new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 13

GeoPixel: Pixel Grounding Large Multimodal Model in Remote Sensing

Recent advances in large multimodal models (LMMs) have recognized fine-grained grounding as an imperative factor of visual understanding and dialogue. However, the benefits of such representation in LMMs are limited to the natural image domain, and these models perform poorly for remote sensing (RS). The distinct overhead viewpoint, scale variation, and presence of small objects in high-resolution RS imagery present a unique challenge in region-level comprehension. Moreover, the development of the grounding conversation capability of LMMs within RS is hindered by the lack of granular, RS domain-specific grounded data. Addressing these limitations, we propose GeoPixel - the first end-to-end high resolution RS-LMM that supports pixel-level grounding. This capability allows fine-grained visual perception by generating interleaved masks in conversation. GeoPixel supports up to 4K HD resolution in any aspect ratio, ideal for high-precision RS image analysis. To support the grounded conversation generation (GCG) in RS imagery, we curate a visually grounded dataset GeoPixelD through a semi-automated pipeline that utilizes set-of-marks prompting and spatial priors tailored for RS data to methodically control the data generation process. GeoPixel demonstrates superior performance in pixel-level comprehension, surpassing existing LMMs in both single-target and multi-target segmentation tasks. Our methodological ablation studies validate the effectiveness of each component in the overall architecture. Our code and data will be publicly released.

Towards a Multimodal Large Language Model with Pixel-Level Insight for Biomedicine

In recent years, Multimodal Large Language Models (MLLM) have achieved notable advancements, demonstrating the feasibility of developing an intelligent biomedical assistant. However, current biomedical MLLMs predominantly focus on image-level understanding and restrict interactions to textual commands, thus limiting their capability boundaries and the flexibility of usage. In this paper, we introduce a novel end-to-end multimodal large language model for the biomedical domain, named MedPLIB, which possesses pixel-level understanding. Excitingly, it supports visual question answering (VQA), arbitrary pixel-level prompts (points, bounding boxes, and free-form shapes), and pixel-level grounding. We propose a novel Mixture-of-Experts (MoE) multi-stage training strategy, which divides MoE into separate training phases for a visual-language expert model and a pixel-grounding expert model, followed by fine-tuning using MoE. This strategy effectively coordinates multitask learning while maintaining the computational cost at inference equivalent to that of a single expert model. To advance the research of biomedical MLLMs, we introduce the Medical Complex Vision Question Answering Dataset (MeCoVQA), which comprises an array of 8 modalities for complex medical imaging question answering and image region understanding. Experimental results indicate that MedPLIB has achieved state-of-the-art outcomes across multiple medical visual language tasks. More importantly, in zero-shot evaluations for the pixel grounding task, MedPLIB leads the best small and large models by margins of 19.7 and 15.6 respectively on the mDice metric. The codes, data, and model checkpoints will be made publicly available at https://github.com/ShawnHuang497/MedPLIB.

GeoGround: A Unified Large Vision-Language Model. for Remote Sensing Visual Grounding

Remote sensing (RS) visual grounding aims to use natural language expression to locate specific objects (in the form of the bounding box or segmentation mask) in RS images, enhancing human interaction with intelligent RS interpretation systems. Early research in this area was primarily based on horizontal bounding boxes (HBBs), but as more diverse RS datasets have become available, tasks involving oriented bounding boxes (OBBs) and segmentation masks have emerged. In practical applications, different targets require different grounding types: HBB can localize an object's position, OBB provides its orientation, and mask depicts its shape. However, existing specialized methods are typically tailored to a single type of RS visual grounding task and are hard to generalize across tasks. In contrast, large vision-language models (VLMs) exhibit powerful multi-task learning capabilities but struggle to handle dense prediction tasks like segmentation. This paper proposes GeoGround, a novel framework that unifies support for HBB, OBB, and mask RS visual grounding tasks, allowing flexible output selection. Rather than customizing the architecture of VLM, our work aims to elegantly support pixel-level visual grounding output through the Text-Mask technique. We define prompt-assisted and geometry-guided learning to enhance consistency across different signals. To support model training, we present refGeo, a large-scale RS visual instruction-following dataset containing 161k image-text pairs. Experimental results show that GeoGround demonstrates strong performance across four RS visual grounding tasks, matching or surpassing the performance of specialized methods on multiple benchmarks. Code available at https://github.com/zytx121/GeoGround

GeoPix: Multi-Modal Large Language Model for Pixel-level Image Understanding in Remote Sensing

Multi-modal large language models (MLLMs) have achieved remarkable success in image- and region-level remote sensing (RS) image understanding tasks, such as image captioning, visual question answering, and visual grounding. However, existing RS MLLMs lack the pixel-level dialogue capability, which involves responding to user instructions with segmentation masks for specific instances. In this paper, we propose GeoPix, a RS MLLM that extends image understanding capabilities to the pixel level. This is achieved by equipping the MLLM with a mask predictor, which transforms visual features from the vision encoder into masks conditioned on the LLM's segmentation token embeddings. To facilitate the segmentation of multi-scale objects in RS imagery, a class-wise learnable memory module is integrated into the mask predictor to capture and store class-wise geo-context at the instance level across the entire dataset. In addition, to address the absence of large-scale datasets for training pixel-level RS MLLMs, we construct the GeoPixInstruct dataset, comprising 65,463 images and 140,412 instances, with each instance annotated with text descriptions, bounding boxes, and masks. Furthermore, we develop a two-stage training strategy to balance the distinct requirements of text generation and masks prediction in multi-modal multi-task optimization. Extensive experiments verify the effectiveness and superiority of GeoPix in pixel-level segmentation tasks, while also maintaining competitive performance in image- and region-level benchmarks.

INTRA: Interaction Relationship-aware Weakly Supervised Affordance Grounding

Affordance denotes the potential interactions inherent in objects. The perception of affordance can enable intelligent agents to navigate and interact with new environments efficiently. Weakly supervised affordance grounding teaches agents the concept of affordance without costly pixel-level annotations, but with exocentric images. Although recent advances in weakly supervised affordance grounding yielded promising results, there remain challenges including the requirement for paired exocentric and egocentric image dataset, and the complexity in grounding diverse affordances for a single object. To address them, we propose INTeraction Relationship-aware weakly supervised Affordance grounding (INTRA). Unlike prior arts, INTRA recasts this problem as representation learning to identify unique features of interactions through contrastive learning with exocentric images only, eliminating the need for paired datasets. Moreover, we leverage vision-language model embeddings for performing affordance grounding flexibly with any text, designing text-conditioned affordance map generation to reflect interaction relationship for contrastive learning and enhancing robustness with our text synonym augmentation. Our method outperformed prior arts on diverse datasets such as AGD20K, IIT-AFF, CAD and UMD. Additionally, experimental results demonstrate that our method has remarkable domain scalability for synthesized images / illustrations and is capable of performing affordance grounding for novel interactions and objects.

SegVG: Transferring Object Bounding Box to Segmentation for Visual Grounding

Different from Object Detection, Visual Grounding deals with detecting a bounding box for each text-image pair. This one box for each text-image data provides sparse supervision signals. Although previous works achieve impressive results, their passive utilization of annotation, i.e. the sole use of the box annotation as regression ground truth, results in a suboptimal performance. In this paper, we present SegVG, a novel method transfers the box-level annotation as Segmentation signals to provide an additional pixel-level supervision for Visual Grounding. Specifically, we propose the Multi-layer Multi-task Encoder-Decoder as the target grounding stage, where we learn a regression query and multiple segmentation queries to ground the target by regression and segmentation of the box in each decoding layer, respectively. This approach allows us to iteratively exploit the annotation as signals for both box-level regression and pixel-level segmentation. Moreover, as the backbones are typically initialized by pretrained parameters learned from unimodal tasks and the queries for both regression and segmentation are static learnable embeddings, a domain discrepancy remains among these three types of features, which impairs subsequent target grounding. To mitigate this discrepancy, we introduce the Triple Alignment module, where the query, text, and vision tokens are triangularly updated to share the same space by triple attention mechanism. Extensive experiments on five widely used datasets validate our state-of-the-art (SOTA) performance.

Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents

Multimodal large language models (MLLMs) are transforming the capabilities of graphical user interface (GUI) agents, facilitating their transition from controlled simulations to complex, real-world applications across various platforms. However, the effectiveness of these agents hinges on the robustness of their grounding capability. Current GUI agents predominantly utilize text-based representations such as HTML or accessibility trees, which, despite their utility, often introduce noise, incompleteness, and increased computational overhead. In this paper, we advocate a human-like embodiment for GUI agents that perceive the environment entirely visually and directly take pixel-level operations on the GUI. The key is visual grounding models that can accurately map diverse referring expressions of GUI elements to their coordinates on the GUI across different platforms. We show that a simple recipe, which includes web-based synthetic data and slight adaptation of the LLaVA architecture, is surprisingly effective for training such visual grounding models. We collect the largest dataset for GUI visual grounding so far, containing 10M GUI elements and their referring expressions over 1.3M screenshots, and use it to train UGround, a strong universal visual grounding model for GUI agents. Empirical results on six benchmarks spanning three categories (grounding, offline agent, and online agent) show that 1) UGround substantially outperforms existing visual grounding models for GUI agents, by up to 20% absolute, and 2) agents with UGround outperform state-of-the-art agents, despite the fact that existing agents use additional text-based input while ours only uses visual perception. These results provide strong support for the feasibility and promises of GUI agents that navigate the digital world as humans do.

GLaMM: Pixel Grounding Large Multimodal Model

Large Multimodal Models (LMMs) extend Large Language Models to the vision domain. Initial efforts towards LMMs used holistic images and text prompts to generate ungrounded textual responses. Very recently, region-level LMMs have been used to generate visually grounded responses. However, they are limited to only referring a single object category at a time, require users to specify the regions in inputs, or cannot offer dense pixel-wise object grounding. In this work, we present Grounding LMM (GLaMM), the first model that can generate natural language responses seamlessly intertwined with corresponding object segmentation masks. GLaMM not only grounds objects appearing in the conversations but is flexible enough to accept both textual and optional visual prompts (region of interest) as input. This empowers users to interact with the model at various levels of granularity, both in textual and visual domains. Due to the lack of standard benchmarks for the novel setting of generating visually grounded detailed conversations, we introduce a comprehensive evaluation protocol with our curated grounded conversations. Our proposed Grounded Conversation Generation (GCG) task requires densely grounded concepts in natural scenes at a large-scale. To this end, we propose a densely annotated Grounding-anything Dataset (GranD) using our proposed automated annotation pipeline that encompasses 7.5M unique concepts grounded in a total of 810M regions available with segmentation masks. Besides GCG, GLaMM also performs effectively on several downstream tasks e.g., referring expression segmentation, image and region-level captioning and vision-language conversations. Project Page: https://mbzuai-oryx.github.io/groundingLMM.

Text-guided Sparse Voxel Pruning for Efficient 3D Visual Grounding

In this paper, we propose an efficient multi-level convolution architecture for 3D visual grounding. Conventional methods are difficult to meet the requirements of real-time inference due to the two-stage or point-based architecture. Inspired by the success of multi-level fully sparse convolutional architecture in 3D object detection, we aim to build a new 3D visual grounding framework following this technical route. However, as in 3D visual grounding task the 3D scene representation should be deeply interacted with text features, sparse convolution-based architecture is inefficient for this interaction due to the large amount of voxel features. To this end, we propose text-guided pruning (TGP) and completion-based addition (CBA) to deeply fuse 3D scene representation and text features in an efficient way by gradual region pruning and target completion. Specifically, TGP iteratively sparsifies the 3D scene representation and thus efficiently interacts the voxel features with text features by cross-attention. To mitigate the affect of pruning on delicate geometric information, CBA adaptively fixes the over-pruned region by voxel completion with negligible computational overhead. Compared with previous single-stage methods, our method achieves top inference speed and surpasses previous fastest method by 100\% FPS. Our method also achieves state-of-the-art accuracy even compared with two-stage methods, with +1.13 lead of [email protected] on ScanRefer, and +2.6 and +3.2 leads on NR3D and SR3D respectively. The code is available at https://github.com/GWxuan/TSP3D{https://github.com/GWxuan/TSP3D}.

