial systems.
Hash Layers For Large Sparse Models
We investigate the training of sparse layers that use different parameters for different inputs based on hashing in large Transformer models. Specifically, we modify the feedforward layer to hash to different sets of weights depending on the current token, over all tokens in the sequence. We show that this procedure either outperforms or is competitive with learning-to-route mixture-of-expert methods such as Switch Transformers and BASE Layers, while requiring no routing parameters or extra terms in the objective function such as a load balancing loss, and no sophisticated assignment algorithm. We study the performance of different hashing techniques, hash sizes and input features, and show that balanced and random hashes focused on the most local features work best, compared to either learning clusters or using longer-range context. We show our approach works well both on large language modeling and dialogue tasks, and on downstream fine-tuning tasks.
What Algorithms can Transformers Learn? A Study in Length Generalization
Large language models exhibit surprising emergent generalization properties, yet also struggle on many simple reasoning tasks such as arithmetic and parity. This raises the question of if and when Transformer models can learn the true algorithm for solving a task. We study the scope of Transformers' abilities in the specific setting of length generalization on algorithmic tasks. Here, we propose a unifying framework to understand when and how Transformers can exhibit strong length generalization on a given task. Specifically, we leverage RASP (Weiss et al., 2021) -- a programming language designed for the computational model of a Transformer -- and introduce the RASP-Generalization Conjecture: Transformers tend to length generalize on a task if the task can be solved by a short RASP program which works for all input lengths. This simple conjecture remarkably captures most known instances of length generalization on algorithmic tasks. Moreover, we leverage our insights to drastically improve generalization performance on traditionally hard tasks (such as parity and addition). On the theoretical side, we give a simple example where the "min-degree-interpolator" model of learning from Abbe et al. (2023) does not correctly predict Transformers' out-of-distribution behavior, but our conjecture does. Overall, our work provides a novel perspective on the mechanisms of compositional generalization and the algorithmic capabilities of Transformers.
Depth-Adaptive Transformer
State of the art sequence-to-sequence models for large scale tasks perform a fixed number of computations for each input sequence regardless of whether it is easy or hard to process. In this paper, we train Transformer models which can make output predictions at different stages of the network and we investigate different ways to predict how much computation is required for a particular sequence. Unlike dynamic computation in Universal Transformers, which applies the same set of layers iteratively, we apply different layers at every step to adjust both the amount of computation as well as the model capacity. On IWSLT German-English translation our approach matches the accuracy of a well tuned baseline Transformer while using less than a quarter of the decoder layers.
Breaking the Attention Bottleneck
Attention-based transformers have become the standard architecture in many deep learning fields, primarily due to their ability to model long-range dependencies and handle variable-length input sequences. However, the attention mechanism with its quadratic complexity is a significant bottleneck in the transformer architecture. This algorithm is only uni-directional in the decoder and converges to a static pattern in over-parametrized decoder-only models. I address this issue by developing a generative function as attention or activation replacement. It still has the auto-regressive character by comparing each token with the previous one. In my test setting with nanoGPT this yields a smaller loss while having a smaller model. The loss further drops by incorporating an average context vector. This concept of attention replacement is distributed under the GNU AGPL v3 license at https://gitlab.com/Bachstelze/causal_generation.
ByT5: Towards a token-free future with pre-trained byte-to-byte models
Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. By comparison, token-free models that operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments.
M2T: Masking Transformers Twice for Faster Decoding
We show how bidirectional transformers trained for masked token prediction can be applied to neural image compression to achieve state-of-the-art results. Such models were previously used for image generation by progressivly sampling groups of masked tokens according to uncertainty-adaptive schedules. Unlike these works, we demonstrate that predefined, deterministic schedules perform as well or better for image compression. This insight allows us to use masked attention during training in addition to masked inputs, and activation caching during inference, to significantly speed up our models (~4 higher inference speed) at a small increase in bitrate.
Wavelets Are All You Need for Autoregressive Image Generation
In this paper, we take a new approach to autoregressive image generation that is based on two main ingredients. The first is wavelet image coding, which allows to tokenize the visual details of an image from coarse to fine details by ordering the information starting with the most significant bits of the most significant wavelet coefficients. The second is a variant of a language transformer whose architecture is re-designed and optimized for token sequences in this 'wavelet language'. The transformer learns the significant statistical correlations within a token sequence, which are the manifestations of well-known correlations between the wavelet subbands at various resolutions. We show experimental results with conditioning on the generation process.
Simple Recurrence Improves Masked Language Models
In this work, we explore whether modeling recurrence into the Transformer architecture can both be beneficial and efficient, by building an extremely simple recurrent module into the Transformer. We compare our model to baselines following the training and evaluation recipe of BERT. Our results confirm that recurrence can indeed improve Transformer models by a consistent margin, without requiring low-level performance optimizations, and while keeping the number of parameters constant. For example, our base model achieves an absolute improvement of 2.1 points averaged across 10 tasks and also demonstrates increased stability in fine-tuning over a range of learning rates.
Easy and Efficient Transformer : Scalable Inference Solution For large NLP model
Recently, large-scale transformer-based models have been proven to be effective over various tasks across many domains. Nevertheless, applying them in industrial production requires tedious and heavy works to reduce inference costs. To fill such a gap, we introduce a scalable inference solution: Easy and Efficient Transformer (EET), including a series of transformer inference optimization at the algorithm and implementation levels. First, we design highly optimized kernels for long inputs and large hidden sizes. Second, we propose a flexible CUDA memory manager to reduce the memory footprint when deploying a large model. Compared with the state-of-the-art transformer inference library (Faster Transformer v4.0), EET can achieve an average of 1.40-4.20x speedup on the transformer decoder layer with an A100 GPU
The Emergence of Essential Sparsity in Large Pre-trained Models: The Weights that Matter
Large pre-trained transformers are show-stealer in modern-day deep learning, and it becomes crucial to comprehend the parsimonious patterns that exist within them as they grow in scale. With exploding parameter counts, Lottery Ticket Hypothesis (LTH) and its variants, have lost their pragmatism in sparsifying them due to high computation and memory bottleneck of repetitive train-prune-retrain routine of iterative magnitude pruning (IMP) which worsens with increasing model size. This paper comprehensively studies induced sparse patterns across multiple large pre-trained vision and language transformers. We propose the existence of -- essential sparsity defined with a sharp dropping point beyond which the performance declines much faster w.r.t the rise of sparsity level, when we directly remove weights with the smallest magnitudes in one-shot without re-training. We also find essential sparsity to hold valid for N:M sparsity patterns as well as on modern-scale large language models (Vicuna-7B). We also present an intriguing emerging phenomenon of abrupt sparsification during the pre-training of BERT, i.e., BERT suddenly becomes heavily sparse in pre-training after certain iterations. Moreover, our observations also indicate a counter-intuitive finding that BERT trained with a larger amount of pre-training data tends to have a better ability to condense knowledge in comparatively relatively fewer parameters. Lastly, we investigate the effect of the pre-training loss on essential sparsity and discover that self-supervised learning (SSL) objectives trigger stronger emergent sparsification properties than supervised learning (SL). Our codes are available at https://github.com/VITA-Group/essential_sparsity.
Distribution Transformers: Fast Approximate Bayesian Inference With On-The-Fly Prior Adaptation
While Bayesian inference provides a principled framework for reasoning under uncertainty, its widespread adoption is limited by the intractability of exact posterior computation, necessitating the use of approximate inference. However, existing methods are often computationally expensive, or demand costly retraining when priors change, limiting their utility, particularly in sequential inference problems such as real-time sensor fusion. To address these challenges, we introduce the Distribution Transformer -- a novel architecture that can learn arbitrary distribution-to-distribution mappings. Our method can be trained to map a prior to the corresponding posterior, conditioned on some dataset -- thus performing approximate Bayesian inference. Our novel architecture represents a prior distribution as a (universally-approximating) Gaussian Mixture Model (GMM), and transforms it into a GMM representation of the posterior. The components of the GMM attend to each other via self-attention, and to the datapoints via cross-attention. We demonstrate that Distribution Transformers both maintain flexibility to vary the prior, and significantly reduces computation times-from minutes to milliseconds-while achieving log-likelihood performance on par with or superior to existing approximate inference methods across tasks such as sequential inference, quantum system parameter inference, and Gaussian Process predictive posterior inference with hyperpriors.
Linformer: Self-Attention with Linear Complexity
Large transformer models have shown extraordinary success in achieving state-of-the-art results in many natural language processing applications. However, training and deploying these models can be prohibitively costly for long sequences, as the standard self-attention mechanism of the Transformer uses O(n^2) time and space with respect to sequence length. In this paper, we demonstrate that the self-attention mechanism can be approximated by a low-rank matrix. We further exploit this finding to propose a new self-attention mechanism, which reduces the overall self-attention complexity from O(n^2) to O(n) in both time and space. The resulting linear transformer, the Linformer, performs on par with standard Transformer models, while being much more memory- and time-efficient.
