- In-Context Learning for Preserving Patient Privacy: A Framework for Synthesizing Realistic Patient Portal Messages Since the COVID-19 pandemic, clinicians have seen a large and sustained influx in patient portal messages, significantly contributing to clinician burnout. To the best of our knowledge, there are no large-scale public patient portal messages corpora researchers can use to build tools to optimize clinician portal workflows. Informed by our ongoing work with a regional hospital, this study introduces an LLM-powered framework for configurable and realistic patient portal message generation. Our approach leverages few-shot grounded text generation, requiring only a small number of de-identified patient portal messages to help LLMs better match the true style and tone of real data. Clinical experts in our team deem this framework as HIPAA-friendly, unlike existing privacy-preserving approaches to synthetic text generation which cannot guarantee all sensitive attributes will be protected. Through extensive quantitative and human evaluation, we show that our framework produces data of higher quality than comparable generation methods as well as all related datasets. We believe this work provides a path forward for (i) the release of large-scale synthetic patient message datasets that are stylistically similar to ground-truth samples and (ii) HIPAA-friendly data generation which requires minimal human de-identification efforts. 4 authors · Nov 10, 2024
5 The impact of using an AI chatbot to respond to patient messages Documentation burden is a major contributor to clinician burnout, which is rising nationally and is an urgent threat to our ability to care for patients. Artificial intelligence (AI) chatbots, such as ChatGPT, could reduce clinician burden by assisting with documentation. Although many hospitals are actively integrating such systems into electronic medical record systems, AI chatbots utility and impact on clinical decision-making have not been studied for this intended use. We are the first to examine the utility of large language models in assisting clinicians draft responses to patient questions. In our two-stage cross-sectional study, 6 oncologists responded to 100 realistic synthetic cancer patient scenarios and portal messages developed to reflect common medical situations, first manually, then with AI assistance. We find AI-assisted responses were longer, less readable, but provided acceptable drafts without edits 58% of time. AI assistance improved efficiency 77% of time, with low harm risk (82% safe). However, 7.7% unedited AI responses could severely harm. In 31% cases, physicians thought AI drafts were human-written. AI assistance led to more patient education recommendations, fewer clinical actions than manual responses. Results show promise for AI to improve clinician efficiency and patient care through assisting documentation, if used judiciously. Monitoring model outputs and human-AI interaction remains crucial for safe implementation. 15 authors · Oct 26, 2023
15 System Message Generation for User Preferences using Open-Source Models System messages play a crucial role in interactions with large language models (LLMs), often serving as prompts to initiate conversations. Through system messages, users can assign specific roles, perform intended tasks, incorporate background information, specify various output formats and communication styles. Despite such versatility, publicly available data are often lack system messages and subject to strict license constraints in the industry field. Manual labeling of publicly available data with system messages that align with user instructions demands significant resources. In view of such challenges, our work introduces SysGen, a pipeline for generating system messages with better aligned assistant responses from the supervised fine-tuning dataset without system messages. Training on SysGen data has demonstrated substantial improvements in the alignment of model responses with system messages and user instructions, as demonstrated across various open-source models on the Multifacet benchmark, while maintaining minimal impact on other unseen benchmarks such as Open LLM Leaderboard 2. Our qualitative analysis highlights the importance of diverse system messages to ensure better adaptability across different contexts. 5 authors · Feb 16 2
- SysBench: Can Large Language Models Follow System Messages? Large Language Models (LLMs) have become instrumental across various applications, with the customization of these models to specific scenarios becoming increasingly critical. System message, a fundamental component of LLMs, is consist of carefully crafted instructions that guide the behavior of model to meet intended goals. Despite the recognized potential of system messages to optimize AI-driven solutions, there is a notable absence of a comprehensive benchmark for evaluating how well different LLMs follow these system messages. To fill this gap, we introduce SysBench, a benchmark that systematically analyzes system message following ability in terms of three challenging aspects: constraint complexity, instruction misalignment and multi-turn stability. In order to enable effective evaluation, SysBench constructs multi-turn user conversations covering various interaction relationships, based on six common types of constraints from system messages in real-world scenarios. Our dataset contains 500 system messages from various domains, each paired with 5 turns of user conversations, which have been manually formulated and checked to guarantee high quality. SysBench provides extensive evaluation across various LLMs, measuring their ability to follow specified constraints given in system messages. The results highlight both the strengths and weaknesses of existing models, offering key insights and directions for future research. The open source library SysBench is available at https://github.com/PKU-Baichuan-MLSystemLab/SysBench. 12 authors · Aug 20, 2024