GroundVLP: Harnessing Zero-shot Visual Grounding from Vision-Language Pre-training and Open-Vocabulary Object Detection

Visual grounding, a crucial vision-language task involving the understanding of the visual context based on the query expression, necessitates the model to capture the interactions between objects, as well as various spatial and attribute information. However, the annotation data of visual grounding task is limited due to its time-consuming and labor-intensive annotation process, resulting in the trained models being constrained from generalizing its capability to a broader domain. To address this challenge, we propose GroundVLP, a simple yet effective zero-shot method that harnesses visual grounding ability from the existing models trained from image-text pairs and pure object detection data, both of which are more conveniently obtainable and offer a broader domain compared to visual grounding annotation data. GroundVLP proposes a fusion mechanism that combines the heatmap from GradCAM and the object proposals of open-vocabulary detectors. We demonstrate that the proposed method significantly outperforms other zero-shot methods on RefCOCO/+/g datasets, surpassing prior zero-shot state-of-the-art by approximately 28\% on the test split of RefCOCO and RefCOCO+. Furthermore, GroundVLP performs comparably to or even better than some non-VLP-based supervised models on the Flickr30k entities dataset. Our code is available at https://github.com/om-ai-lab/GroundVLP.

Parallel Vertex Diffusion for Unified Visual Grounding

Unified visual grounding pursues a simple and generic technical route to leverage multi-task data with less task-specific design. The most advanced methods typically present boxes and masks as vertex sequences to model referring detection and segmentation as an autoregressive sequential vertex generation paradigm. However, generating high-dimensional vertex sequences sequentially is error-prone because the upstream of the sequence remains static and cannot be refined based on downstream vertex information, even if there is a significant location gap. Besides, with limited vertexes, the inferior fitting of objects with complex contours restricts the performance upper bound. To deal with this dilemma, we propose a parallel vertex generation paradigm for superior high-dimension scalability with a diffusion model by simply modifying the noise dimension. An intuitive materialization of our paradigm is Parallel Vertex Diffusion (PVD) to directly set vertex coordinates as the generation target and use a diffusion model to train and infer. We claim that it has two flaws: (1) unnormalized coordinate caused a high variance of loss value; (2) the original training objective of PVD only considers point consistency but ignores geometry consistency. To solve the first flaw, Center Anchor Mechanism (CAM) is designed to convert coordinates as normalized offset values to stabilize the training loss value. For the second flaw, Angle summation loss (ASL) is designed to constrain the geometry difference of prediction and ground truth vertexes for geometry-level consistency. Empirical results show that our PVD achieves state-of-the-art in both referring detection and segmentation, and our paradigm is more scalable and efficient than sequential vertex generation with high-dimension data.

Q-Ground: Image Quality Grounding with Large Multi-modality Models

Recent advances of large multi-modality models (LMM) have greatly improved the ability of image quality assessment (IQA) method to evaluate and explain the quality of visual content. However, these advancements are mostly focused on overall quality assessment, and the detailed examination of local quality, which is crucial for comprehensive visual understanding, is still largely unexplored. In this work, we introduce Q-Ground, the first framework aimed at tackling fine-scale visual quality grounding by combining large multi-modality models with detailed visual quality analysis. Central to our contribution is the introduction of the QGround-100K dataset, a novel resource containing 100k triplets of (image, quality text, distortion segmentation) to facilitate deep investigations into visual quality. The dataset comprises two parts: one with human-labeled annotations for accurate quality assessment, and another labeled automatically by LMMs such as GPT4V, which helps improve the robustness of model training while also reducing the costs of data collection. With the QGround-100K dataset, we propose a LMM-based method equipped with multi-scale feature learning to learn models capable of performing both image quality answering and distortion segmentation based on text prompts. This dual-capability approach not only refines the model's understanding of region-aware image quality but also enables it to interactively respond to complex, text-based queries about image quality and specific distortions. Q-Ground takes a step towards sophisticated visual quality analysis in a finer scale, establishing a new benchmark for future research in the area. Codes and dataset are available at https://github.com/Q-Future/Q-Ground.

HiVG: Hierarchical Multimodal Fine-grained Modulation for Visual Grounding

Visual grounding, which aims to ground a visual region via natural language, is a task that heavily relies on cross-modal alignment. Existing works utilized uni-modal pre-trained models to transfer visual/linguistic knowledge separately while ignoring the multimodal corresponding information. Motivated by recent advancements in contrastive language-image pre-training and low-rank adaptation (LoRA) methods, we aim to solve the grounding task based on multimodal pre-training. However, there exists significant task gaps between pre-training and grounding. Therefore, to address these gaps, we propose a concise and efficient hierarchical multimodal fine-grained modulation framework, namely HiVG. Specifically, HiVG consists of a multi-layer adaptive cross-modal bridge and a hierarchical multimodal low-rank adaptation (Hi LoRA) paradigm. The cross-modal bridge can address the inconsistency between visual features and those required for grounding, and establish a connection between multi-level visual and text features. Hi LoRA prevents the accumulation of perceptual errors by adapting the cross-modal features from shallow to deep layers in a hierarchical manner. Experimental results on five datasets demonstrate the effectiveness of our approach and showcase the significant grounding capabilities as well as promising energy efficiency advantages. The project page: https://github.com/linhuixiao/HiVG.

Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model

The ability of large language models (LLMs) to process visual inputs has given rise to general-purpose vision systems, unifying various vision-language (VL) tasks by instruction tuning. However, due to the enormous diversity in input-output formats in the vision domain, existing general-purpose models fail to successfully integrate segmentation and multi-image inputs with coarse-level tasks into a single framework. In this work, we introduce VistaLLM, a powerful visual system that addresses coarse- and fine-grained VL tasks over single and multiple input images using a unified framework. VistaLLM utilizes an instruction-guided image tokenizer that filters global embeddings using task descriptions to extract compressed and refined features from numerous images. Moreover, VistaLLM employs a gradient-aware adaptive sampling technique to represent binary segmentation masks as sequences, significantly improving over previously used uniform sampling. To bolster the desired capability of VistaLLM, we curate CoinIt, a comprehensive coarse-to-fine instruction tuning dataset with 6.8M samples. We also address the lack of multi-image grounding datasets by introducing a novel task, AttCoSeg (Attribute-level Co-Segmentation), which boosts the model's reasoning and grounding capability over multiple input images. Extensive experiments on a wide range of V- and VL tasks demonstrate the effectiveness of VistaLLM by achieving consistent state-of-the-art performance over strong baselines across all downstream tasks. Our project page can be found at https://shramanpramanick.github.io/VistaLLM/.

SceneVerse: Scaling 3D Vision-Language Learning for Grounded Scene Understanding

3D vision-language grounding, which focuses on aligning language with the 3D physical environment, stands as a cornerstone in the development of embodied agents. In comparison to recent advancements in the 2D domain, grounding language in 3D scenes faces several significant challenges: (i) the inherent complexity of 3D scenes due to the diverse object configurations, their rich attributes, and intricate relationships; (ii) the scarcity of paired 3D vision-language data to support grounded learning; and (iii) the absence of a unified learning framework to distill knowledge from grounded 3D data. In this work, we aim to address these three major challenges in 3D vision-language by examining the potential of systematically upscaling 3D vision-language learning in indoor environments. We introduce the first million-scale 3D vision-language dataset, SceneVerse, encompassing about 68K 3D indoor scenes and comprising 2.5M vision-language pairs derived from both human annotations and our scalable scene-graph-based generation approach. We demonstrate that this scaling allows for a unified pre-training framework, Grounded Pre-training for Scenes (GPS), for 3D vision-language learning. Through extensive experiments, we showcase the effectiveness of GPS by achieving state-of-the-art performance on all existing 3D visual grounding benchmarks. The vast potential of SceneVerse and GPS is unveiled through zero-shot transfer experiments in the challenging 3D vision-language tasks. Project website: https://scene-verse.github.io .

PixelWorld: Towards Perceiving Everything as Pixels

Existing foundation models typically process visual input as pixels and textual input as tokens, a paradigm that contrasts with human perception, where both modalities are processed in a unified manner. With the rise of embodied and agentic AI, where inputs primarily come from camera pixels, the need for a unified perception framework becomes increasingly evident. In this paper, we propose to unify all modalities (text, tables, code, diagrams, images, etc) as pixel inputs, i.e. "Perceive Everything as Pixels" (PEAP). We introduce PixelWorld, a novel evaluation suite that unifies all the mentioned modalities into pixel space to gauge the existing models' performance. Our findings show that (1) PEAP outperforms baseline with token-based input in multimodal datasets, benefiting from unified input for better disambiguation, (2) significant declines in reasoning and coding capabilities across all models when processing pixel-based input, underscoring the need to enhance foundation models' perceptual abilities, (3) larger models can maintain strong performance on non-reasoning tasks under PEAP, while smaller models like Phi-3.5-V suffer significant performance degradation, (4) the attention pattern of PEAP is highly aligned with text token input, (5) PEAP can be accelerated significantly by exploiting the spatial sparsity. We conclude that the existing frontier models are competent in pixel perception, however, there is still headroom for improvement. Our code, dataset will be released upon acceptance.

Accelerating Image Super-Resolution Networks with Pixel-Level Classification

In recent times, the need for effective super-resolution (SR) techniques has surged, especially for large-scale images ranging 2K to 8K resolutions. For DNN-based SISR, decomposing images into overlapping patches is typically necessary due to computational constraints. In such patch-decomposing scheme, one can allocate computational resources differently based on each patch's difficulty to further improve efficiency while maintaining SR performance. However, this approach has a limitation: computational resources is uniformly allocated within a patch, leading to lower efficiency when the patch contain pixels with varying levels of restoration difficulty. To address the issue, we propose the Pixel-level Classifier for Single Image Super-Resolution (PCSR), a novel method designed to distribute computational resources adaptively at the pixel level. A PCSR model comprises a backbone, a pixel-level classifier, and a set of pixel-level upsamplers with varying capacities. The pixel-level classifier assigns each pixel to an appropriate upsampler based on its restoration difficulty, thereby optimizing computational resource usage. Our method allows for performance and computational cost balance during inference without re-training. Our experiments demonstrate PCSR's advantage over existing patch-distributing methods in PSNR-FLOP trade-offs across different backbone models and benchmarks. The code is available at https://github.com/3587jjh/PCSR.

CoT3DRef: Chain-of-Thoughts Data-Efficient 3D Visual Grounding

3D visual grounding is the ability to localize objects in 3D scenes conditioned by utterances. Most existing methods devote the referring head to localize the referred object directly, causing failure in complex scenarios. In addition, it does not illustrate how and why the network reaches the final decision. In this paper, we address this question Can we design an interpretable 3D visual grounding framework that has the potential to mimic the human perception system?. To this end, we formulate the 3D visual grounding problem as a sequence-to-sequence task by first predicting a chain of anchors and then the final target. Interpretability not only improves the overall performance but also helps us identify failure cases. Following the chain of thoughts approach enables us to decompose the referring task into interpretable intermediate steps, boosting the performance and making our framework extremely data-efficient. Moreover, our proposed framework can be easily integrated into any existing architecture. We validate our approach through comprehensive experiments on the Nr3D, Sr3D, and Scanrefer benchmarks and show consistent performance gains compared to existing methods without requiring manually annotated data. Furthermore, our proposed framework, dubbed CoT3DRef, is significantly data-efficient, whereas on the Sr3D dataset, when trained only on 10% of the data, we match the SOTA performance that trained on the entire data.

ConnNet: A Long-Range Relation-Aware Pixel-Connectivity Network for Salient Segmentation

Salient segmentation aims to segment out attention-grabbing regions, a critical yet challenging task and the foundation of many high-level computer vision applications. It requires semantic-aware grouping of pixels into salient regions and benefits from the utilization of global multi-scale contexts to achieve good local reasoning. Previous works often address it as two-class segmentation problems utilizing complicated multi-step procedures including refinement networks and complex graphical models. We argue that semantic salient segmentation can instead be effectively resolved by reformulating it as a simple yet intuitive pixel-pair based connectivity prediction task. Following the intuition that salient objects can be naturally grouped via semantic-aware connectivity between neighboring pixels, we propose a pure Connectivity Net (ConnNet). ConnNet predicts connectivity probabilities of each pixel with its neighboring pixels by leveraging multi-level cascade contexts embedded in the image and long-range pixel relations. We investigate our approach on two tasks, namely salient object segmentation and salient instance-level segmentation, and illustrate that consistent improvements can be obtained by modeling these tasks as connectivity instead of binary segmentation tasks for a variety of network architectures. We achieve state-of-the-art performance, outperforming or being comparable to existing approaches while reducing inference time due to our less complex approach.