Transformers are Deep Optimizers: Provable In-Context Learning for Deep Model Training
We investigate the transformer's capability for in-context learning (ICL) to simulate the training process of deep models. Our key contribution is providing a positive example of using a transformer to train a deep neural network by gradient descent in an implicit fashion via ICL. Specifically, we provide an explicit construction of a (2N+4)L-layer transformer capable of simulating L gradient descent steps of an N-layer ReLU network through ICL. We also give the theoretical guarantees for the approximation within any given error and the convergence of the ICL gradient descent. Additionally, we extend our analysis to the more practical setting using Softmax-based transformers. We validate our findings on synthetic datasets for 3-layer, 4-layer, and 6-layer neural networks. The results show that ICL performance matches that of direct training.
Sparse Universal Transformer
The Universal Transformer (UT) is a variant of the Transformer that shares parameters across its layers. Empirical evidence shows that UTs have better compositional generalization than Vanilla Transformers (VTs) in formal language tasks. The parameter-sharing also affords it better parameter efficiency than VTs. Despite its many advantages, scaling UT parameters is much more compute and memory intensive than scaling up a VT. This paper proposes the Sparse Universal Transformer (SUT), which leverages Sparse Mixture of Experts (SMoE) and a new stick-breaking-based dynamic halting mechanism to reduce UT's computation complexity while retaining its parameter efficiency and generalization ability. Experiments show that SUT achieves the same performance as strong baseline models while only using half computation and parameters on WMT'14 and strong generalization results on formal language tasks (Logical inference and CFQ). The new halting mechanism also enables around 50\% reduction in computation during inference with very little performance decrease on formal language tasks.
What Language Model to Train if You Have One Million GPU Hours?
The crystallization of modeling methods around the Transformer architecture has been a boon for practitioners. Simple, well-motivated architectural variations can transfer across tasks and scale, increasing the impact of modeling research. However, with the emergence of state-of-the-art 100B+ parameters models, large language models are increasingly expensive to accurately design and train. Notably, it can be difficult to evaluate how modeling decisions may impact emergent capabilities, given that these capabilities arise mainly from sheer scale alone. In the process of building BLOOM--the Big Science Large Open-science Open-access Multilingual language model--our goal is to identify an architecture and training setup that makes the best use of our 1,000,000 A100-GPU-hours budget. Specifically, we perform an ablation study at the billion-parameter scale comparing different modeling practices and their impact on zero-shot generalization. In addition, we study the impact of various popular pre-training corpora on zero-shot generalization. We also study the performance of a multilingual model and how it compares to the English-only one. Finally, we consider the scaling behaviour of Transformers to choose the target model size, shape, and training setup. All our models and code are open-sourced at https://huggingface.co/bigscience .
MASTER: Multi-task Pre-trained Bottlenecked Masked Autoencoders are Better Dense Retrievers
Pre-trained Transformers (\eg BERT) have been commonly used in existing dense retrieval methods for parameter initialization, and recent studies are exploring more effective pre-training tasks for further improving the quality of dense vectors. Although various novel and effective tasks have been proposed, their different input formats and learning objectives make them hard to be integrated for jointly improving the model performance. In this work, we aim to unify a variety of pre-training tasks into the bottlenecked masked autoencoder manner, and integrate them into a multi-task pre-trained model, namely MASTER. Concretely, MASTER utilizes a shared-encoder multi-decoder architecture that can construct a representation bottleneck to compress the abundant semantic information across tasks into dense vectors. Based on it, we integrate three types of representative pre-training tasks: corrupted passages recovering, related passages recovering and PLMs outputs recovering, to characterize the inner-passage information, inter-passage relations and PLMs knowledge. Extensive experiments have shown that our approach outperforms competitive dense retrieval methods. Our code and data are publicly released in https://github.com/microsoft/SimXNS.
Transformers as Decision Makers: Provable In-Context Reinforcement Learning via Supervised Pretraining
Large transformer models pretrained on offline reinforcement learning datasets have demonstrated remarkable in-context reinforcement learning (ICRL) capabilities, where they can make good decisions when prompted with interaction trajectories from unseen environments. However, when and how transformers can be trained to perform ICRL have not been theoretically well-understood. In particular, it is unclear which reinforcement-learning algorithms transformers can perform in context, and how distribution mismatch in offline training data affects the learned algorithms. This paper provides a theoretical framework that analyzes supervised pretraining for ICRL. This includes two recently proposed training methods -- algorithm distillation and decision-pretrained transformers. First, assuming model realizability, we prove the supervised-pretrained transformer will imitate the conditional expectation of the expert algorithm given the observed trajectory. The generalization error will scale with model capacity and a distribution divergence factor between the expert and offline algorithms. Second, we show transformers with ReLU attention can efficiently approximate near-optimal online reinforcement learning algorithms like LinUCB and Thompson sampling for stochastic linear bandits, and UCB-VI for tabular Markov decision processes. This provides the first quantitative analysis of the ICRL capabilities of transformers pretrained from offline trajectories.
Beyond IID weights: sparse and low-rank deep Neural Networks are also Gaussian Processes
The infinitely wide neural network has been proven a useful and manageable mathematical model that enables the understanding of many phenomena appearing in deep learning. One example is the convergence of random deep networks to Gaussian processes that allows a rigorous analysis of the way the choice of activation function and network weights impacts the training dynamics. In this paper, we extend the seminal proof of Matthews et al. (2018) to a larger class of initial weight distributions (which we call PSEUDO-IID), including the established cases of IID and orthogonal weights, as well as the emerging low-rank and structured sparse settings celebrated for their computational speed-up benefits. We show that fully-connected and convolutional networks initialized with PSEUDO-IID distributions are all effectively equivalent up to their variance. Using our results, one can identify the Edge-of-Chaos for a broader class of neural networks and tune them at criticality in order to enhance their training. Moreover, they enable the posterior distribution of Bayesian Neural Networks to be tractable across these various initialization schemes.
Transformers learn through gradual rank increase
We identify incremental learning dynamics in transformers, where the difference between trained and initial weights progressively increases in rank. We rigorously prove this occurs under the simplifying assumptions of diagonal weight matrices and small initialization. Our experiments support the theory and also show that phenomenon can occur in practice without the simplifying assumptions.
Learning to grok: Emergence of in-context learning and skill composition in modular arithmetic tasks
Large language models can solve tasks that were not present in the training set. This capability is believed to be due to in-context learning and skill composition. In this work, we study the emergence of in-context learning and skill composition in a collection of modular arithmetic tasks. Specifically, we consider a finite collection of linear modular functions z = a , x + b , y ;mod; p labeled by the vector (a, b) in Z_p^2. We use some of these tasks for pre-training and the rest for out-of-distribution testing. We empirically show that a GPT-style transformer exhibits a transition from in-distribution to out-of-distribution generalization as the number of pre-training tasks increases. We find that the smallest model capable of out-of-distribution generalization requires two transformer blocks, while for deeper models, the out-of-distribution generalization phase is transient, necessitating early stopping. Finally, we perform an interpretability study of the pre-trained models, revealing the highly structured representations in both phases; and discuss the learnt algorithm.
Understanding In-Context Learning in Transformers and LLMs by Learning to Learn Discrete Functions
In order to understand the in-context learning phenomenon, recent works have adopted a stylized experimental framework and demonstrated that Transformers can learn gradient-based learning algorithms for various classes of real-valued functions. However, the limitations of Transformers in implementing learning algorithms, and their ability to learn other forms of algorithms are not well understood. Additionally, the degree to which these capabilities are confined to attention-based models is unclear. Furthermore, it remains to be seen whether the insights derived from these stylized settings can be extrapolated to pretrained Large Language Models (LLMs). In this work, we take a step towards answering these questions by demonstrating the following: (a) On a test-bed with a variety of Boolean function classes, we find that Transformers can nearly match the optimal learning algorithm for 'simpler' tasks, while their performance deteriorates on more 'complex' tasks. Additionally, we find that certain attention-free models perform (almost) identically to Transformers on a range of tasks. (b) When provided a teaching sequence, i.e. a set of examples that uniquely identifies a function in a class, we show that Transformers learn more sample-efficiently. Interestingly, our results show that Transformers can learn to implement two distinct algorithms to solve a single task, and can adaptively select the more sample-efficient algorithm depending on the sequence of in-context examples. (c) Lastly, we show that extant LLMs, e.g. LLaMA-2, GPT-4, can compete with nearest-neighbor baselines on prediction tasks that are guaranteed to not be in their training set.