When Semantic Segmentation Meets Frequency Aliasing

Despite recent advancements in semantic segmentation, where and what pixels are hard to segment remains largely unexplored. Existing research only separates an image into easy and hard regions and empirically observes the latter are associated with object boundaries. In this paper, we conduct a comprehensive analysis of hard pixel errors, categorizing them into three types: false responses, merging mistakes, and displacements. Our findings reveal a quantitative association between hard pixels and aliasing, which is distortion caused by the overlapping of frequency components in the Fourier domain during downsampling. To identify the frequencies responsible for aliasing, we propose using the equivalent sampling rate to calculate the Nyquist frequency, which marks the threshold for aliasing. Then, we introduce the aliasing score as a metric to quantify the extent of aliasing. While positively correlated with the proposed aliasing score, three types of hard pixels exhibit different patterns. Here, we propose two novel de-aliasing filter (DAF) and frequency mixing (FreqMix) modules to alleviate aliasing degradation by accurately removing or adjusting frequencies higher than the Nyquist frequency. The DAF precisely removes the frequencies responsible for aliasing before downsampling, while the FreqMix dynamically selects high-frequency components within the encoder block. Experimental results demonstrate consistent improvements in semantic segmentation and low-light instance segmentation tasks. The code is available at: https://github.com/Linwei-Chen/Seg-Aliasing.

Intrinsic Image Decomposition via Ordinal Shading

Intrinsic decomposition is a fundamental mid-level vision problem that plays a crucial role in various inverse rendering and computational photography pipelines. Generating highly accurate intrinsic decompositions is an inherently under-constrained task that requires precisely estimating continuous-valued shading and albedo. In this work, we achieve high-resolution intrinsic decomposition by breaking the problem into two parts. First, we present a dense ordinal shading formulation using a shift- and scale-invariant loss in order to estimate ordinal shading cues without restricting the predictions to obey the intrinsic model. We then combine low- and high-resolution ordinal estimations using a second network to generate a shading estimate with both global coherency and local details. We encourage the model to learn an accurate decomposition by computing losses on the estimated shading as well as the albedo implied by the intrinsic model. We develop a straightforward method for generating dense pseudo ground truth using our model's predictions and multi-illumination data, enabling generalization to in-the-wild imagery. We present an exhaustive qualitative and quantitative analysis of our predicted intrinsic components against state-of-the-art methods. Finally, we demonstrate the real-world applicability of our estimations by performing otherwise difficult editing tasks such as recoloring and relighting.

SuperInpaint: Learning Detail-Enhanced Attentional Implicit Representation for Super-resolutional Image Inpainting

In this work, we introduce a challenging image restoration task, referred to as SuperInpaint, which aims to reconstruct missing regions in low-resolution images and generate completed images with arbitrarily higher resolutions. We have found that this task cannot be effectively addressed by stacking state-of-the-art super-resolution and image inpainting methods as they amplify each other's flaws, leading to noticeable artifacts. To overcome these limitations, we propose the detail-enhanced attentional implicit representation (DEAR) that can achieve SuperInpaint with a single model, resulting in high-quality completed images with arbitrary resolutions. Specifically, we use a deep convolutional network to extract the latent embedding of an input image and then enhance the high-frequency components of the latent embedding via an adaptive high-pass filter. This leads to detail-enhanced semantic embedding. We further feed the semantic embedding into an unmask-attentional module that suppresses embeddings from ineffective masked pixels. Additionally, we extract a pixel-wise importance map that indicates which pixels should be used for image reconstruction. Given the coordinates of a pixel we want to reconstruct, we first collect its neighboring pixels in the input image and extract their detail-enhanced semantic embeddings, unmask-attentional semantic embeddings, importance values, and spatial distances to the desired pixel. Then, we feed all the above terms into an implicit representation and generate the color of the specified pixel. To evaluate our method, we extend three existing datasets for this new task and build 18 meaningful baselines using SOTA inpainting and super-resolution methods. Extensive experimental results demonstrate that our method outperforms all existing methods by a significant margin on four widely used metrics.

iColoriT: Towards Propagating Local Hint to the Right Region in Interactive Colorization by Leveraging Vision Transformer

Point-interactive image colorization aims to colorize grayscale images when a user provides the colors for specific locations. It is essential for point-interactive colorization methods to appropriately propagate user-provided colors (i.e., user hints) in the entire image to obtain a reasonably colorized image with minimal user effort. However, existing approaches often produce partially colorized results due to the inefficient design of stacking convolutional layers to propagate hints to distant relevant regions. To address this problem, we present iColoriT, a novel point-interactive colorization Vision Transformer capable of propagating user hints to relevant regions, leveraging the global receptive field of Transformers. The self-attention mechanism of Transformers enables iColoriT to selectively colorize relevant regions with only a few local hints. Our approach colorizes images in real-time by utilizing pixel shuffling, an efficient upsampling technique that replaces the decoder architecture. Also, in order to mitigate the artifacts caused by pixel shuffling with large upsampling ratios, we present the local stabilizing layer. Extensive quantitative and qualitative results demonstrate that our approach highly outperforms existing methods for point-interactive colorization, producing accurately colorized images with a user's minimal effort. Official codes are available at https://pmh9960.github.io/research/iColoriT

AI Playground: Unreal Engine-based Data Ablation Tool for Deep Learning

Machine learning requires data, but acquiring and labeling real-world data is challenging, expensive, and time-consuming. More importantly, it is nearly impossible to alter real data post-acquisition (e.g., change the illumination of a room), making it very difficult to measure how specific properties of the data affect performance. In this paper, we present AI Playground (AIP), an open-source, Unreal Engine-based tool for generating and labeling virtual image data. With AIP, it is trivial to capture the same image under different conditions (e.g., fidelity, lighting, etc.) and with different ground truths (e.g., depth or surface normal values). AIP is easily extendable and can be used with or without code. To validate our proposed tool, we generated eight datasets of otherwise identical but varying lighting and fidelity conditions. We then trained deep neural networks to predict (1) depth values, (2) surface normals, or (3) object labels and assessed each network's intra- and cross-dataset performance. Among other insights, we verified that sensitivity to different settings is problem-dependent. We confirmed the findings of other studies that segmentation models are very sensitive to fidelity, but we also found that they are just as sensitive to lighting. In contrast, depth and normal estimation models seem to be less sensitive to fidelity or lighting and more sensitive to the structure of the image. Finally, we tested our trained depth-estimation networks on two real-world datasets and obtained results comparable to training on real data alone, confirming that our virtual environments are realistic enough for real-world tasks.

ACTRESS: Active Retraining for Semi-supervised Visual Grounding

Semi-Supervised Visual Grounding (SSVG) is a new challenge for its sparse labeled data with the need for multimodel understanding. A previous study, RefTeacher, makes the first attempt to tackle this task by adopting the teacher-student framework to provide pseudo confidence supervision and attention-based supervision. However, this approach is incompatible with current state-of-the-art visual grounding models, which follow the Transformer-based pipeline. These pipelines directly regress results without region proposals or foreground binary classification, rendering them unsuitable for fitting in RefTeacher due to the absence of confidence scores. Furthermore, the geometric difference in teacher and student inputs, stemming from different data augmentations, induces natural misalignment in attention-based constraints. To establish a compatible SSVG framework, our paper proposes the ACTive REtraining approach for Semi-Supervised Visual Grounding, abbreviated as ACTRESS. Initially, the model is enhanced by incorporating an additional quantized detection head to expose its detection confidence. Building upon this, ACTRESS consists of an active sampling strategy and a selective retraining strategy. The active sampling strategy iteratively selects high-quality pseudo labels by evaluating three crucial aspects: Faithfulness, Robustness, and Confidence, optimizing the utilization of unlabeled data. The selective retraining strategy retrains the model with periodic re-initialization of specific parameters, facilitating the model's escape from local minima. Extensive experiments demonstrates our superior performance on widely-used benchmark datasets.

Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs

We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach. While stronger language models can enhance multimodal capabilities, the design choices for vision components are often insufficiently explored and disconnected from visual representation learning research. This gap hinders accurate sensory grounding in real-world scenarios. Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations, offering new insights into different models and architectures -- self-supervised, strongly supervised, or combinations thereof -- based on experiments with over 20 vision encoders. We critically examine existing MLLM benchmarks, addressing the difficulties involved in consolidating and interpreting results from various tasks, and introduce a new vision-centric benchmark, CV-Bench. To further improve visual grounding, we propose the Spatial Vision Aggregator (SVA), a dynamic and spatially-aware connector that integrates high-resolution vision features with LLMs while reducing the number of tokens. Additionally, we discuss the curation of high-quality visual instruction-tuning data from publicly available sources, emphasizing the importance of data source balancing and distribution ratio. Collectively, Cambrian-1 not only achieves state-of-the-art performance but also serves as a comprehensive, open cookbook for instruction-tuned MLLMs. We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes. We hope our release will inspire and accelerate advancements in multimodal systems and visual representation learning.

F-LMM: Grounding Frozen Large Multimodal Models

Endowing Large Multimodal Models (LMMs) with visual grounding capability can significantly enhance AIs' understanding of the visual world and their interaction with humans. However, existing methods typically fine-tune the parameters of LMMs to learn additional segmentation tokens and overfit grounding and segmentation datasets. Such a design would inevitably cause a catastrophic diminution in the indispensable conversational capability of general AI assistants. In this paper, we comprehensively evaluate state-of-the-art grounding LMMs across a suite of multimodal question-answering benchmarks, observing pronounced performance drops that indicate vanishing general knowledge comprehension and weakened instruction following ability. To address this issue, we present F-LMM -- grounding frozen off-the-shelf LMMs in human-AI conversations -- a straightforward yet effective design based on the fact that word-pixel correspondences conducive to visual grounding inherently exist in the attention weights of well-trained LMMs. Using only a few trainable CNN layers, we can translate word-pixel attention weights to mask logits, which a SAM-based mask refiner can further optimise. Our F-LMM neither learns special segmentation tokens nor utilises high-quality grounded instruction-tuning data, but achieves competitive performance on referring expression segmentation and panoptic narrative grounding benchmarks while completely preserving LMMs' original conversational ability. Additionally, with instruction-following ability preserved and grounding ability obtained, our F-LMM can perform visual chain-of-thought reasoning and better resist object hallucinations.

Towards Content-based Pixel Retrieval in Revisited Oxford and Paris

This paper introduces the first two pixel retrieval benchmarks. Pixel retrieval is segmented instance retrieval. Like semantic segmentation extends classification to the pixel level, pixel retrieval is an extension of image retrieval and offers information about which pixels are related to the query object. In addition to retrieving images for the given query, it helps users quickly identify the query object in true positive images and exclude false positive images by denoting the correlated pixels. Our user study results show pixel-level annotation can significantly improve the user experience. Compared with semantic and instance segmentation, pixel retrieval requires a fine-grained recognition capability for variable-granularity targets. To this end, we propose pixel retrieval benchmarks named PROxford and PRParis, which are based on the widely used image retrieval datasets, ROxford and RParis. Three professional annotators label 5,942 images with two rounds of double-checking and refinement. Furthermore, we conduct extensive experiments and analysis on the SOTA methods in image search, image matching, detection, segmentation, and dense matching using our pixel retrieval benchmarks. Results show that the pixel retrieval task is challenging to these approaches and distinctive from existing problems, suggesting that further research can advance the content-based pixel-retrieval and thus user search experience. The datasets can be downloaded from https://github.com/anguoyuan/Pixel_retrieval-Segmented_instance_retrieval{this link}.

Where We Are and What We're Looking At: Query Based Worldwide Image Geo-localization Using Hierarchies and Scenes

Determining the exact latitude and longitude that a photo was taken is a useful and widely applicable task, yet it remains exceptionally difficult despite the accelerated progress of other computer vision tasks. Most previous approaches have opted to learn a single representation of query images, which are then classified at different levels of geographic granularity. These approaches fail to exploit the different visual cues that give context to different hierarchies, such as the country, state, and city level. To this end, we introduce an end-to-end transformer-based architecture that exploits the relationship between different geographic levels (which we refer to as hierarchies) and the corresponding visual scene information in an image through hierarchical cross-attention. We achieve this by learning a query for each geographic hierarchy and scene type. Furthermore, we learn a separate representation for different environmental scenes, as different scenes in the same location are often defined by completely different visual features. We achieve state of the art street level accuracy on 4 standard geo-localization datasets : Im2GPS, Im2GPS3k, YFCC4k, and YFCC26k, as well as qualitatively demonstrate how our method learns different representations for different visual hierarchies and scenes, which has not been demonstrated in the previous methods. These previous testing datasets mostly consist of iconic landmarks or images taken from social media, which makes them either a memorization task, or biased towards certain places. To address this issue we introduce a much harder testing dataset, Google-World-Streets-15k, comprised of images taken from Google Streetview covering the whole planet and present state of the art results. Our code will be made available in the camera-ready version.

VDGD: Mitigating LVLM Hallucinations in Cognitive Prompts by Bridging the Visual Perception Gap

Recent interest in Large Vision-Language Models (LVLMs) for practical applications is moderated by the significant challenge of hallucination or the inconsistency between the factual information and the generated text. In this paper, we first perform an in-depth analysis of hallucinations and discover several novel insights about how and when LVLMs hallucinate. From our analysis, we show that: (1) The community's efforts have been primarily targeted towards reducing hallucinations related to visual recognition (VR) prompts (e.g., prompts that only require describing the image), thereby ignoring hallucinations for cognitive prompts (e.g., prompts that require additional skills like reasoning on contents of the image). (2) LVLMs lack visual perception, i.e., they can see but not necessarily understand or perceive the input image. We analyze responses to cognitive prompts and show that LVLMs hallucinate due to a perception gap: although LVLMs accurately recognize visual elements in the input image and possess sufficient cognitive skills, they struggle to respond accurately and hallucinate. To overcome this shortcoming, we propose Visual Description Grounded Decoding (VDGD), a simple, robust, and training-free method for alleviating hallucinations. Specifically, we first describe the image and add it as a prefix to the instruction. Next, during auto-regressive decoding, we sample from the plausible candidates according to their KL-Divergence (KLD) to the description, where lower KLD is given higher preference. Experimental results on several benchmarks and LVLMs show that VDGD improves significantly over other baselines in reducing hallucinations. We also propose VaLLu, a benchmark for the comprehensive evaluation of the cognitive capabilities of LVLMs.

Day-to-Night Image Synthesis for Training Nighttime Neural ISPs

Many flagship smartphone cameras now use a dedicated neural image signal processor (ISP) to render noisy raw sensor images to the final processed output. Training nightmode ISP networks relies on large-scale datasets of image pairs with: (1) a noisy raw image captured with a short exposure and a high ISO gain; and (2) a ground truth low-noise raw image captured with a long exposure and low ISO that has been rendered through the ISP. Capturing such image pairs is tedious and time-consuming, requiring careful setup to ensure alignment between the image pairs. In addition, ground truth images are often prone to motion blur due to the long exposure. To address this problem, we propose a method that synthesizes nighttime images from daytime images. Daytime images are easy to capture, exhibit low-noise (even on smartphone cameras) and rarely suffer from motion blur. We outline a processing framework to convert daytime raw images to have the appearance of realistic nighttime raw images with different levels of noise. Our procedure allows us to easily produce aligned noisy and clean nighttime image pairs. We show the effectiveness of our synthesis framework by training neural ISPs for nightmode rendering. Furthermore, we demonstrate that using our synthetic nighttime images together with small amounts of real data (e.g., 5% to 10%) yields performance almost on par with training exclusively on real nighttime images. Our dataset and code are available at https://github.com/SamsungLabs/day-to-night.

Distilling Coarse-to-Fine Semantic Matching Knowledge for Weakly Supervised 3D Visual Grounding

3D visual grounding involves finding a target object in a 3D scene that corresponds to a given sentence query. Although many approaches have been proposed and achieved impressive performance, they all require dense object-sentence pair annotations in 3D point clouds, which are both time-consuming and expensive. To address the problem that fine-grained annotated data is difficult to obtain, we propose to leverage weakly supervised annotations to learn the 3D visual grounding model, i.e., only coarse scene-sentence correspondences are used to learn object-sentence links. To accomplish this, we design a novel semantic matching model that analyzes the semantic similarity between object proposals and sentences in a coarse-to-fine manner. Specifically, we first extract object proposals and coarsely select the top-K candidates based on feature and class similarity matrices. Next, we reconstruct the masked keywords of the sentence using each candidate one by one, and the reconstructed accuracy finely reflects the semantic similarity of each candidate to the query. Additionally, we distill the coarse-to-fine semantic matching knowledge into a typical two-stage 3D visual grounding model, which reduces inference costs and improves performance by taking full advantage of the well-studied structure of the existing architectures. We conduct extensive experiments on ScanRefer, Nr3D, and Sr3D, which demonstrate the effectiveness of our proposed method.

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning

Contrastive learning methods for unsupervised visual representation learning have reached remarkable levels of transfer performance. We argue that the power of contrastive learning has yet to be fully unleashed, as current methods are trained only on instance-level pretext tasks, leading to representations that may be sub-optimal for downstream tasks requiring dense pixel predictions. In this paper, we introduce pixel-level pretext tasks for learning dense feature representations. The first task directly applies contrastive learning at the pixel level. We additionally propose a pixel-to-propagation consistency task that produces better results, even surpassing the state-of-the-art approaches by a large margin. Specifically, it achieves 60.2 AP, 41.4 / 40.5 mAP and 77.2 mIoU when transferred to Pascal VOC object detection (C4), COCO object detection (FPN / C4) and Cityscapes semantic segmentation using a ResNet-50 backbone network, which are 2.6 AP, 0.8 / 1.0 mAP and 1.0 mIoU better than the previous best methods built on instance-level contrastive learning. Moreover, the pixel-level pretext tasks are found to be effective for pre-training not only regular backbone networks but also head networks used for dense downstream tasks, and are complementary to instance-level contrastive methods. These results demonstrate the strong potential of defining pretext tasks at the pixel level, and suggest a new path forward in unsupervised visual representation learning. Code is available at https://github.com/zdaxie/PixPro.

A Simple Approach to Unifying Diffusion-based Conditional Generation

Recent progress in image generation has sparked research into controlling these models through condition signals, with various methods addressing specific challenges in conditional generation. Instead of proposing another specialized technique, we introduce a simple, unified framework to handle diverse conditional generation tasks involving a specific image-condition correlation. By learning a joint distribution over a correlated image pair (e.g. image and depth) with a diffusion model, our approach enables versatile capabilities via different inference-time sampling schemes, including controllable image generation (e.g. depth to image), estimation (e.g. image to depth), signal guidance, joint generation (image & depth), and coarse control. Previous attempts at unification often introduce significant complexity through multi-stage training, architectural modification, or increased parameter counts. In contrast, our simple formulation requires a single, computationally efficient training stage, maintains the standard model input, and adds minimal learned parameters (15% of the base model). Moreover, our model supports additional capabilities like non-spatially aligned and coarse conditioning. Extensive results show that our single model can produce comparable results with specialized methods and better results than prior unified methods. We also demonstrate that multiple models can be effectively combined for multi-signal conditional generation.

MISF: Multi-level Interactive Siamese Filtering for High-Fidelity Image Inpainting

Although achieving significant progress, existing deep generative inpainting methods are far from real-world applications due to the low generalization across different scenes. As a result, the generated images usually contain artifacts or the filled pixels differ greatly from the ground truth. Image-level predictive filtering is a widely used image restoration technique, predicting suitable kernels adaptively according to different input scenes. Inspired by this inherent advantage, we explore the possibility of addressing image inpainting as a filtering task. To this end, we first study the advantages and challenges of image-level predictive filtering for image inpainting: the method can preserve local structures and avoid artifacts but fails to fill large missing areas. Then, we propose semantic filtering by conducting filtering on the deep feature level, which fills the missing semantic information but fails to recover the details. To address the issues while adopting the respective advantages, we propose a novel filtering technique, i.e., Multilevel Interactive Siamese Filtering (MISF), which contains two branches: kernel prediction branch (KPB) and semantic & image filtering branch (SIFB). These two branches are interactively linked: SIFB provides multi-level features for KPB while KPB predicts dynamic kernels for SIFB. As a result, the final method takes the advantage of effective semantic & image-level filling for high-fidelity inpainting. We validate our method on three challenging datasets, i.e., Dunhuang, Places2, and CelebA. Our method outperforms state-of-the-art baselines on four metrics, i.e., L1, PSNR, SSIM, and LPIPS. Please try the released code and model at https://github.com/tsingqguo/misf.

Investigating Tradeoffs in Real-World Video Super-Resolution

The diversity and complexity of degradations in real-world video super-resolution (VSR) pose non-trivial challenges in inference and training. First, while long-term propagation leads to improved performance in cases of mild degradations, severe in-the-wild degradations could be exaggerated through propagation, impairing output quality. To balance the tradeoff between detail synthesis and artifact suppression, we found an image pre-cleaning stage indispensable to reduce noises and artifacts prior to propagation. Equipped with a carefully designed cleaning module, our RealBasicVSR outperforms existing methods in both quality and efficiency. Second, real-world VSR models are often trained with diverse degradations to improve generalizability, requiring increased batch size to produce a stable gradient. Inevitably, the increased computational burden results in various problems, including 1) speed-performance tradeoff and 2) batch-length tradeoff. To alleviate the first tradeoff, we propose a stochastic degradation scheme that reduces up to 40\% of training time without sacrificing performance. We then analyze different training settings and suggest that employing longer sequences rather than larger batches during training allows more effective uses of temporal information, leading to more stable performance during inference. To facilitate fair comparisons, we propose the new VideoLQ dataset, which contains a large variety of real-world low-quality video sequences containing rich textures and patterns. Our dataset can serve as a common ground for benchmarking. Code, models, and the dataset will be made publicly available.

Dense Object Grounding in 3D Scenes

Localizing objects in 3D scenes according to the semantics of a given natural language is a fundamental yet important task in the field of multimedia understanding, which benefits various real-world applications such as robotics and autonomous driving. However, the majority of existing 3D object grounding methods are restricted to a single-sentence input describing an individual object, which cannot comprehend and reason more contextualized descriptions of multiple objects in more practical 3D cases. To this end, we introduce a new challenging task, called 3D Dense Object Grounding (3D DOG), to jointly localize multiple objects described in a more complicated paragraph rather than a single sentence. Instead of naively localizing each sentence-guided object independently, we found that dense objects described in the same paragraph are often semantically related and spatially located in a focused region of the 3D scene. To explore such semantic and spatial relationships of densely referred objects for more accurate localization, we propose a novel Stacked Transformer based framework for 3D DOG, named 3DOGSFormer. Specifically, we first devise a contextual query-driven local transformer decoder to generate initial grounding proposals for each target object. Then, we employ a proposal-guided global transformer decoder that exploits the local object features to learn their correlation for further refining initial grounding proposals. Extensive experiments on three challenging benchmarks (Nr3D, Sr3D, and ScanRefer) show that our proposed 3DOGSFormer outperforms state-of-the-art 3D single-object grounding methods and their dense-object variants by significant margins.

Position-guided Text Prompt for Vision-Language Pre-training

Vision-Language Pre-Training (VLP) has shown promising capabilities to align image and text pairs, facilitating a broad variety of cross-modal learning tasks. However, we observe that VLP models often lack the visual grounding/localization capability which is critical for many downstream tasks such as visual reasoning. In this work, we propose a novel Position-guided Text Prompt (PTP) paradigm to enhance the visual grounding ability of cross-modal models trained with VLP. Specifically, in the VLP phase, PTP divides the image into Ntimes N blocks, and identifies the objects in each block through the widely used object detector in VLP. It then reformulates the visual grounding task into a fill-in-the-blank problem given a PTP by encouraging the model to predict the objects in the given blocks or regress the blocks of a given object, e.g. filling `P" or ``O" in aPTP ``The block P has a O". This mechanism improves the visual grounding capability of VLP models and thus helps them better handle various downstream tasks. By introducing PTP into several state-of-the-art VLP frameworks, we observe consistently significant improvements across representative cross-modal learning model architectures and several benchmarks, e.g. zero-shot Flickr30K Retrieval (+4.8 in average recall@1) for ViLT vilt baseline, and COCO Captioning (+5.3 in CIDEr) for SOTA BLIP blip baseline. Moreover, PTP achieves comparable results with object-detector based methods, and much faster inference speed since PTP discards its object detector for inference while the later cannot. Our code and pre-trained weight will be released at https://github.com/sail-sg/ptp.

TopNet: Transformer-based Object Placement Network for Image Compositing

We investigate the problem of automatically placing an object into a background image for image compositing. Given a background image and a segmented object, the goal is to train a model to predict plausible placements (location and scale) of the object for compositing. The quality of the composite image highly depends on the predicted location/scale. Existing works either generate candidate bounding boxes or apply sliding-window search using global representations from background and object images, which fail to model local information in background images. However, local clues in background images are important to determine the compatibility of placing the objects with certain locations/scales. In this paper, we propose to learn the correlation between object features and all local background features with a transformer module so that detailed information can be provided on all possible location/scale configurations. A sparse contrastive loss is further proposed to train our model with sparse supervision. Our new formulation generates a 3D heatmap indicating the plausibility of all location/scale combinations in one network forward pass, which is over 10 times faster than the previous sliding-window method. It also supports interactive search when users provide a pre-defined location or scale. The proposed method can be trained with explicit annotation or in a self-supervised manner using an off-the-shelf inpainting model, and it outperforms state-of-the-art methods significantly. The user study shows that the trained model generalizes well to real-world images with diverse challenging scenes and object categories.