Sinkformers: Transformers with Doubly Stochastic Attention
Attention based models such as Transformers involve pairwise interactions between data points, modeled with a learnable attention matrix. Importantly, this attention matrix is normalized with the SoftMax operator, which makes it row-wise stochastic. In this paper, we propose instead to use Sinkhorn's algorithm to make attention matrices doubly stochastic. We call the resulting model a Sinkformer. We show that the row-wise stochastic attention matrices in classical Transformers get close to doubly stochastic matrices as the number of epochs increases, justifying the use of Sinkhorn normalization as an informative prior. On the theoretical side, we show that, unlike the SoftMax operation, this normalization makes it possible to understand the iterations of self-attention modules as a discretized gradient-flow for the Wasserstein metric. We also show in the infinite number of samples limit that, when rescaling both attention matrices and depth, Sinkformers operate a heat diffusion. On the experimental side, we show that Sinkformers enhance model accuracy in vision and natural language processing tasks. In particular, on 3D shapes classification, Sinkformers lead to a significant improvement.
Flowformer: Linearizing Transformers with Conservation Flows
Transformers based on the attention mechanism have achieved impressive success in various areas. However, the attention mechanism has a quadratic complexity, significantly impeding Transformers from dealing with numerous tokens and scaling up to bigger models. Previous methods mainly utilize the similarity decomposition and the associativity of matrix multiplication to devise linear-time attention mechanisms. They avoid degeneration of attention to a trivial distribution by reintroducing inductive biases such as the locality, thereby at the expense of model generality and expressiveness. In this paper, we linearize Transformers free from specific inductive biases based on the flow network theory. We cast attention as the information flow aggregated from the sources (values) to the sinks (results) through the learned flow capacities (attentions). Within this framework, we apply the property of flow conservation into attention and propose the Flow-Attention mechanism of linear complexity. By respectively conserving the incoming flow of sinks for source competition and the outgoing flow of sources for sink allocation, Flow-Attention inherently generates informative attentions without using specific inductive biases. Empowered by the Flow-Attention, Flowformer yields strong performance in linear time for wide areas, including long sequence, time series, vision, natural language, and reinforcement learning. The code and settings are available at this repository: https://github.com/thuml/Flowformer.
Expected Gradients of Maxout Networks and Consequences to Parameter Initialization
We study the gradients of a maxout network with respect to inputs and parameters and obtain bounds for the moments depending on the architecture and the parameter distribution. We observe that the distribution of the input-output Jacobian depends on the input, which complicates a stable parameter initialization. Based on the moments of the gradients, we formulate parameter initialization strategies that avoid vanishing and exploding gradients in wide networks. Experiments with deep fully-connected and convolutional networks show that this strategy improves SGD and Adam training of deep maxout networks. In addition, we obtain refined bounds on the expected number of linear regions, results on the expected curve length distortion, and results on the NTK.
Combiner: Full Attention Transformer with Sparse Computation Cost
Transformers provide a class of expressive architectures that are extremely effective for sequence modeling. However, the key limitation of transformers is their quadratic memory and time complexity O(L^2) with respect to the sequence length in attention layers, which restricts application in extremely long sequences. Most existing approaches leverage sparsity or low-rank assumptions in the attention matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner, which provides full attention capability in each attention head while maintaining low computation and memory complexity. The key idea is to treat the self-attention mechanism as a conditional expectation over embeddings at each location, and approximate the conditional distribution with a structured factorization. Each location can attend to all other locations, either via direct attention, or through indirect attention to abstractions, which are again conditional expectations of embeddings from corresponding local regions. We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention, resulting in the same sub-quadratic cost (O(Llog(L)) or O(LL)). Combiner is a drop-in replacement for attention layers in existing transformers and can be easily implemented in common frameworks. An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach, yielding state-of-the-art results on several image and text modeling tasks.
Reduce Information Loss in Transformers for Pluralistic Image Inpainting
Transformers have achieved great success in pluralistic image inpainting recently. However, we find existing transformer based solutions regard each pixel as a token, thus suffer from information loss issue from two aspects: 1) They downsample the input image into much lower resolutions for efficiency consideration, incurring information loss and extra misalignment for the boundaries of masked regions. 2) They quantize 256^3 RGB pixels to a small number (such as 512) of quantized pixels. The indices of quantized pixels are used as tokens for the inputs and prediction targets of transformer. Although an extra CNN network is used to upsample and refine the low-resolution results, it is difficult to retrieve the lost information back.To keep input information as much as possible, we propose a new transformer based framework "PUT". Specifically, to avoid input downsampling while maintaining the computation efficiency, we design a patch-based auto-encoder P-VQVAE, where the encoder converts the masked image into non-overlapped patch tokens and the decoder recovers the masked regions from inpainted tokens while keeping the unmasked regions unchanged. To eliminate the information loss caused by quantization, an Un-Quantized Transformer (UQ-Transformer) is applied, which directly takes the features from P-VQVAE encoder as input without quantization and regards the quantized tokens only as prediction targets. Extensive experiments show that PUT greatly outperforms state-of-the-art methods on image fidelity, especially for large masked regions and complex large-scale datasets. Code is available at https://github.com/liuqk3/PUT
FasterDiT: Towards Faster Diffusion Transformers Training without Architecture Modification
Diffusion Transformers (DiT) have attracted significant attention in research. However, they suffer from a slow convergence rate. In this paper, we aim to accelerate DiT training without any architectural modification. We identify the following issues in the training process: firstly, certain training strategies do not consistently perform well across different data. Secondly, the effectiveness of supervision at specific timesteps is limited. In response, we propose the following contributions: (1) We introduce a new perspective for interpreting the failure of the strategies. Specifically, we slightly extend the definition of Signal-to-Noise Ratio (SNR) and suggest observing the Probability Density Function (PDF) of SNR to understand the essence of the data robustness of the strategy. (2) We conduct numerous experiments and report over one hundred experimental results to empirically summarize a unified accelerating strategy from the perspective of PDF. (3) We develop a new supervision method that further accelerates the training process of DiT. Based on them, we propose FasterDiT, an exceedingly simple and practicable design strategy. With few lines of code modifications, it achieves 2.30 FID on ImageNet 256 resolution at 1000k iterations, which is comparable to DiT (2.27 FID) but 7 times faster in training.
TokenFormer: Rethinking Transformer Scaling with Tokenized Model Parameters
Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on a fixed number of parameters within linear projections. When architectural modifications (e.g., channel dimensions) are introduced, the entire model typically requires retraining from scratch. As model sizes continue growing, this strategy results in increasingly high computational costs and becomes unsustainable. To overcome this problem, we introduce TokenFormer, a natively scalable architecture that leverages the attention mechanism not only for computations among input tokens but also for interactions between tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformers with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This reformulation allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124M to 1.4B parameters by incrementally adding new key-value parameter pairs, achieving performance comparable to Transformers trained from scratch while greatly reducing training costs. Code and models are available at https://github.com/Haiyang-W/TokenFormer.
Sparse MoE as the New Dropout: Scaling Dense and Self-Slimmable Transformers
Despite their remarkable achievement, gigantic transformers encounter significant drawbacks, including exorbitant computational and memory footprints during training, as well as severe collapse evidenced by a high degree of parameter redundancy. Sparsely-activated Mixture-of-Experts (SMoEs) have shown promise to mitigate the issue of training efficiency, yet they are prone to (1) redundant experts due to representational collapse; and (2) poor expert scalability for inference and downstream fine-tuning, primarily due to overfitting of the learned routing policy to the number of activated experts during training. As recent research efforts are predominantly focused on improving routing policies to encourage expert specializations, this work focuses on exploring the overlooked scalability bottleneck of SMoEs and leveraging it to effectively scale dense transformers. To this end, we propose a new plug-and-play training framework, SMoE-Dropout, to enable scaling transformers to better accuracy in their full capacity without collapse. Specifically, SMoE-Dropout consists of a randomly initialized and fixed router network to activate experts and gradually increases the activated expert number as training progresses over time. Transformers trained by SMoE-Dropout naturally exhibit a self-slimmable property subject to resource availability, offering smooth and consistent performance boosts with an increase in activated experts during inference or fine-tuning. Our extensive experiments demonstrate the superior performance and substantial computation savings of SMoE-Dropout, compared to dense training baselines with equivalent parameter counts. In particular, our trained BERT outperforms its densely trained counterpart with consistent improvements of {1.03%, 0.78%, 1.09%} on challenging reasoning tasks {ASDiv-A, MAWPS, SVAMP}, respectively.
Are Transformers with One Layer Self-Attention Using Low-Rank Weight Matrices Universal Approximators?