Cross-View Meets Diffusion: Aerial Image Synthesis with Geometry and Text Guidance

Aerial imagery analysis is critical for many research fields. However, obtaining frequent high-quality aerial images is not always accessible due to its high effort and cost requirements. One solution is to use the Ground-to-Aerial (G2A) technique to synthesize aerial images from easily collectible ground images. However, G2A is rarely studied, because of its challenges, including but not limited to, the drastic view changes, occlusion, and range of visibility. In this paper, we present a novel Geometric Preserving Ground-to-Aerial (G2A) image synthesis (GPG2A) model that can generate realistic aerial images from ground images. GPG2A consists of two stages. The first stage predicts the Bird's Eye View (BEV) segmentation (referred to as the BEV layout map) from the ground image. The second stage synthesizes the aerial image from the predicted BEV layout map and text descriptions of the ground image. To train our model, we present a new multi-modal cross-view dataset, namely VIGORv2 which is built upon VIGOR with newly collected aerial images, maps, and text descriptions. Our extensive experiments illustrate that GPG2A synthesizes better geometry-preserved aerial images than existing models. We also present two applications, data augmentation for cross-view geo-localization and sketch-based region search, to further verify the effectiveness of our GPG2A. The code and data will be publicly available.

Structural Multiplane Image: Bridging Neural View Synthesis and 3D Reconstruction

The Multiplane Image (MPI), containing a set of fronto-parallel RGBA layers, is an effective and efficient representation for view synthesis from sparse inputs. Yet, its fixed structure limits the performance, especially for surfaces imaged at oblique angles. We introduce the Structural MPI (S-MPI), where the plane structure approximates 3D scenes concisely. Conveying RGBA contexts with geometrically-faithful structures, the S-MPI directly bridges view synthesis and 3D reconstruction. It can not only overcome the critical limitations of MPI, i.e., discretization artifacts from sloped surfaces and abuse of redundant layers, and can also acquire planar 3D reconstruction. Despite the intuition and demand of applying S-MPI, great challenges are introduced, e.g., high-fidelity approximation for both RGBA layers and plane poses, multi-view consistency, non-planar regions modeling, and efficient rendering with intersected planes. Accordingly, we propose a transformer-based network based on a segmentation model. It predicts compact and expressive S-MPI layers with their corresponding masks, poses, and RGBA contexts. Non-planar regions are inclusively handled as a special case in our unified framework. Multi-view consistency is ensured by sharing global proxy embeddings, which encode plane-level features covering the complete 3D scenes with aligned coordinates. Intensive experiments show that our method outperforms both previous state-of-the-art MPI-based view synthesis methods and planar reconstruction methods.

Grounding DINO 1.5: Advance the "Edge" of Open-Set Object Detection

This paper introduces Grounding DINO 1.5, a suite of advanced open-set object detection models developed by IDEA Research, which aims to advance the "Edge" of open-set object detection. The suite encompasses two models: Grounding DINO 1.5 Pro, a high-performance model designed for stronger generalization capability across a wide range of scenarios, and Grounding DINO 1.5 Edge, an efficient model optimized for faster speed demanded in many applications requiring edge deployment. The Grounding DINO 1.5 Pro model advances its predecessor by scaling up the model architecture, integrating an enhanced vision backbone, and expanding the training dataset to over 20 million images with grounding annotations, thereby achieving a richer semantic understanding. The Grounding DINO 1.5 Edge model, while designed for efficiency with reduced feature scales, maintains robust detection capabilities by being trained on the same comprehensive dataset. Empirical results demonstrate the effectiveness of Grounding DINO 1.5, with the Grounding DINO 1.5 Pro model attaining a 54.3 AP on the COCO detection benchmark and a 55.7 AP on the LVIS-minival zero-shot transfer benchmark, setting new records for open-set object detection. Furthermore, the Grounding DINO 1.5 Edge model, when optimized with TensorRT, achieves a speed of 75.2 FPS while attaining a zero-shot performance of 36.2 AP on the LVIS-minival benchmark, making it more suitable for edge computing scenarios. Model examples and demos with API will be released at https://github.com/IDEA-Research/Grounding-DINO-1.5-API

AGLA: Mitigating Object Hallucinations in Large Vision-Language Models with Assembly of Global and Local Attention

Despite their great success across various multimodal tasks, Large Vision-Language Models (LVLMs) are facing a prevalent problem with object hallucinations, where the generated textual responses are inconsistent with ground-truth objects in the given image. This paper investigates various LVLMs and pinpoints attention deficiency toward discriminative local image features as one root cause of object hallucinations. Specifically, LVLMs predominantly attend to prompt-independent global image features, while failing to capture prompt-relevant local features, consequently undermining the visual grounding capacity of LVLMs and leading to hallucinations. To this end, we propose Assembly of Global and Local Attention (AGLA), a training-free and plug-and-play approach that mitigates object hallucinations by exploring an ensemble of global features for response generation and local features for visual discrimination simultaneously. Our approach exhibits an image-prompt matching scheme that captures prompt-relevant local features from images, leading to an augmented view of the input image where prompt-relevant content is reserved while irrelevant distractions are masked. With the augmented view, a calibrated decoding distribution can be derived by integrating generative global features from the original image and discriminative local features from the augmented image. Extensive experiments show that AGLA consistently mitigates object hallucinations and enhances general perception capability for LVLMs across various discriminative and generative benchmarks. Our code will be released at https://github.com/Lackel/AGLA.

Joint Demosaicking and Denoising in the Wild: The Case of Training Under Ground Truth Uncertainty

Image demosaicking and denoising are the two key fundamental steps in digital camera pipelines, aiming to reconstruct clean color images from noisy luminance readings. In this paper, we propose and study Wild-JDD, a novel learning framework for joint demosaicking and denoising in the wild. In contrast to previous works which generally assume the ground truth of training data is a perfect reflection of the reality, we consider here the more common imperfect case of ground truth uncertainty in the wild. We first illustrate its manifestation as various kinds of artifacts including zipper effect, color moire and residual noise. Then we formulate a two-stage data degradation process to capture such ground truth uncertainty, where a conjugate prior distribution is imposed upon a base distribution. After that, we derive an evidence lower bound (ELBO) loss to train a neural network that approximates the parameters of the conjugate prior distribution conditioned on the degraded input. Finally, to further enhance the performance for out-of-distribution input, we design a simple but effective fine-tuning strategy by taking the input as a weakly informative prior. Taking into account ground truth uncertainty, Wild-JDD enjoys good interpretability during optimization. Extensive experiments validate that it outperforms state-of-the-art schemes on joint demosaicking and denoising tasks on both synthetic and realistic raw datasets.

G2L: Semantically Aligned and Uniform Video Grounding via Geodesic and Game Theory

The recent video grounding works attempt to introduce vanilla contrastive learning into video grounding. However, we claim that this naive solution is suboptimal. Contrastive learning requires two key properties: (1) alignment of features of similar samples, and (2) uniformity of the induced distribution of the normalized features on the hypersphere. Due to two annoying issues in video grounding: (1) the co-existence of some visual entities in both ground truth and other moments, \ie semantic overlapping; (2) only a few moments in the video are annotated, \ie sparse annotation dilemma, vanilla contrastive learning is unable to model the correlations between temporally distant moments and learned inconsistent video representations. Both characteristics lead to vanilla contrastive learning being unsuitable for video grounding. In this paper, we introduce Geodesic and Game Localization (G2L), a semantically aligned and uniform video grounding framework via geodesic and game theory. We quantify the correlations among moments leveraging the geodesic distance that guides the model to learn the correct cross-modal representations. Furthermore, from the novel perspective of game theory, we propose semantic Shapley interaction based on geodesic distance sampling to learn fine-grained semantic alignment in similar moments. Experiments on three benchmarks demonstrate the effectiveness of our method.

Generative Image Layer Decomposition with Visual Effects

Recent advancements in large generative models, particularly diffusion-based methods, have significantly enhanced the capabilities of image editing. However, achieving precise control over image composition tasks remains a challenge. Layered representations, which allow for independent editing of image components, are essential for user-driven content creation, yet existing approaches often struggle to decompose image into plausible layers with accurately retained transparent visual effects such as shadows and reflections. We propose LayerDecomp, a generative framework for image layer decomposition which outputs photorealistic clean backgrounds and high-quality transparent foregrounds with faithfully preserved visual effects. To enable effective training, we first introduce a dataset preparation pipeline that automatically scales up simulated multi-layer data with synthesized visual effects. To further enhance real-world applicability, we supplement this simulated dataset with camera-captured images containing natural visual effects. Additionally, we propose a consistency loss which enforces the model to learn accurate representations for the transparent foreground layer when ground-truth annotations are not available. Our method achieves superior quality in layer decomposition, outperforming existing approaches in object removal and spatial editing tasks across several benchmarks and multiple user studies, unlocking various creative possibilities for layer-wise image editing. The project page is https://rayjryang.github.io/LayerDecomp.

Polarized Self-Attention: Towards High-quality Pixel-wise Regression

Pixel-wise regression is probably the most common problem in fine-grained computer vision tasks, such as estimating keypoint heatmaps and segmentation masks. These regression problems are very challenging particularly because they require, at low computation overheads, modeling long-range dependencies on high-resolution inputs/outputs to estimate the highly nonlinear pixel-wise semantics. While attention mechanisms in Deep Convolutional Neural Networks(DCNNs) has become popular for boosting long-range dependencies, element-specific attention, such as Nonlocal blocks, is highly complex and noise-sensitive to learn, and most of simplified attention hybrids try to reach the best compromise among multiple types of tasks. In this paper, we present the Polarized Self-Attention(PSA) block that incorporates two critical designs towards high-quality pixel-wise regression: (1) Polarized filtering: keeping high internal resolution in both channel and spatial attention computation while completely collapsing input tensors along their counterpart dimensions. (2) Enhancement: composing non-linearity that directly fits the output distribution of typical fine-grained regression, such as the 2D Gaussian distribution (keypoint heatmaps), or the 2D Binormial distribution (binary segmentation masks). PSA appears to have exhausted the representation capacity within its channel-only and spatial-only branches, such that there is only marginal metric differences between its sequential and parallel layouts. Experimental results show that PSA boosts standard baselines by 2-4 points, and boosts state-of-the-arts by 1-2 points on 2D pose estimation and semantic segmentation benchmarks.

GVDepth: Zero-Shot Monocular Depth Estimation for Ground Vehicles based on Probabilistic Cue Fusion

Generalizing metric monocular depth estimation presents a significant challenge due to its ill-posed nature, while the entanglement between camera parameters and depth amplifies issues further, hindering multi-dataset training and zero-shot accuracy. This challenge is particularly evident in autonomous vehicles and mobile robotics, where data is collected with fixed camera setups, limiting the geometric diversity. Yet, this context also presents an opportunity: the fixed relationship between the camera and the ground plane imposes additional perspective geometry constraints, enabling depth regression via vertical image positions of objects. However, this cue is highly susceptible to overfitting, thus we propose a novel canonical representation that maintains consistency across varied camera setups, effectively disentangling depth from specific parameters and enhancing generalization across datasets. We also propose a novel architecture that adaptively and probabilistically fuses depths estimated via object size and vertical image position cues. A comprehensive evaluation demonstrates the effectiveness of the proposed approach on five autonomous driving datasets, achieving accurate metric depth estimation for varying resolutions, aspect ratios and camera setups. Notably, we achieve comparable accuracy to existing zero-shot methods, despite training on a single dataset with a single-camera setup.

SegAgent: Exploring Pixel Understanding Capabilities in MLLMs by Imitating Human Annotator Trajectories

While MLLMs have demonstrated adequate image understanding capabilities, they still struggle with pixel-level comprehension, limiting their practical applications. Current evaluation tasks like VQA and visual grounding remain too coarse to assess fine-grained pixel comprehension accurately. Though segmentation is foundational for pixel-level understanding, existing methods often require MLLMs to generate implicit tokens, decoded through external pixel decoders. This approach disrupts the MLLM's text output space, potentially compromising language capabilities and reducing flexibility and extensibility, while failing to reflect the model's intrinsic pixel-level understanding. Thus, we introduce the Human-Like Mask Annotation Task (HLMAT), a new paradigm where MLLMs mimic human annotators using interactive segmentation tools. Modeling segmentation as a multi-step Markov Decision Process, HLMAT enables MLLMs to iteratively generate text-based click points, achieving high-quality masks without architectural changes or implicit tokens. Through this setup, we develop SegAgent, a model fine-tuned on human-like annotation trajectories, which achieves performance comparable to state-of-the-art (SOTA) methods and supports additional tasks like mask refinement and annotation filtering. HLMAT provides a protocol for assessing fine-grained pixel understanding in MLLMs and introduces a vision-centric, multi-step decision-making task that facilitates exploration of MLLMs' visual reasoning abilities. Our adaptations of policy improvement method StaR and PRM-guided tree search further enhance model robustness in complex segmentation tasks, laying a foundation for future advancements in fine-grained visual perception and multi-step decision-making for MLLMs.