Existing analyses of the expressive capacity of Transformer models have required excessively deep layers for data memorization, leading to a discrepancy with the Transformers actually used in practice. This is primarily due to the interpretation of the softmax function as an approximation of the hardmax function. By clarifying the connection between the softmax function and the Boltzmann operator, we prove that a single layer of self-attention with low-rank weight matrices possesses the capability to perfectly capture the context of an entire input sequence. As a consequence, we show that one-layer and single-head Transformers have a memorization capacity for finite samples, and that Transformers consisting of one self-attention layer with two feed-forward neural networks are universal approximators for continuous permutation equivariant functions on a compact domain.
StableMoE: Stable Routing Strategy for Mixture of Experts
The Mixture-of-Experts (MoE) technique can scale up the model size of Transformers with an affordable computational overhead. We point out that existing learning-to-route MoE methods suffer from the routing fluctuation issue, i.e., the target expert of the same input may change along with training, but only one expert will be activated for the input during inference. The routing fluctuation tends to harm sample efficiency because the same input updates different experts but only one is finally used. In this paper, we propose StableMoE with two training stages to address the routing fluctuation problem. In the first training stage, we learn a balanced and cohesive routing strategy and distill it into a lightweight router decoupled from the backbone model. In the second training stage, we utilize the distilled router to determine the token-to-expert assignment and freeze it for a stable routing strategy. We validate our method on language modeling and multilingual machine translation. The results show that StableMoE outperforms existing MoE methods in terms of both convergence speed and performance.
The Ingredients for Robotic Diffusion Transformers
In recent years roboticists have achieved remarkable progress in solving increasingly general tasks on dexterous robotic hardware by leveraging high capacity Transformer network architectures and generative diffusion models. Unfortunately, combining these two orthogonal improvements has proven surprisingly difficult, since there is no clear and well-understood process for making important design choices. In this paper, we identify, study and improve key architectural design decisions for high-capacity diffusion transformer policies. The resulting models can efficiently solve diverse tasks on multiple robot embodiments, without the excruciating pain of per-setup hyper-parameter tuning. By combining the results of our investigation with our improved model components, we are able to present a novel architecture, named \method, that significantly outperforms the state of the art in solving long-horizon (1500+ time-steps) dexterous tasks on a bi-manual ALOHA robot. In addition, we find that our policies show improved scaling performance when trained on 10 hours of highly multi-modal, language annotated ALOHA demonstration data. We hope this work will open the door for future robot learning techniques that leverage the efficiency of generative diffusion modeling with the scalability of large scale transformer architectures. Code, robot dataset, and videos are available at: https://dit-policy.github.io
LMUFormer: Low Complexity Yet Powerful Spiking Model With Legendre Memory Units
Transformer models have demonstrated high accuracy in numerous applications but have high complexity and lack sequential processing capability making them ill-suited for many streaming applications at the edge where devices are heavily resource-constrained. Thus motivated, many researchers have proposed reformulating the transformer models as RNN modules which modify the self-attention computation with explicit states. However, these approaches often incur significant performance degradation. The ultimate goal is to develop a model that has the following properties: parallel training, streaming and low-cost inference, and SOTA performance. In this paper, we propose a new direction to achieve this goal. We show how architectural modifications to a recurrent model can help push its performance toward Transformer models while retaining its sequential processing capability. Specifically, inspired by the recent success of Legendre Memory Units (LMU) in sequence learning tasks, we propose LMUFormer, which augments the LMU with convolutional patch embedding and convolutional channel mixer. Moreover, we present a spiking version of this architecture, which introduces the benefit of states within the patch embedding and channel mixer modules while simultaneously reducing the computing complexity. We evaluated our architectures on multiple sequence datasets. In comparison to SOTA transformer-based models within the ANN domain on the SCv2 dataset, our LMUFormer demonstrates comparable performance while necessitating a remarkable 53 times reduction in parameters and a substantial 65 times decrement in FLOPs. Additionally, owing to our model's proficiency in real-time data processing, we can achieve a 32.03% reduction in sequence length, all while incurring an inconsequential decline in performance. Our code is publicly available at https://github.com/zeyuliu1037/LMUFormer.git.
LLM-FP4: 4-Bit Floating-Point Quantized Transformers
We propose LLM-FP4 for quantizing both weights and activations in large language models (LLMs) down to 4-bit floating-point values, in a post-training manner. Existing post-training quantization (PTQ) solutions are primarily integer-based and struggle with bit widths below 8 bits. Compared to integer quantization, floating-point (FP) quantization is more flexible and can better handle long-tail or bell-shaped distributions, and it has emerged as a default choice in many hardware platforms. One characteristic of FP quantization is that its performance largely depends on the choice of exponent bits and clipping range. In this regard, we construct a strong FP-PTQ baseline by searching for the optimal quantization parameters. Furthermore, we observe a high inter-channel variance and low intra-channel variance pattern in activation distributions, which adds activation quantization difficulty. We recognize this pattern to be consistent across a spectrum of transformer models designed for diverse tasks, such as LLMs, BERT, and Vision Transformer models. To tackle this, we propose per-channel activation quantization and show that these additional scaling factors can be reparameterized as exponential biases of weights, incurring a negligible cost. Our method, for the first time, can quantize both weights and activations in the LLaMA-13B to only 4-bit and achieves an average score of 63.1 on the common sense zero-shot reasoning tasks, which is only 5.8 lower than the full-precision model, significantly outperforming the previous state-of-the-art by 12.7 points. Code is available at: https://github.com/nbasyl/LLM-FP4.
Fast Training of NMT Model with Data Sorting
The Transformer model has revolutionized Natural Language Processing tasks such as Neural Machine Translation, and many efforts have been made to study the Transformer architecture, which increased its efficiency and accuracy. One potential area for improvement is to address the computation of empty tokens that the Transformer computes only to discard them later, leading to an unnecessary computational burden. To tackle this, we propose an algorithm that sorts translation sentence pairs based on their length before batching, minimizing the waste of computing power. Since the amount of sorting could violate the independent and identically distributed (i.i.d) data assumption, we sort the data partially. In experiments, we apply the proposed method to English-Korean and English-Luganda language pairs for machine translation and show that there are gains in computational time while maintaining the performance. Our method is independent of architectures, so that it can be easily integrated into any training process with flexible data lengths.
A Transformer-based Framework for Multivariate Time Series Representation Learning
In this work we propose for the first time a transformer-based framework for unsupervised representation learning of multivariate time series. Pre-trained models can be potentially used for downstream tasks such as regression and classification, forecasting and missing value imputation. By evaluating our models on several benchmark datasets for multivariate time series regression and classification, we show that not only does our modeling approach represent the most successful method employing unsupervised learning of multivariate time series presented to date, but also that it exceeds the current state-of-the-art performance of supervised methods; it does so even when the number of training samples is very limited, while offering computational efficiency. Finally, we demonstrate that unsupervised pre-training of our transformer models offers a substantial performance benefit over fully supervised learning, even without leveraging additional unlabeled data, i.e., by reusing the same data samples through the unsupervised objective.
How BPE Affects Memorization in Transformers
Training data memorization in NLP can both be beneficial (e.g., closed-book QA) and undesirable (personal data extraction). In any case, successful model training requires a non-trivial amount of memorization to store word spellings, various linguistic idiosyncrasies and common knowledge. However, little is known about what affects the memorization behavior of NLP models, as the field tends to focus on the equally important question of generalization. In this work, we demonstrate that the size of the subword vocabulary learned by Byte-Pair Encoding (BPE) greatly affects both ability and tendency of standard Transformer models to memorize training data, even when we control for the number of learned parameters. We find that with a large subword vocabulary size, Transformer models fit random mappings more easily and are more vulnerable to membership inference attacks. Similarly, given a prompt, Transformer-based language models with large subword vocabularies reproduce the training data more often. We conjecture this effect is caused by reduction in the sequences' length that happens as the BPE vocabulary grows. Our findings can allow a more informed choice of hyper-parameters, that is better tailored for a particular use-case.
SiT: Exploring Flow and Diffusion-based Generative Models with Scalable Interpolant Transformers
We present Scalable Interpolant Transformers (SiT), a family of generative models built on the backbone of Diffusion Transformers (DiT). The interpolant framework, which allows for connecting two distributions in a more flexible way than standard diffusion models, makes possible a modular study of various design choices impacting generative models built on dynamical transport: using discrete vs. continuous time learning, deciding the objective for the model to learn, choosing the interpolant connecting the distributions, and deploying a deterministic or stochastic sampler. By carefully introducing the above ingredients, SiT surpasses DiT uniformly across model sizes on the conditional ImageNet 256x256 benchmark using the exact same backbone, number of parameters, and GFLOPs. By exploring various diffusion coefficients, which can be tuned separately from learning, SiT achieves an FID-50K score of 2.06.
TerDiT: Ternary Diffusion Models with Transformers
Recent developments in large-scale pre-trained text-to-image diffusion models have significantly improved the generation of high-fidelity images, particularly with the emergence of diffusion models based on transformer architecture (DiTs). Among these diffusion models, diffusion transformers have demonstrated superior image generation capabilities, boosting lower FID scores and higher scalability. However, deploying large-scale DiT models can be expensive due to their extensive parameter numbers. Although existing research has explored efficient deployment techniques for diffusion models such as model quantization, there is still little work concerning DiT-based models. To tackle this research gap, in this paper, we propose TerDiT, a quantization-aware training (QAT) and efficient deployment scheme for ternary diffusion models with transformers. We focus on the ternarization of DiT networks and scale model sizes from 600M to 4.2B. Our work contributes to the exploration of efficient deployment strategies for large-scale DiT models, demonstrating the feasibility of training extremely low-bit diffusion transformer models from scratch while maintaining competitive image generation capacities compared to full-precision models. Code will be available at https://github.com/Lucky-Lance/TerDiT.
Fusing finetuned models for better pretraining
Pretrained models are the standard starting point for training. This approach consistently outperforms the use of a random initialization. However, pretraining is a costly endeavour that few can undertake. In this paper, we create better base models at hardly any cost, by fusing multiple existing fine tuned models into one. Specifically, we fuse by averaging the weights of these models. We show that the fused model results surpass the pretrained model ones. We also show that fusing is often better than intertraining. We find that fusing is less dependent on the target task. Furthermore, weight decay nullifies intertraining effects but not those of fusing.
Efficiency 360: Efficient Vision Transformers
Transformers are widely used for solving tasks in natural language processing, computer vision, speech, and music domains. In this paper, we talk about the efficiency of transformers in terms of memory (the number of parameters), computation cost (number of floating points operations), and performance of models, including accuracy, the robustness of the model, and fair \& bias-free features. We mainly discuss the vision transformer for the image classification task. Our contribution is to introduce an efficient 360 framework, which includes various aspects of the vision transformer, to make it more efficient for industrial applications. By considering those applications, we categorize them into multiple dimensions such as privacy, robustness, transparency, fairness, inclusiveness, continual learning, probabilistic models, approximation, computational complexity, and spectral complexity. We compare various vision transformer models based on their performance, the number of parameters, and the number of floating point operations (FLOPs) on multiple datasets.
Folded context condensation in Path Integral formalism for infinite context transformers
This short note is written for rapid communication of long context training and to share the idea of how to train it with low memory usage. In the note, we generalize the attention algorithm and neural network of Generative Pre-Trained Transformers and reinterpret it in Path integral formalism. First, the role of the transformer is understood as the time evolution of the token state and second, it is suggested that the all key-token states in the same time as the query-token can attend to the attention with the query token states. As a result of the repetitive time evolution, it is discussed that the token states in the past sequence meats the token states in the present sequence so that the attention between separated sequences becomes possible for maintaining infinite contextual information just by using low memory for limited size of sequence. For the experiment, the 12 input token window size was taken and one GPU with 24GB memory was used for the pre-training. It was confirmed that more than 150 length context is preserved. The sampling result of the training, the code and the other details will be included in the revised version of this note later.
Small-E: Small Language Model with Linear Attention for Efficient Speech Synthesis
Recent advancements in text-to-speech (TTS) powered by language models have showcased remarkable capabilities in achieving naturalness and zero-shot voice cloning. Notably, the decoder-only transformer is the prominent architecture in this domain. However, transformers face challenges stemming from their quadratic complexity in sequence length, impeding training on lengthy sequences and resource-constrained hardware. Moreover they lack specific inductive bias with regards to the monotonic nature of TTS alignments. In response, we propose to replace transformers with emerging recurrent architectures and introduce specialized cross-attention mechanisms for reducing repeating and skipping issues. Consequently our architecture can be efficiently trained on long samples and achieve state-of-the-art zero-shot voice cloning against baselines of comparable size. Our implementation and demos are available at https://github.com/theodorblackbird/lina-speech.
PartialFormer: Modeling Part Instead of Whole
The design choices in Transformer feed-forward neural networks have resulted in significant computational and parameter overhead. In this work, we emphasize the importance of hidden dimension in designing lightweight FFNs, a factor often overlooked in previous architectures. Guided by this principle, we introduce PartialFormer, a parameter-efficient Transformer architecture utilizing multiple smaller FFNs to reduce parameters and computation while maintaining essential hidden dimensions. These smaller FFNs are integrated into a multi-head attention system to enable effective collaboration. We also propose a tailored head scaling strategy to enhance PartialFormer's capabilities. Furthermore, we present a residual-like attention calculation to improve depth scaling within PartialFormer. Extensive experiments on 9 translation tasks and 1 abstractive summarization task validate the effectiveness of our PartialFormer approach. Our code would be available at: https://github.com/zhengkid/PartialFormer.
Mixture of Hidden-Dimensions Transformer
Transformer models encounter challenges in scaling hidden dimensions efficiently, as uniformly increasing them inflates computational and memory costs while failing to emphasize the most relevant features for each token. For further understanding, we study hidden dimension sparsity and observe that trained Transformers utilize only a small fraction of token dimensions, revealing an "activation flow" pattern. Notably, there are shared sub-dimensions with sustained activation across multiple consecutive tokens and specialized sub-dimensions uniquely activated for each token. To better model token-relevant sub-dimensions, we propose MoHD (Mixture of Hidden Dimensions), a sparse conditional activation architecture. Particularly, MoHD employs shared sub-dimensions for common token features and a routing mechanism to dynamically activate specialized sub-dimensions. To mitigate potential information loss from sparsity, we design activation scaling and group fusion mechanisms to preserve activation flow. In this way, MoHD expands hidden dimensions with negligible increases in computation or parameters, efficient training and inference while maintaining performance. Evaluations across 10 NLP tasks show that MoHD surpasses Vanilla Transformers in parameter efficiency and task performance. It achieves 1.7% higher performance with 50% fewer activation parameters and 3.7% higher performance with a 3x parameter expansion at constant activation cost. MOHD offers a new perspective for scaling the model, showcasing the potential of hidden dimension sparsity to boost efficiency
A Multiscale Visualization of Attention in the Transformer Model
The Transformer is a sequence model that forgoes traditional recurrent architectures in favor of a fully attention-based approach. Besides improving performance, an advantage of using attention is that it can also help to interpret a model by showing how the model assigns weight to different input elements. However, the multi-layer, multi-head attention mechanism in the Transformer model can be difficult to decipher. To make the model more accessible, we introduce an open-source tool that visualizes attention at multiple scales, each of which provides a unique perspective on the attention mechanism. We demonstrate the tool on BERT and OpenAI GPT-2 and present three example use cases: detecting model bias, locating relevant attention heads, and linking neurons to model behavior.
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training
Random pruning is arguably the most naive way to attain sparsity in neural networks, but has been deemed uncompetitive by either post-training pruning or sparse training. In this paper, we focus on sparse training and highlight a perhaps counter-intuitive finding, that random pruning at initialization can be quite powerful for the sparse training of modern neural networks. Without any delicate pruning criteria or carefully pursued sparsity structures, we empirically demonstrate that sparsely training a randomly pruned network from scratch can match the performance of its dense equivalent. There are two key factors that contribute to this revival: (i) the network sizes matter: as the original dense networks grow wider and deeper, the performance of training a randomly pruned sparse network will quickly grow to matching that of its dense equivalent, even at high sparsity ratios; (ii) appropriate layer-wise sparsity ratios can be pre-chosen for sparse training, which shows to be another important performance booster. Simple as it looks, a randomly pruned subnetwork of Wide ResNet-50 can be sparsely trained to outperforming a dense Wide ResNet-50, on ImageNet. We also observed such randomly pruned networks outperform dense counterparts in other favorable aspects, such as out-of-distribution detection, uncertainty estimation, and adversarial robustness. Overall, our results strongly suggest there is larger-than-expected room for sparse training at scale, and the benefits of sparsity might be more universal beyond carefully designed pruning. Our source code can be found at https://github.com/VITA-Group/Random_Pruning.
Q8BERT: Quantized 8Bit BERT
Recently, pre-trained Transformer based language models such as BERT and GPT, have shown great improvement in many Natural Language Processing (NLP) tasks. However, these models contain a large amount of parameters. The emergence of even larger and more accurate models such as GPT2 and Megatron, suggest a trend of large pre-trained Transformer models. However, using these large models in production environments is a complex task requiring a large amount of compute, memory and power resources. In this work we show how to perform quantization-aware training during the fine-tuning phase of BERT in order to compress BERT by 4times with minimal accuracy loss. Furthermore, the produced quantized model can accelerate inference speed if it is optimized for 8bit Integer supporting hardware.
Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention Graph in Pre-Trained Transformers
Deployment of Transformer models on edge devices is becoming increasingly challenging due to the exponentially growing inference cost that scales quadratically with the number of tokens in the input sequence. Token pruning is an emerging solution to address this challenge due to its ease of deployment on various Transformer backbones. However, most token pruning methods require computationally expensive fine-tuning, which is undesirable in many edge deployment cases. In this work, we propose Zero-TPrune, the first zero-shot method that considers both the importance and similarity of tokens in performing token pruning. It leverages the attention graph of pre-trained Transformer models to produce an importance distribution for tokens via our proposed Weighted Page Rank (WPR) algorithm. This distribution further guides token partitioning for efficient similarity-based pruning. Due to the elimination of the fine-tuning overhead, Zero-TPrune can prune large models at negligible computational cost, switch between different pruning configurations at no computational cost, and perform hyperparameter tuning efficiently. We evaluate the performance of Zero-TPrune on vision tasks by applying it to various vision Transformer backbones and testing them on ImageNet. Without any fine-tuning, Zero-TPrune reduces the FLOPs cost of DeiT-S by 34.7\% and improves its throughput by 45.3\% with only 0.4\% accuracy loss. Compared with state-of-the-art pruning methods that require fine-tuning, Zero-TPrune not only eliminates the need for fine-tuning after pruning but also does so with only 0.1\% accuracy loss. Compared with state-of-the-art fine-tuning-free pruning methods, Zero-TPrune reduces accuracy loss by up to 49\% with the same or higher throughput.
MLP Can Be A Good Transformer Learner
Self-attention mechanism is the key of the Transformer but often criticized for its computation demands. Previous token pruning works motivate their methods from the view of computation redundancy but still need to load the full network and require same memory costs. This paper introduces a novel strategy that simplifies vision transformers and reduces computational load through the selective removal of non-essential attention layers, guided by entropy considerations. We identify that regarding the attention layer in bottom blocks, their subsequent MLP layers, i.e. two feed-forward layers, can elicit the same entropy quantity. Meanwhile, the accompanied MLPs are under-exploited since they exhibit smaller feature entropy compared to those MLPs in the top blocks. Therefore, we propose to integrate the uninformative attention layers into their subsequent counterparts by degenerating them into identical mapping, yielding only MLP in certain transformer blocks. Experimental results on ImageNet-1k show that the proposed method can remove 40% attention layer of DeiT-B, improving throughput and memory bound without performance compromise. Code is available at https://github.com/sihaoevery/lambda_vit.
Future Lens: Anticipating Subsequent Tokens from a Single Hidden State
We conjecture that hidden state vectors corresponding to individual input tokens encode information sufficient to accurately predict several tokens ahead. More concretely, in this paper we ask: Given a hidden (internal) representation of a single token at position t in an input, can we reliably anticipate the tokens that will appear at positions geq t + 2? To test this, we measure linear approximation and causal intervention methods in GPT-J-6B to evaluate the degree to which individual hidden states in the network contain signal rich enough to predict future hidden states and, ultimately, token outputs. We find that, at some layers, we can approximate a model's output with more than 48% accuracy with respect to its prediction of subsequent tokens through a single hidden state. Finally we present a "Future Lens" visualization that uses these methods to create a new view of transformer states.
EvoMoE: An Evolutional Mixture-of-Experts Training Framework via Dense-To-Sparse Gate
Mixture-of-experts (MoE) is becoming popular due to its success in improving the model quality, especially in Transformers. By routing tokens with a sparse gate to a few experts (i.e., a small pieces of the full model), MoE can easily increase the model parameters to a very large scale while keeping the computation cost in a constant level. Most existing works just initialize some random experts, set a fixed gating strategy (e.g., Top-k), and train the model from scratch in an ad-hoc way. We identify that these MoE models are suffering from the immature experts and unstable sparse gate, which are harmful to the convergence performance. In this paper, we propose an efficient end-to-end MoE training framework called EvoMoE. EvoMoE starts from training one single expert and gradually evolves into a large and sparse MoE structure. EvoMoE mainly contains two phases: the expert-diversify phase to train the base expert for a while and spawn multiple diverse experts from it, and the gate-sparsify phase to learn an adaptive sparse gate and activate a dynamic number of experts. EvoMoE naturally decouples the joint learning of both the experts and the sparse gate and focuses on learning the basic knowledge with a single expert at the early training stage. Then it diversifies the experts and continues to train the MoE with a novel Dense-to-Sparse gate (DTS-Gate). Specifically, instead of using a permanent sparse gate, DTS-Gate begins as a dense gate that routes tokens to all experts, then gradually and adaptively becomes sparser while routes to fewer experts. Evaluations are conducted on three popular models and tasks, including RoBERTa for masked language modeling task, GPT for language modeling task and Transformer for machine translation task. The results show that EvoMoE outperforms existing baselines, including Switch, BASE Layer, Hash Layer and StableMoE.
How Far Can Transformers Reason? The Globality Barrier and Inductive Scratchpad
Can Transformers predict new syllogisms by composing established ones? More generally, what type of targets can be learned by such models from scratch? Recent works show that Transformers can be Turing-complete in terms of expressivity, but this does not address the learnability objective. This paper puts forward the notion of 'globality degree' of a target distribution to capture when weak learning is efficiently achievable by regular Transformers, where the latter measures the least number of tokens required in addition to the tokens histogram to correlate nontrivially with the target. As shown experimentally and theoretically under additional assumptions, distributions with high globality cannot be learned efficiently. In particular, syllogisms cannot be composed on long chains. Furthermore, we show that (i) an agnostic scratchpad cannot help to break the globality barrier, (ii) an educated scratchpad can help if it breaks the globality at each step, however not all such scratchpads can generalize to out-of-distribution (OOD) samples, (iii) a notion of 'inductive scratchpad', that composes the prior information more efficiently, can both break the globality barrier and improve the OOD generalization. In particular, some inductive scratchpads can achieve length generalizations of up to 6x for some arithmetic tasks depending on the input formatting.
U-DiTs: Downsample Tokens in U-Shaped Diffusion Transformers
Diffusion Transformers (DiTs) introduce the transformer architecture to diffusion tasks for latent-space image generation. With an isotropic architecture that chains a series of transformer blocks, DiTs demonstrate competitive performance and good scalability; but meanwhile, the abandonment of U-Net by DiTs and their following improvements is worth rethinking. To this end, we conduct a simple toy experiment by comparing a U-Net architectured DiT with an isotropic one. It turns out that the U-Net architecture only gain a slight advantage amid the U-Net inductive bias, indicating potential redundancies within the U-Net-style DiT. Inspired by the discovery that U-Net backbone features are low-frequency-dominated, we perform token downsampling on the query-key-value tuple for self-attention and bring further improvements despite a considerable amount of reduction in computation. Based on self-attention with downsampled tokens, we propose a series of U-shaped DiTs (U-DiTs) in the paper and conduct extensive experiments to demonstrate the extraordinary performance of U-DiT models. The proposed U-DiT could outperform DiT-XL/2 with only 1/6 of its computation cost. Codes are available at https://github.com/YuchuanTian/U-DiT.
Efficient pre-training objectives for Transformers
The Transformer architecture deeply changed the natural language processing, outperforming all previous state-of-the-art models. However, well-known Transformer models like BERT, RoBERTa, and GPT-2 require a huge compute budget to create a high quality contextualised representation. In this paper, we study several efficient pre-training objectives for Transformers-based models. By testing these objectives on different tasks, we determine which of the ELECTRA model's new features is the most relevant. We confirm that Transformers pre-training is improved when the input does not contain masked tokens and that the usage of the whole output to compute the loss reduces training time. Moreover, inspired by ELECTRA, we study a model composed of two blocks; a discriminator and a simple generator based on a statistical model with no impact on the computational performances. Besides, we prove that eliminating the MASK token and considering the whole output during the loss computation are essential choices to improve performance. Furthermore, we show that it is possible to efficiently train BERT-like models using a discriminative approach as in ELECTRA but without a complex generator, which is expensive. Finally, we show that ELECTRA benefits heavily from a state-of-the-art hyper-parameters search.