3D-SPS: Single-Stage 3D Visual Grounding via Referred Point Progressive Selection

3D visual grounding aims to locate the referred target object in 3D point cloud scenes according to a free-form language description. Previous methods mostly follow a two-stage paradigm, i.e., language-irrelevant detection and cross-modal matching, which is limited by the isolated architecture. In such a paradigm, the detector needs to sample keypoints from raw point clouds due to the inherent properties of 3D point clouds (irregular and large-scale), to generate the corresponding object proposal for each keypoint. However, sparse proposals may leave out the target in detection, while dense proposals may confuse the matching model. Moreover, the language-irrelevant detection stage can only sample a small proportion of keypoints on the target, deteriorating the target prediction. In this paper, we propose a 3D Single-Stage Referred Point Progressive Selection (3D-SPS) method, which progressively selects keypoints with the guidance of language and directly locates the target. Specifically, we propose a Description-aware Keypoint Sampling (DKS) module to coarsely focus on the points of language-relevant objects, which are significant clues for grounding. Besides, we devise a Target-oriented Progressive Mining (TPM) module to finely concentrate on the points of the target, which is enabled by progressive intra-modal relation modeling and inter-modal target mining. 3D-SPS bridges the gap between detection and matching in the 3D visual grounding task, localizing the target at a single stage. Experiments demonstrate that 3D-SPS achieves state-of-the-art performance on both ScanRefer and Nr3D/Sr3D datasets.

Fine-Grained Visual Prompting

Vision-Language Models (VLMs), such as CLIP, have demonstrated impressive zero-shot transfer capabilities in image-level visual perception. However, these models have shown limited performance in instance-level tasks that demand precise localization and recognition. Previous works have suggested that incorporating visual prompts, such as colorful boxes or circles, can improve the ability of models to recognize objects of interest. Nonetheless, compared to language prompting, visual prompting designs are rarely explored. Existing approaches, which employ coarse visual cues such as colorful boxes or circles, often result in sub-optimal performance due to the inclusion of irrelevant and noisy pixels. In this paper, we carefully study the visual prompting designs by exploring more fine-grained markings, such as segmentation masks and their variations. In addition, we introduce a new zero-shot framework that leverages pixel-level annotations acquired from a generalist segmentation model for fine-grained visual prompting. Consequently, our investigation reveals that a straightforward application of blur outside the target mask, referred to as the Blur Reverse Mask, exhibits exceptional effectiveness. This proposed prompting strategy leverages the precise mask annotations to reduce focus on weakly related regions while retaining spatial coherence between the target and the surrounding background. Our Fine-Grained Visual Prompting (FGVP) demonstrates superior performance in zero-shot comprehension of referring expressions on the RefCOCO, RefCOCO+, and RefCOCOg benchmarks. It outperforms prior methods by an average margin of 3.0% to 4.6%, with a maximum improvement of 12.5% on the RefCOCO+ testA subset. Code is available at https://github.com/ylingfeng/FGVP.

GameIR: A Large-Scale Synthesized Ground-Truth Dataset for Image Restoration over Gaming Content

Image restoration methods like super-resolution and image synthesis have been successfully used in commercial cloud gaming products like NVIDIA's DLSS. However, restoration over gaming content is not well studied by the general public. The discrepancy is mainly caused by the lack of ground-truth gaming training data that match the test cases. Due to the unique characteristics of gaming content, the common approach of generating pseudo training data by degrading the original HR images results in inferior restoration performance. In this work, we develop GameIR, a large-scale high-quality computer-synthesized ground-truth dataset to fill in the blanks, targeting at two different applications. The first is super-resolution with deferred rendering, to support the gaming solution of rendering and transferring LR images only and restoring HR images on the client side. We provide 19200 LR-HR paired ground-truth frames coming from 640 videos rendered at 720p and 1440p for this task. The second is novel view synthesis (NVS), to support the multiview gaming solution of rendering and transferring part of the multiview frames and generating the remaining frames on the client side. This task has 57,600 HR frames from 960 videos of 160 scenes with 6 camera views. In addition to the RGB frames, the GBuffers during the deferred rendering stage are also provided, which can be used to help restoration. Furthermore, we evaluate several SOTA super-resolution algorithms and NeRF-based NVS algorithms over our dataset, which demonstrates the effectiveness of our ground-truth GameIR data in improving restoration performance for gaming content. Also, we test the method of incorporating the GBuffers as additional input information for helping super-resolution and NVS. We release our dataset and models to the general public to facilitate research on restoration methods over gaming content.

Flying Triangulation - towards the 3D movie camera

Flying Triangulation sensors enable a free-hand and motion-robust 3D data acquisition of complex shaped objects. The measurement principle is based on a multi-line light-sectioning approach and uses sophisticated algorithms for real-time registration (S. Ettl et al., Appl. Opt. 51 (2012) 281-289). As "single-shot principle", light sectioning enables the option to get surface data from one single camera exposure. But there is a drawback: A pixel-dense measurement is not possible because of fundamental information-theoretical reasons. By "pixel-dense" we understand that each pixel displays individually measured distance information, neither interpolated from its neighbour pixels nor using lateral context information. Hence, for monomodal single-shot principles, the 3D data generated from one 2D raw image display a significantly lower space-bandwidth than the camera permits. This is the price one must pay for motion robustness. Currently, our sensors project about 10 lines (each with 1000 pixels), reaching an considerable lower data efficiency than theoretically possible for a single-shot sensor. Our aim is to push Flying Triangulation to its information-theoretical limits. Therefore, the line density as well as the measurement depth needs to be significantly increased. This causes serious indexing ambiguities. On the road to a single-shot 3D movie camera, we are working on solutions to overcome the problem of false line indexing by utilizing yet unexploited information. We will present several approaches and will discuss profound information-theoretical questions about the information efficiency of 3D sensors.

Fixing Imbalanced Attention to Mitigate In-Context Hallucination of Large Vision-Language Model

Large Vision Language Models (LVLMs) have demonstrated remarkable capabilities in understanding and describing visual content, achieving state-of-the-art performance across various vision-language tasks. However, these models frequently exhibit hallucination behavior, where they generate descriptions containing objects or details absent in the input image. Our work investigates this phenomenon by analyzing attention patterns across transformer layers and heads, revealing that hallucinations often stem from progressive degradation of visual grounding in deeper layers. We propose a novel attention modification approach that combines selective token emphasis and head-specific modulation to maintain visual grounding throughout the generation process. Our method introduces two key components: (1) a dual-stream token selection mechanism that identifies and prioritizes both locally informative and spatially significant visual tokens, and (2) an attention head-specific modulation strategy that differentially amplifies visual information processing based on measured visual sensitivity of individual attention heads. Through extensive experimentation on the MSCOCO dataset, we demonstrate that our approach reduces hallucination rates by up to 62.3\% compared to baseline models while maintaining comparable task performance. Our analysis reveals that selectively modulating tokens across attention heads with varying levels of visual sensitivity can significantly improve visual grounding without requiring model retraining.

Neighbor-Aware Calibration of Segmentation Networks with Penalty-Based Constraints

Ensuring reliable confidence scores from deep neural networks is of paramount significance in critical decision-making systems, particularly in real-world domains such as healthcare. Recent literature on calibrating deep segmentation networks has resulted in substantial progress. Nevertheless, these approaches are strongly inspired by the advancements in classification tasks, and thus their uncertainty is usually modeled by leveraging the information of individual pixels, disregarding the local structure of the object of interest. Indeed, only the recent Spatially Varying Label Smoothing (SVLS) approach considers pixel spatial relationships across classes, by softening the pixel label assignments with a discrete spatial Gaussian kernel. In this work, we first present a constrained optimization perspective of SVLS and demonstrate that it enforces an implicit constraint on soft class proportions of surrounding pixels. Furthermore, our analysis shows that SVLS lacks a mechanism to balance the contribution of the constraint with the primary objective, potentially hindering the optimization process. Based on these observations, we propose NACL (Neighbor Aware CaLibration), a principled and simple solution based on equality constraints on the logit values, which enables to control explicitly both the enforced constraint and the weight of the penalty, offering more flexibility. Comprehensive experiments on a wide variety of well-known segmentation benchmarks demonstrate the superior calibration performance of the proposed approach, without affecting its discriminative power. Furthermore, ablation studies empirically show the model agnostic nature of our approach, which can be used to train a wide span of deep segmentation networks.

A Practical Contrastive Learning Framework for Single-Image Super-Resolution

Contrastive learning has achieved remarkable success on various high-level tasks, but there are fewer contrastive learning-based methods proposed for low-level tasks. It is challenging to adopt vanilla contrastive learning technologies proposed for high-level visual tasks to low-level image restoration problems straightly. Because the acquired high-level global visual representations are insufficient for low-level tasks requiring rich texture and context information. In this paper, we investigate the contrastive learning-based single image super-resolution from two perspectives: positive and negative sample construction and feature embedding. The existing methods take naive sample construction approaches (e.g., considering the low-quality input as a negative sample and the ground truth as a positive sample) and adopt a prior model (e.g., pre-trained VGG model) to obtain the feature embedding. To this end, we propose a practical contrastive learning framework for SISR, named PCL-SR. We involve the generation of many informative positive and hard negative samples in frequency space. Instead of utilizing an additional pre-trained network, we design a simple but effective embedding network inherited from the discriminator network which is more task-friendly. Compared with existing benchmark methods, we re-train them by our proposed PCL-SR framework and achieve superior performance. Extensive experiments have been conducted to show the effectiveness and technical contributions of our proposed PCL-SR thorough ablation studies. The code and pre-trained models can be found at https://github.com/Aitical/PCL-SISR.

Not All Pixels Are Equal: Learning Pixel Hardness for Semantic Segmentation

Semantic segmentation has recently witnessed great progress. Despite the impressive overall results, the segmentation performance in some hard areas (e.g., small objects or thin parts) is still not promising. A straightforward solution is hard sample mining, which is widely used in object detection. Yet, most existing hard pixel mining strategies for semantic segmentation often rely on pixel's loss value, which tends to decrease during training. Intuitively, the pixel hardness for segmentation mainly depends on image structure and is expected to be stable. In this paper, we propose to learn pixel hardness for semantic segmentation, leveraging hardness information contained in global and historical loss values. More precisely, we add a gradient-independent branch for learning a hardness level (HL) map by maximizing hardness-weighted segmentation loss, which is minimized for the segmentation head. This encourages large hardness values in difficult areas, leading to appropriate and stable HL map. Despite its simplicity, the proposed method can be applied to most segmentation methods with no and marginal extra cost during inference and training, respectively. Without bells and whistles, the proposed method achieves consistent/significant improvement (1.37% mIoU on average) over most popular semantic segmentation methods on Cityscapes dataset, and demonstrates good generalization ability across domains. The source codes are available at https://github.com/Menoly-xin/Hardness-Level-Learning .