Your Transformer May Not be as Powerful as You Expect
Relative Positional Encoding (RPE), which encodes the relative distance between any pair of tokens, is one of the most successful modifications to the original Transformer. As far as we know, theoretical understanding of the RPE-based Transformers is largely unexplored. In this work, we mathematically analyze the power of RPE-based Transformers regarding whether the model is capable of approximating any continuous sequence-to-sequence functions. One may naturally assume the answer is in the affirmative -- RPE-based Transformers are universal function approximators. However, we present a negative result by showing there exist continuous sequence-to-sequence functions that RPE-based Transformers cannot approximate no matter how deep and wide the neural network is. One key reason lies in that most RPEs are placed in the softmax attention that always generates a right stochastic matrix. This restricts the network from capturing positional information in the RPEs and limits its capacity. To overcome the problem and make the model more powerful, we first present sufficient conditions for RPE-based Transformers to achieve universal function approximation. With the theoretical guidance, we develop a novel attention module, called Universal RPE-based (URPE) Attention, which satisfies the conditions. Therefore, the corresponding URPE-based Transformers become universal function approximators. Extensive experiments covering typical architectures and tasks demonstrate that our model is parameter-efficient and can achieve superior performance to strong baselines in a wide range of applications. The code will be made publicly available at https://github.com/lsj2408/URPE.
X-Pruner: eXplainable Pruning for Vision Transformers
Recently vision transformer models have become prominent models for a range of tasks. These models, however, usually suffer from intensive computational costs and heavy memory requirements, making them impractical for deployment on edge platforms. Recent studies have proposed to prune transformers in an unexplainable manner, which overlook the relationship between internal units of the model and the target class, thereby leading to inferior performance. To alleviate this problem, we propose a novel explainable pruning framework dubbed X-Pruner, which is designed by considering the explainability of the pruning criterion. Specifically, to measure each prunable unit's contribution to predicting each target class, a novel explainability-aware mask is proposed and learned in an end-to-end manner. Then, to preserve the most informative units and learn the layer-wise pruning rate, we adaptively search the layer-wise threshold that differentiates between unpruned and pruned units based on their explainability-aware mask values. To verify and evaluate our method, we apply the X-Pruner on representative transformer models including the DeiT and Swin Transformer. Comprehensive simulation results demonstrate that the proposed X-Pruner outperforms the state-of-the-art black-box methods with significantly reduced computational costs and slight performance degradation.
Reducing Activation Recomputation in Large Transformer Models
Training large transformer models is one of the most important computational challenges of modern AI. In this paper, we show how to significantly accelerate training of large transformer models by reducing activation recomputation. Activation recomputation is commonly used to work around memory capacity constraints. Rather than storing activations for backpropagation, they are traditionally recomputed, which saves memory but adds redundant compute. In this work, we show most of this redundant compute is unnecessary because we can reduce memory consumption sufficiently without it. We present two novel yet very simple techniques: sequence parallelism and selective activation recomputation. In conjunction with tensor parallelism, these techniques almost eliminate the need to recompute activations. We evaluate our approach on language models up to one trillion parameters in scale and show that our method reduces activation memory by 5x, while reducing execution time overhead from activation recomputation by over 90%. For example, when training a 530B parameter GPT-3 style model on 2240 NVIDIA A100 GPUs, we achieve a Model Flops Utilization of 54.2%, which is 29% faster than the 42.1% we achieve using recomputation. Our implementation will be available in both Megatron-LM and NeMo-Megatron.
Emergent Mixture-of-Experts: Can Dense Pre-trained Transformers Benefit from Emergent Modular Structures?
Incorporating modular designs into neural networks demonstrates superior out-of-generalization, learning efficiency, etc. Existing modular neural networks are generally explicit because their modular architectures are pre-defined, and individual modules are expected to implement distinct functions. Conversely, recent works reveal that there exist implicit modular structures in standard pre-trained transformers, namely Emergent Modularity. They indicate that such modular structures exhibit during the early pre-training phase and are totally spontaneous. However, most transformers are still treated as monolithic models with their modular natures underutilized. Therefore, given the excellent properties of explicit modular architecture, we explore whether and how dense pre-trained transformers can benefit from emergent modular structures. To study this question, we construct Emergent Mixture-of-Experts (EMoE). Without introducing additional parameters, EMoE can be seen as the modular counterpart of the original model and can be effortlessly incorporated into downstream tuning. Extensive experiments (we tune 1785 models) on various downstream tasks (vision and language) and models (22M to1.5B) demonstrate that EMoE effectively boosts in-domain and out-of-domain generalization abilities. Further analysis and ablation study suggest that EMoE mitigates negative knowledge transfer and is robust to various configurations. Code is available at https://github.com/qiuzh20/EMoE
ReZero is All You Need: Fast Convergence at Large Depth
Deep networks often suffer from vanishing or exploding gradients due to inefficient signal propagation, leading to long training times or convergence difficulties. Various architecture designs, sophisticated residual-style networks, and initialization schemes have been shown to improve deep signal propagation. Recently, Pennington et al. used free probability theory to show that dynamical isometry plays an integral role in efficient deep learning. We show that the simplest architecture change of gating each residual connection using a single zero-initialized parameter satisfies initial dynamical isometry and outperforms more complex approaches. Although much simpler than its predecessors, this gate enables training thousands of fully connected layers with fast convergence and better test performance for ResNets trained on CIFAR-10. We apply this technique to language modeling and find that we can easily train 120-layer Transformers. When applied to 12 layer Transformers, it converges 56% faster on enwiki8.
Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.
MatFormer: Nested Transformer for Elastic Inference
Transformer models are deployed in a wide range of settings, from multi-accelerator clusters to standalone mobile phones. The diverse inference constraints in these scenarios necessitate practitioners to train foundation models such as PaLM 2, Llama, & ViTs as a series of models of varying sizes. Due to significant training costs, only a select few model sizes are trained and supported, limiting more fine-grained control over relevant tradeoffs, including latency, cost, and accuracy. This work introduces MatFormer, a nested Transformer architecture designed to offer elasticity in a variety of deployment constraints. Each Feed Forward Network (FFN) block of a MatFormer model is jointly optimized with a few nested smaller FFN blocks. This training procedure allows for the Mix'n'Match of model granularities across layers -- i.e., a trained universal MatFormer model enables extraction of hundreds of accurate smaller models, which were never explicitly optimized. We empirically demonstrate MatFormer's effectiveness across different model classes (decoders & encoders), modalities (language & vision), and scales (up to 2.6B parameters). We find that a 2.6B decoder-only MatFormer language model (MatLM) allows us to extract smaller models spanning from 1.5B to 2.6B, each exhibiting comparable validation loss and one-shot downstream evaluations to their independently trained counterparts. Furthermore, we observe that smaller encoders extracted from a universal MatFormer-based ViT (MatViT) encoder preserve the metric-space structure for adaptive large-scale retrieval. Finally, we showcase that speculative decoding with the accurate and consistent submodels extracted from MatFormer can further reduce inference latency.
Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding
The current large auto-regressive models can generate high-quality, high-resolution images, but these models require hundreds or even thousands of steps of next-token prediction during inference, resulting in substantial time consumption. In existing studies, Jacobi decoding, an iterative parallel decoding algorithm, has been used to accelerate the auto-regressive generation and can be executed without training. However, the Jacobi decoding relies on a deterministic criterion to determine the convergence of iterations. Thus, it works for greedy decoding but is incompatible with sampling-based decoding which is crucial for visual quality and diversity in the current auto-regressive text-to-image generation. In this paper, we propose a training-free probabilistic parallel decoding algorithm, Speculative Jacobi Decoding (SJD), to accelerate auto-regressive text-to-image generation. By introducing a probabilistic convergence criterion, our SJD accelerates the inference of auto-regressive text-to-image generation while maintaining the randomness in sampling-based token decoding and allowing the model to generate diverse images. Specifically, SJD facilitates the model to predict multiple tokens at each step and accepts tokens based on the probabilistic criterion, enabling the model to generate images with fewer steps than the conventional next-token-prediction paradigm. We also investigate the token initialization strategies that leverage the spatial locality of visual data to further improve the acceleration ratio under specific scenarios. We conduct experiments for our proposed SJD on multiple auto-regressive text-to-image generation models, showing the effectiveness of model acceleration without sacrificing the visual quality.
ETSformer: Exponential Smoothing Transformers for Time-series Forecasting
Transformers have been actively studied for time-series forecasting in recent years. While often showing promising results in various scenarios, traditional Transformers are not designed to fully exploit the characteristics of time-series data and thus suffer some fundamental limitations, e.g., they generally lack of decomposition capability and interpretability, and are neither effective nor efficient for long-term forecasting. In this paper, we propose ETSFormer, a novel time-series Transformer architecture, which exploits the principle of exponential smoothing in improving Transformers for time-series forecasting. In particular, inspired by the classical exponential smoothing methods in time-series forecasting, we propose the novel exponential smoothing attention (ESA) and frequency attention (FA) to replace the self-attention mechanism in vanilla Transformers, thus improving both accuracy and efficiency. Based on these, we redesign the Transformer architecture with modular decomposition blocks such that it can learn to decompose the time-series data into interpretable time-series components such as level, growth and seasonality. Extensive experiments on various time-series benchmarks validate the efficacy and advantages of the proposed method. Code is available at https://github.com/salesforce/ETSformer.