PatchCraft: Exploring Texture Patch for Efficient AI-generated Image Detection

Recent generative models show impressive performance in generating photographic images. Humans can hardly distinguish such incredibly realistic-looking AI-generated images from real ones. AI-generated images may lead to ubiquitous disinformation dissemination. Therefore, it is of utmost urgency to develop a detector to identify AI generated images. Most existing detectors suffer from sharp performance drops over unseen generative models. In this paper, we propose a novel AI-generated image detector capable of identifying fake images created by a wide range of generative models. We observe that the texture patches of images tend to reveal more traces left by generative models compared to the global semantic information of the images. A novel Smash&Reconstruction preprocessing is proposed to erase the global semantic information and enhance texture patches. Furthermore, pixels in rich texture regions exhibit more significant fluctuations than those in poor texture regions. Synthesizing realistic rich texture regions proves to be more challenging for existing generative models. Based on this principle, we leverage the inter-pixel correlation contrast between rich and poor texture regions within an image to further boost the detection performance. In addition, we build a comprehensive AI-generated image detection benchmark, which includes 17 kinds of prevalent generative models, to evaluate the effectiveness of existing baselines and our approach. Our benchmark provides a leaderboard for follow-up studies. Extensive experimental results show that our approach outperforms state-of-the-art baselines by a significant margin. Our project: https://fdmas.github.io/AIGCDetect

Vision-guided and Mask-enhanced Adaptive Denoising for Prompt-based Image Editing

Text-to-image diffusion models have demonstrated remarkable progress in synthesizing high-quality images from text prompts, which boosts researches on prompt-based image editing that edits a source image according to a target prompt. Despite their advances, existing methods still encounter three key issues: 1) limited capacity of the text prompt in guiding target image generation, 2) insufficient mining of word-to-patch and patch-to-patch relationships for grounding editing areas, and 3) unified editing strength for all regions during each denoising step. To address these issues, we present a Vision-guided and Mask-enhanced Adaptive Editing (ViMAEdit) method with three key novel designs. First, we propose to leverage image embeddings as explicit guidance to enhance the conventional textual prompt-based denoising process, where a CLIP-based target image embedding estimation strategy is introduced. Second, we devise a self-attention-guided iterative editing area grounding strategy, which iteratively exploits patch-to-patch relationships conveyed by self-attention maps to refine those word-to-patch relationships contained in cross-attention maps. Last, we present a spatially adaptive variance-guided sampling, which highlights sampling variances for critical image regions to promote the editing capability. Experimental results demonstrate the superior editing capacity of ViMAEdit over all existing methods.

UniRGB-IR: A Unified Framework for RGB-Infrared Semantic Tasks via Adapter Tuning

Semantic analysis on visible (RGB) and infrared (IR) images has gained attention for its ability to be more accurate and robust under low-illumination and complex weather conditions. Due to the lack of pre-trained foundation models on the large-scale infrared image datasets, existing methods prefer to design task-specific frameworks and directly fine-tune them with pre-trained foundation models on their RGB-IR semantic relevance datasets, which results in poor scalability and limited generalization. In this work, we propose a general and efficient framework called UniRGB-IR to unify RGB-IR semantic tasks, in which a novel adapter is developed to efficiently introduce richer RGB-IR features into the pre-trained RGB-based foundation model. Specifically, our framework consists of a RGB-based foundation model, a Multi-modal Feature Pool (MFP) module and a Supplementary Feature Injector (SFI) module. The MFP and SFI modules cooperate with each other as an adapter to effectively complement the RGB-based features with the rich RGB-IR features. During training process, we freeze the entire foundation model to inherit prior knowledge and only optimize the proposed adapter. Furthermore, to verify the effectiveness of our framework, we utilize the vanilla vision transformer (ViT-Base) as the pre-trained foundation model to perform extensive experiments. Experimental results on various RGB-IR downstream tasks demonstrate that our method can achieve state-of-the-art performance. The source code and results are available at https://github.com/PoTsui99/UniRGB-IR.git.

Model-Based Image Signal Processors via Learnable Dictionaries

Digital cameras transform sensor RAW readings into RGB images by means of their Image Signal Processor (ISP). Computational photography tasks such as image denoising and colour constancy are commonly performed in the RAW domain, in part due to the inherent hardware design, but also due to the appealing simplicity of noise statistics that result from the direct sensor readings. Despite this, the availability of RAW images is limited in comparison with the abundance and diversity of available RGB data. Recent approaches have attempted to bridge this gap by estimating the RGB to RAW mapping: handcrafted model-based methods that are interpretable and controllable usually require manual parameter fine-tuning, while end-to-end learnable neural networks require large amounts of training data, at times with complex training procedures, and generally lack interpretability and parametric control. Towards addressing these existing limitations, we present a novel hybrid model-based and data-driven ISP that builds on canonical ISP operations and is both learnable and interpretable. Our proposed invertible model, capable of bidirectional mapping between RAW and RGB domains, employs end-to-end learning of rich parameter representations, i.e. dictionaries, that are free from direct parametric supervision and additionally enable simple and plausible data augmentation. We evidence the value of our data generation process by extensive experiments under both RAW image reconstruction and RAW image denoising tasks, obtaining state-of-the-art performance in both. Additionally, we show that our ISP can learn meaningful mappings from few data samples, and that denoising models trained with our dictionary-based data augmentation are competitive despite having only few or zero ground-truth labels.

Foreground-Aware Relation Network for Geospatial Object Segmentation in High Spatial Resolution Remote Sensing Imagery

Geospatial object segmentation, as a particular semantic segmentation task, always faces with larger-scale variation, larger intra-class variance of background, and foreground-background imbalance in the high spatial resolution (HSR) remote sensing imagery. However, general semantic segmentation methods mainly focus on scale variation in the natural scene, with inadequate consideration of the other two problems that usually happen in the large area earth observation scene. In this paper, we argue that the problems lie on the lack of foreground modeling and propose a foreground-aware relation network (FarSeg) from the perspectives of relation-based and optimization-based foreground modeling, to alleviate the above two problems. From perspective of relation, FarSeg enhances the discrimination of foreground features via foreground-correlated contexts associated by learning foreground-scene relation. Meanwhile, from perspective of optimization, a foreground-aware optimization is proposed to focus on foreground examples and hard examples of background during training for a balanced optimization. The experimental results obtained using a large scale dataset suggest that the proposed method is superior to the state-of-the-art general semantic segmentation methods and achieves a better trade-off between speed and accuracy. Code has been made available at: https://github.com/Z-Zheng/FarSeg.

Leveraging Hallucinations to Reduce Manual Prompt Dependency in Promptable Segmentation

Promptable segmentation typically requires instance-specific manual prompts to guide the segmentation of each desired object. To minimize such a need, task-generic promptable segmentation has been introduced, which employs a single task-generic prompt to segment various images of different objects in the same task. Current methods use Multimodal Large Language Models (MLLMs) to reason detailed instance-specific prompts from a task-generic prompt for improving segmentation accuracy. The effectiveness of this segmentation heavily depends on the precision of these derived prompts. However, MLLMs often suffer hallucinations during reasoning, resulting in inaccurate prompting. While existing methods focus on eliminating hallucinations to improve a model, we argue that MLLM hallucinations can reveal valuable contextual insights when leveraged correctly, as they represent pre-trained large-scale knowledge beyond individual images. In this paper, we utilize hallucinations to mine task-related information from images and verify its accuracy for enhancing precision of the generated prompts. Specifically, we introduce an iterative Prompt-Mask Cycle generation framework (ProMaC) with a prompt generator and a mask generator.The prompt generator uses a multi-scale chain of thought prompting, initially exploring hallucinations for extracting extended contextual knowledge on a test image.These hallucinations are then reduced to formulate precise instance-specific prompts, directing the mask generator to produce masks that are consistent with task semantics by mask semantic alignment. The generated masks iteratively induce the prompt generator to focus more on task-relevant image areas and reduce irrelevant hallucinations, resulting jointly in better prompts and masks. Experiments on 5 benchmarks demonstrate the effectiveness of ProMaC. Code given in https://lwpyh.github.io/ProMaC/.

MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations

With the emergence of LLMs and their integration with other data modalities, multi-modal 3D perception attracts more attention due to its connectivity to the physical world and makes rapid progress. However, limited by existing datasets, previous works mainly focus on understanding object properties or inter-object spatial relationships in a 3D scene. To tackle this problem, this paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan. It is constructed based on a top-down logic, from region to object level, from a single target to inter-target relationships, covering holistic aspects of spatial and attribute understanding. The overall pipeline incorporates powerful VLMs via carefully designed prompts to initialize the annotations efficiently and further involve humans' correction in the loop to ensure the annotations are natural, correct, and comprehensive. Built upon existing 3D scanning data, the resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks. We evaluate representative baselines on our benchmarks, analyze their capabilities in different aspects, and showcase the key problems to be addressed in the future. Furthermore, we use this high-quality dataset to train state-of-the-art 3D visual grounding and LLMs and obtain remarkable performance improvement both on existing benchmarks and in-the-wild evaluation. Codes, datasets, and benchmarks will be available at https://github.com/OpenRobotLab/EmbodiedScan.

HallE-Switch: Rethinking and Controlling Object Existence Hallucinations in Large Vision Language Models for Detailed Caption

Current large vision-language models (LVLMs) achieve remarkable progress, yet there remains significant uncertainty regarding their ability to accurately apprehend visual details, that is, in performing detailed captioning. To address this, we introduce CCEval, a GPT-4 assisted evaluation method tailored for detailed captioning. Interestingly, while LVLMs demonstrate minimal object existence hallucination in existing VQA benchmarks, our proposed evaluation reveals continued susceptibility to such hallucinations. In this paper, we make the first attempt to investigate and attribute such hallucinations, including image resolution, the language decoder size, and instruction data amount, quality, granularity. Our findings underscore the unwarranted inference when the language description includes details at a finer object granularity than what the vision module can ground or verify, thus inducing hallucination. To control such hallucinations, we further attribute the reliability of captioning to contextual knowledge (involving only contextually grounded objects) and parametric knowledge (containing inferred objects by the model). Thus, we introduce HallE-Switch, a controllable LVLM in terms of Hallucination in object Existence. HallE-Switch can condition the captioning to shift between (i) exclusively depicting contextual knowledge for grounded objects and (ii) blending it with parametric knowledge to imagine inferred objects. Our method reduces hallucination by 44% compared to LLaVA_{7B} and maintains the same object coverage.

GPT-4 Enhanced Multimodal Grounding for Autonomous Driving: Leveraging Cross-Modal Attention with Large Language Models

In the field of autonomous vehicles (AVs), accurately discerning commander intent and executing linguistic commands within a visual context presents a significant challenge. This paper introduces a sophisticated encoder-decoder framework, developed to address visual grounding in AVs.Our Context-Aware Visual Grounding (CAVG) model is an advanced system that integrates five core encoders-Text, Image, Context, and Cross-Modal-with a Multimodal decoder. This integration enables the CAVG model to adeptly capture contextual semantics and to learn human emotional features, augmented by state-of-the-art Large Language Models (LLMs) including GPT-4. The architecture of CAVG is reinforced by the implementation of multi-head cross-modal attention mechanisms and a Region-Specific Dynamic (RSD) layer for attention modulation. This architectural design enables the model to efficiently process and interpret a range of cross-modal inputs, yielding a comprehensive understanding of the correlation between verbal commands and corresponding visual scenes. Empirical evaluations on the Talk2Car dataset, a real-world benchmark, demonstrate that CAVG establishes new standards in prediction accuracy and operational efficiency. Notably, the model exhibits exceptional performance even with limited training data, ranging from 50% to 75% of the full dataset. This feature highlights its effectiveness and potential for deployment in practical AV applications. Moreover, CAVG has shown remarkable robustness and adaptability in challenging scenarios, including long-text command interpretation, low-light conditions, ambiguous command contexts, inclement weather conditions, and densely populated urban environments. The code for the proposed model is available at our Github.

Compact 3D Scene Representation via Self-Organizing Gaussian Grids

3D Gaussian Splatting has recently emerged as a highly promising technique for modeling of static 3D scenes. In contrast to Neural Radiance Fields, it utilizes efficient rasterization allowing for very fast rendering at high-quality. However, the storage size is significantly higher, which hinders practical deployment, e.g.~on resource constrained devices. In this paper, we introduce a compact scene representation organizing the parameters of 3D Gaussian Splatting (3DGS) into a 2D grid with local homogeneity, ensuring a drastic reduction in storage requirements without compromising visual quality during rendering. Central to our idea is the explicit exploitation of perceptual redundancies present in natural scenes. In essence, the inherent nature of a scene allows for numerous permutations of Gaussian parameters to equivalently represent it. To this end, we propose a novel highly parallel algorithm that regularly arranges the high-dimensional Gaussian parameters into a 2D grid while preserving their neighborhood structure. During training, we further enforce local smoothness between the sorted parameters in the grid. The uncompressed Gaussians use the same structure as 3DGS, ensuring a seamless integration with established renderers. Our method achieves a reduction factor of 8x to 26x in size for complex scenes with no increase in training time, marking a substantial leap forward in the domain of 3D scene distribution and consumption. Additional information can be found on our project page: https://fraunhoferhhi.github.io/Self-Organizing-Gaussians/

DenseGAP: Graph-Structured Dense Correspondence Learning with Anchor Points

Establishing dense correspondence between two images is a fundamental computer vision problem, which is typically tackled by matching local feature descriptors. However, without global awareness, such local features are often insufficient for disambiguating similar regions. And computing the pairwise feature correlation across images is both computation-expensive and memory-intensive. To make the local features aware of the global context and improve their matching accuracy, we introduce DenseGAP, a new solution for efficient Dense correspondence learning with a Graph-structured neural network conditioned on Anchor Points. Specifically, we first propose a graph structure that utilizes anchor points to provide sparse but reliable prior on inter- and intra-image context and propagates them to all image points via directed edges. We also design a graph-structured network to broadcast multi-level contexts via light-weighted message-passing layers and generate high-resolution feature maps at low memory cost. Finally, based on the predicted feature maps, we introduce a coarse-to-fine framework for accurate correspondence prediction using cycle consistency. Our feature descriptors capture both local and global information, thus enabling a continuous feature field for querying arbitrary points at high resolution. Through comprehensive ablative experiments and evaluations on large-scale indoor and outdoor datasets, we demonstrate that our method advances the state-of-the-art of correspondence learning on most benchmarks.

Enhancing High-Resolution 3D Generation through Pixel-wise Gradient Clipping

High-resolution 3D object generation remains a challenging task primarily due to the limited availability of comprehensive annotated training data. Recent advancements have aimed to overcome this constraint by harnessing image generative models, pretrained on extensive curated web datasets, using knowledge transfer techniques like Score Distillation Sampling (SDS). Efficiently addressing the requirements of high-resolution rendering often necessitates the adoption of latent representation-based models, such as the Latent Diffusion Model (LDM). In this framework, a significant challenge arises: To compute gradients for individual image pixels, it is necessary to backpropagate gradients from the designated latent space through the frozen components of the image model, such as the VAE encoder used within LDM. However, this gradient propagation pathway has never been optimized, remaining uncontrolled during training. We find that the unregulated gradients adversely affect the 3D model's capacity in acquiring texture-related information from the image generative model, leading to poor quality appearance synthesis. To address this overarching challenge, we propose an innovative operation termed Pixel-wise Gradient Clipping (PGC) designed for seamless integration into existing 3D generative models, thereby enhancing their synthesis quality. Specifically, we control the magnitude of stochastic gradients by clipping the pixel-wise gradients efficiently, while preserving crucial texture-related gradient directions. Despite this simplicity and minimal extra cost, extensive experiments demonstrate the efficacy of our PGC in enhancing the performance of existing 3D generative models for high-resolution object rendering.

Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes

Semantic segmentation is a key technology for autonomous vehicles to understand the surrounding scenes. The appealing performances of contemporary models usually come at the expense of heavy computations and lengthy inference time, which is intolerable for self-driving. Using light-weight architectures (encoder-decoder or two-pathway) or reasoning on low-resolution images, recent methods realize very fast scene parsing, even running at more than 100 FPS on a single 1080Ti GPU. However, there is still a significant gap in performance between these real-time methods and the models based on dilation backbones. To tackle this problem, we proposed a family of efficient backbones specially designed for real-time semantic segmentation. The proposed deep dual-resolution networks (DDRNets) are composed of two deep branches between which multiple bilateral fusions are performed. Additionally, we design a new contextual information extractor named Deep Aggregation Pyramid Pooling Module (DAPPM) to enlarge effective receptive fields and fuse multi-scale context based on low-resolution feature maps. Our method achieves a new state-of-the-art trade-off between accuracy and speed on both Cityscapes and CamVid dataset. In particular, on a single 2080Ti GPU, DDRNet-23-slim yields 77.4% mIoU at 102 FPS on Cityscapes test set and 74.7% mIoU at 230 FPS on CamVid test set. With widely used test augmentation, our method is superior to most state-of-the-art models and requires much less computation. Codes and trained models are available online.

Differentiable Blocks World: Qualitative 3D Decomposition by Rendering Primitives

Given a set of calibrated images of a scene, we present an approach that produces a simple, compact, and actionable 3D world representation by means of 3D primitives. While many approaches focus on recovering high-fidelity 3D scenes, we focus on parsing a scene into mid-level 3D representations made of a small set of textured primitives. Such representations are interpretable, easy to manipulate and suited for physics-based simulations. Moreover, unlike existing primitive decomposition methods that rely on 3D input data, our approach operates directly on images through differentiable rendering. Specifically, we model primitives as textured superquadric meshes and optimize their parameters from scratch with an image rendering loss. We highlight the importance of modeling transparency for each primitive, which is critical for optimization and also enables handling varying numbers of primitives. We show that the resulting textured primitives faithfully reconstruct the input images and accurately model the visible 3D points, while providing amodal shape completions of unseen object regions. We compare our approach to the state of the art on diverse scenes from DTU, and demonstrate its robustness on real-life captures from BlendedMVS and Nerfstudio. We also showcase how our results can be used to effortlessly edit a scene or perform physical simulations. Code and video results are available at https://www.tmonnier.com/DBW .

One scalar is all you need -- absolute depth estimation using monocular self-supervision

Self-supervised monocular depth estimators can be trained or fine-tuned on new scenes using only images and no ground-truth depth data, achieving good accuracy. However, these estimators suffer from the inherent ambiguity of the depth scale, significantly limiting their applicability. In this work, we present a method for transferring the depth-scale from existing source datasets collected with ground-truth depths to depth estimators that are trained using self-supervision on a newly collected target dataset consisting of images only, solving a significant limiting factor. We show that self-supervision based on projective geometry results in predicted depths that are linearly correlated with their ground-truth depths. Moreover, the linearity of this relationship also holds when jointly training on images from two different (real or synthetic) source and target domains. We utilize this observed property and model the relationship between the ground-truth and the predicted up-to-scale depths of images from the source domain using a single global scalar. Then, we scale the predicted up-to-scale depths of images from the target domain using the estimated global scaling factor, performing depth-scale transfer between the two domains. This suggested method was evaluated on the target KITTI and DDAD datasets, while using other real or synthetic source datasets, that have a larger field-of-view, other image style or structural content. Our approach achieves competitive accuracy on KITTI, even without using the specially tailored vKITTI or vKITTI2 datasets, and higher accuracy on DDAD, when using both real or synthetic source datasets.

GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding

Applying NeRF to downstream perception tasks for scene understanding and representation is becoming increasingly popular. Most existing methods treat semantic prediction as an additional rendering task, i.e., the "label rendering" task, to build semantic NeRFs. However, by rendering semantic/instance labels per pixel without considering the contextual information of the rendered image, these methods usually suffer from unclear boundary segmentation and abnormal segmentation of pixels within an object. To solve this problem, we propose Generalized Perception NeRF (GP-NeRF), a novel pipeline that makes the widely used segmentation model and NeRF work compatibly under a unified framework, for facilitating context-aware 3D scene perception. To accomplish this goal, we introduce transformers to aggregate radiance as well as semantic embedding fields jointly for novel views and facilitate the joint volumetric rendering of both fields. In addition, we propose two self-distillation mechanisms, i.e., the Semantic Distill Loss and the Depth-Guided Semantic Distill Loss, to enhance the discrimination and quality of the semantic field and the maintenance of geometric consistency. In evaluation, we conduct experimental comparisons under two perception tasks (i.e. semantic and instance segmentation) using both synthetic and real-world datasets. Notably, our method outperforms SOTA approaches by 6.94\%, 11.76\%, and 8.47\% on generalized semantic segmentation, finetuning semantic segmentation, and instance segmentation, respectively.

Look at the Neighbor: Distortion-aware Unsupervised Domain Adaptation for Panoramic Semantic Segmentation

Endeavors have been recently made to transfer knowledge from the labeled pinhole image domain to the unlabeled panoramic image domain via Unsupervised Domain Adaptation (UDA). The aim is to tackle the domain gaps caused by the style disparities and distortion problem from the non-uniformly distributed pixels of equirectangular projection (ERP). Previous works typically focus on transferring knowledge based on geometric priors with specially designed multi-branch network architectures. As a result, considerable computational costs are induced, and meanwhile, their generalization abilities are profoundly hindered by the variation of distortion among pixels. In this paper, we find that the pixels' neighborhood regions of the ERP indeed introduce less distortion. Intuitively, we propose a novel UDA framework that can effectively address the distortion problems for panoramic semantic segmentation. In comparison, our method is simpler, easier to implement, and more computationally efficient. Specifically, we propose distortion-aware attention (DA) capturing the neighboring pixel distribution without using any geometric constraints. Moreover, we propose a class-wise feature aggregation (CFA) module to iteratively update the feature representations with a memory bank. As such, the feature similarity between two domains can be consistently optimized. Extensive experiments show that our method achieves new state-of-the-art performance while remarkably reducing 80% parameters.

SparseNeRF: Distilling Depth Ranking for Few-shot Novel View Synthesis

Neural Radiance Field (NeRF) significantly degrades when only a limited number of views are available. To complement the lack of 3D information, depth-based models, such as DSNeRF and MonoSDF, explicitly assume the availability of accurate depth maps of multiple views. They linearly scale the accurate depth maps as supervision to guide the predicted depth of few-shot NeRFs. However, accurate depth maps are difficult and expensive to capture due to wide-range depth distances in the wild. In this work, we present a new Sparse-view NeRF (SparseNeRF) framework that exploits depth priors from real-world inaccurate observations. The inaccurate depth observations are either from pre-trained depth models or coarse depth maps of consumer-level depth sensors. Since coarse depth maps are not strictly scaled to the ground-truth depth maps, we propose a simple yet effective constraint, a local depth ranking method, on NeRFs such that the expected depth ranking of the NeRF is consistent with that of the coarse depth maps in local patches. To preserve the spatial continuity of the estimated depth of NeRF, we further propose a spatial continuity constraint to encourage the consistency of the expected depth continuity of NeRF with coarse depth maps. Surprisingly, with simple depth ranking constraints, SparseNeRF outperforms all state-of-the-art few-shot NeRF methods (including depth-based models) on standard LLFF and DTU datasets. Moreover, we collect a new dataset NVS-RGBD that contains real-world depth maps from Azure Kinect, ZED 2, and iPhone 13 Pro. Extensive experiments on NVS-RGBD dataset also validate the superiority and generalizability of SparseNeRF. Code and dataset are available at https://sparsenerf.github.io/.

View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields

Large-scale vision foundation models such as Segment Anything (SAM) demonstrate impressive performance in zero-shot image segmentation at multiple levels of granularity. However, these zero-shot predictions are rarely 3D-consistent. As the camera viewpoint changes in a scene, so do the segmentation predictions, as well as the characterizations of "coarse" or "fine" granularity. In this work, we address the challenging task of lifting multi-granular and view-inconsistent image segmentations into a hierarchical and 3D-consistent representation. We learn a novel feature field within a Neural Radiance Field (NeRF) representing a 3D scene, whose segmentation structure can be revealed at different scales by simply using different thresholds on feature distance. Our key idea is to learn an ultrametric feature space, which unlike a Euclidean space, exhibits transitivity in distance-based grouping, naturally leading to a hierarchical clustering. Put together, our method takes view-inconsistent multi-granularity 2D segmentations as input and produces a hierarchy of 3D-consistent segmentations as output. We evaluate our method and several baselines on synthetic datasets with multi-view images and multi-granular segmentation, showcasing improved accuracy and viewpoint-consistency. We additionally provide qualitative examples of our model's 3D hierarchical segmentations in real world scenes. The code and dataset are available at https://github.com/hardyho/ultrametric_feature_fields

Interpreting Object-level Foundation Models via Visual Precision Search

Advances in multimodal pre-training have propelled object-level foundation models, such as Grounding DINO and Florence-2, in tasks like visual grounding and object detection. However, interpreting these models\' decisions has grown increasingly challenging. Existing interpretable attribution methods for object-level task interpretation have notable limitations: (1) gradient-based methods lack precise localization due to visual-textual fusion in foundation models, and (2) perturbation-based methods produce noisy saliency maps, limiting fine-grained interpretability. To address these, we propose a Visual Precision Search method that generates accurate attribution maps with fewer regions. Our method bypasses internal model parameters to overcome attribution issues from multimodal fusion, dividing inputs into sparse sub-regions and using consistency and collaboration scores to accurately identify critical decision-making regions. We also conducted a theoretical analysis of the boundary guarantees and scope of applicability of our method. Experiments on RefCOCO, MS COCO, and LVIS show our approach enhances object-level task interpretability over SOTA for Grounding DINO and Florence-2 across various evaluation metrics, with faithfulness gains of 23.7\%, 31.6\%, and 20.1\% on MS COCO, LVIS, and RefCOCO for Grounding DINO, and 102.9\% and 66.9\% on MS COCO and RefCOCO for Florence-2. Additionally, our method can interpret failures in visual grounding and object detection tasks, surpassing existing methods across multiple evaluation metrics. The code will be released at https://github.com/RuoyuChen10/VPS.