Pre-trained Large Language Models Use Fourier Features to Compute Addition
Pre-trained large language models (LLMs) exhibit impressive mathematical reasoning capabilities, yet how they compute basic arithmetic, such as addition, remains unclear. This paper shows that pre-trained LLMs add numbers using Fourier features -- dimensions in the hidden state that represent numbers via a set of features sparse in the frequency domain. Within the model, MLP and attention layers use Fourier features in complementary ways: MLP layers primarily approximate the magnitude of the answer using low-frequency features, while attention layers primarily perform modular addition (e.g., computing whether the answer is even or odd) using high-frequency features. Pre-training is crucial for this mechanism: models trained from scratch to add numbers only exploit low-frequency features, leading to lower accuracy. Introducing pre-trained token embeddings to a randomly initialized model rescues its performance. Overall, our analysis demonstrates that appropriate pre-trained representations (e.g., Fourier features) can unlock the ability of Transformers to learn precise mechanisms for algorithmic tasks.
Linear Self-Attention Approximation via Trainable Feedforward Kernel
In pursuit of faster computation, Efficient Transformers demonstrate an impressive variety of approaches -- models attaining sub-quadratic attention complexity can utilize a notion of sparsity or a low-rank approximation of inputs to reduce the number of attended keys; other ways to reduce complexity include locality-sensitive hashing, key pooling, additional memory to store information in compacted or hybridization with other architectures, such as CNN. Often based on a strong mathematical basis, kernelized approaches allow for the approximation of attention with linear complexity while retaining high accuracy. Therefore, in the present paper, we aim to expand the idea of trainable kernel methods to approximate the self-attention mechanism of the Transformer architecture.
Uncovering hidden geometry in Transformers via disentangling position and context
Transformers are widely used to extract semantic meanings from input tokens, yet they usually operate as black-box models. In this paper, we present a simple yet informative decomposition of hidden states (or embeddings) of trained transformers into interpretable components. For any layer, embedding vectors of input sequence samples are represented by a tensor h in R^{C times T times d}. Given embedding vector h_{c,t} in R^d at sequence position t le T in a sequence (or context) c le C, extracting the mean effects yields the decomposition \[ h_{c,t} = \mu + pos_t + ctx_c + resid_{c,t} \] where mu is the global mean vector, pos_t and ctx_c are the mean vectors across contexts and across positions respectively, and resid_{c,t} is the residual vector. For popular transformer architectures and diverse text datasets, empirically we find pervasive mathematical structure: (1) (pos_t)_{t} forms a low-dimensional, continuous, and often spiral shape across layers, (2) (ctx_c)_c shows clear cluster structure that falls into context topics, and (3) (pos_t)_{t} and (ctx_c)_c are mutually nearly orthogonal. We argue that smoothness is pervasive and beneficial to transformers trained on languages, and our decomposition leads to improved model interpretability.
LMCodec: A Low Bitrate Speech Codec With Causal Transformer Models
We introduce LMCodec, a causal neural speech codec that provides high quality audio at very low bitrates. The backbone of the system is a causal convolutional codec that encodes audio into a hierarchy of coarse-to-fine tokens using residual vector quantization. LMCodec trains a Transformer language model to predict the fine tokens from the coarse ones in a generative fashion, allowing for the transmission of fewer codes. A second Transformer predicts the uncertainty of the next codes given the past transmitted codes, and is used to perform conditional entropy coding. A MUSHRA subjective test was conducted and shows that the quality is comparable to reference codecs at higher bitrates. Example audio is available at https://mjenrungrot.github.io/chrome-media-audio-papers/publications/lmcodec.
Protoformer: Embedding Prototypes for Transformers
Transformers have been widely applied in text classification. Unfortunately, real-world data contain anomalies and noisy labels that cause challenges for state-of-art Transformers. This paper proposes Protoformer, a novel self-learning framework for Transformers that can leverage problematic samples for text classification. Protoformer features a selection mechanism for embedding samples that allows us to efficiently extract and utilize anomalies prototypes and difficult class prototypes. We demonstrated such capabilities on datasets with diverse textual structures (e.g., Twitter, IMDB, ArXiv). We also applied the framework to several models. The results indicate that Protoformer can improve current Transformers in various empirical settings.
Ultra Fast Transformers on FPGAs for Particle Physics Experiments
This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the hls4ml tool. Given the demonstrated effectiveness of transformer models in addressing a wide range of problems, their application in experimental triggers within particle physics becomes a subject of significant interest. In this work, we have implemented critical components of a transformer model, such as multi-head attention and softmax layers. To evaluate the effectiveness of our implementation, we have focused on a particle physics jet flavor tagging problem, employing a public dataset. We recorded latency under 2 mus on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at the CERN Large Hadron Collider experiments.
Token Dropping for Efficient BERT Pretraining
Transformer-based models generally allocate the same amount of computation for each token in a given sequence. We develop a simple but effective "token dropping" method to accelerate the pretraining of transformer models, such as BERT, without degrading its performance on downstream tasks. In short, we drop unimportant tokens starting from an intermediate layer in the model to make the model focus on important tokens; the dropped tokens are later picked up by the last layer of the model so that the model still produces full-length sequences. We leverage the already built-in masked language modeling (MLM) loss to identify unimportant tokens with practically no computational overhead. In our experiments, this simple approach reduces the pretraining cost of BERT by 25% while achieving similar overall fine-tuning performance on standard downstream tasks.
Diffscaler: Enhancing the Generative Prowess of Diffusion Transformers
Recently, diffusion transformers have gained wide attention with its excellent performance in text-to-image and text-to-vidoe models, emphasizing the need for transformers as backbone for diffusion models. Transformer-based models have shown better generalization capability compared to CNN-based models for general vision tasks. However, much less has been explored in the existing literature regarding the capabilities of transformer-based diffusion backbones and expanding their generative prowess to other datasets. This paper focuses on enabling a single pre-trained diffusion transformer model to scale across multiple datasets swiftly, allowing for the completion of diverse generative tasks using just one model. To this end, we propose DiffScaler, an efficient scaling strategy for diffusion models where we train a minimal amount of parameters to adapt to different tasks. In particular, we learn task-specific transformations at each layer by incorporating the ability to utilize the learned subspaces of the pre-trained model, as well as the ability to learn additional task-specific subspaces, which may be absent in the pre-training dataset. As these parameters are independent, a single diffusion model with these task-specific parameters can be used to perform multiple tasks simultaneously. Moreover, we find that transformer-based diffusion models significantly outperform CNN-based diffusion models methods while performing fine-tuning over smaller datasets. We perform experiments on four unconditional image generation datasets. We show that using our proposed method, a single pre-trained model can scale up to perform these conditional and unconditional tasks, respectively, with minimal parameter tuning while performing as close as fine-tuning an entire diffusion model for that particular task.
Graph Positional Encoding via Random Feature Propagation
Two main families of node feature augmentation schemes have been explored for enhancing GNNs: random features and spectral positional encoding. Surprisingly, however, there is still no clear understanding of the relation between these two augmentation schemes. Here we propose a novel family of positional encoding schemes which draws a link between the above two approaches and improves over both. The new approach, named Random Feature Propagation (RFP), is inspired by the power iteration method and its generalizations. It concatenates several intermediate steps of an iterative algorithm for computing the dominant eigenvectors of a propagation matrix, starting from random node features. Notably, these propagation steps are based on graph-dependent propagation operators that can be either predefined or learned. We explore the theoretical and empirical benefits of RFP. First, we provide theoretical justifications for using random features, for incorporating early propagation steps, and for using multiple random initializations. Then, we empirically demonstrate that RFP significantly outperforms both spectral PE and random features in multiple node classification and graph classification benchmarks.
Transformers Get Stable: An End-to-End Signal Propagation Theory for Language Models
In spite of their huge success, transformer models remain difficult to scale in depth. In this work, we develop a unified signal propagation theory and provide formulae that govern the moments of the forward and backward signal through the transformer model. Our framework can be used to understand and mitigate vanishing/exploding gradients, rank collapse, and instability associated with high attention scores. We also propose DeepScaleLM, an initialization and scaling scheme that conserves unit output/gradient moments throughout the model, enabling the training of very deep models with 100s of layers. We find that transformer models could be much deeper - our deep models with fewer parameters outperform shallow models in Language Modeling, Speech Translation, and Image Classification, across Encoder-only, Decoder-only and Encoder-Decoder variants, for both Pre-LN and Post-LN transformers, for multiple datasets and model sizes. These improvements also translate into improved performance on downstream Question Answering tasks and improved robustness for image classification.