52 Phantom: Subject-consistent video generation via cross-modal alignment The continuous development of foundational models for video generation is evolving into various applications, with subject-consistent video generation still in the exploratory stage. We refer to this as Subject-to-Video, which extracts subject elements from reference images and generates subject-consistent video through textual instructions. We believe that the essence of subject-to-video lies in balancing the dual-modal prompts of text and image, thereby deeply and simultaneously aligning both text and visual content. To this end, we propose Phantom, a unified video generation framework for both single and multi-subject references. Building on existing text-to-video and image-to-video architectures, we redesign the joint text-image injection model and drive it to learn cross-modal alignment via text-image-video triplet data. In particular, we emphasize subject consistency in human generation, covering existing ID-preserving video generation while offering enhanced advantages. The project homepage is here https://phantom-video.github.io/Phantom/. 7 authors · Feb 16 2
29 Phantom of Latent for Large Language and Vision Models The success of visual instruction tuning has accelerated the development of large language and vision models (LLVMs). Following the scaling laws of instruction-tuned large language models (LLMs), LLVMs either have further increased their sizes, reaching 26B, 34B, and even 80B parameters. While this increase in model size has yielded significant performance gains, it demands substantially more hardware resources for both training and inference. Consequently, there naturally exists a strong need for efficient LLVMs that achieve the performance of larger models while being smaller in size. To achieve this need, we present a new efficient LLVM family with model sizes of 0.5B, 1.8B, 3.8B, and 7B parameters, Phantom, which significantly enhances learning capabilities within limited structures. By temporarily increasing the latent hidden dimension during multi-head self-attention (MHSA), we make LLVMs prepare to look and understand much more vision-language knowledge on the latent, without substantially increasing physical model sizes. To maximize its advantage, we introduce Phantom Optimization (PO) using both autoregressive supervised fine-tuning (SFT) and direct preference optimization (DPO)-like concept, which effectively follows correct answers while eliminating incorrect and ambiguous ones. Phantom outperforms numerous larger open- and closed-source LLVMs, positioning itself as a leading solution in the landscape of efficient LLVMs. 5 authors · Sep 23, 2024 2
1 PHAnToM: Personality Has An Effect on Theory-of-Mind Reasoning in Large Language Models Recent advances in large language models (LLMs) demonstrate that their capabilities are comparable, or even superior, to humans in many tasks in natural language processing. Despite this progress, LLMs are still inadequate at social-cognitive reasoning, which humans are naturally good at. Drawing inspiration from psychological research on the links between certain personality traits and Theory-of-Mind (ToM) reasoning, and from prompt engineering research on the hyper-sensitivity of prompts in affecting LLMs capabilities, this study investigates how inducing personalities in LLMs using prompts affects their ToM reasoning capabilities. Our findings show that certain induced personalities can significantly affect the LLMs' reasoning capabilities in three different ToM tasks. In particular, traits from the Dark Triad have a larger variable effect on LLMs like GPT-3.5, Llama 2, and Mistral across the different ToM tasks. We find that LLMs that exhibit a higher variance across personality prompts in ToM also tends to be more controllable in personality tests: personality traits in LLMs like GPT-3.5, Llama 2 and Mistral can be controllably adjusted through our personality prompts. In today's landscape where role-play is a common strategy when using LLMs, our research highlights the need for caution, as models that adopt specific personas with personalities potentially also alter their reasoning abilities in an unexpected manner. 9 authors · Mar 4, 2024
- PhantomWiki: On-Demand Datasets for Reasoning and Retrieval Evaluation High-quality benchmarks are essential for evaluating reasoning and retrieval capabilities of large language models (LLMs). However, curating datasets for this purpose is not a permanent solution as they are prone to data leakage and inflated performance results. To address these challenges, we propose PhantomWiki: a pipeline to generate unique, factually consistent document corpora with diverse question-answer pairs. Unlike prior work, PhantomWiki is neither a fixed dataset, nor is it based on any existing data. Instead, a new PhantomWiki instance is generated on demand for each evaluation. We vary the question difficulty and corpus size to disentangle reasoning and retrieval capabilities respectively, and find that PhantomWiki datasets are surprisingly challenging for frontier LLMs. Thus, we contribute a scalable and data leakage-resistant framework for disentangled evaluation of reasoning, retrieval, and tool-use abilities. Our code is available at https://github.com/kilian-group/phantom-wiki. 9 authors · Feb 27
- Phantom: General Trigger Attacks on Retrieval Augmented Language Generation Retrieval Augmented Generation (RAG) expands the capabilities of modern large language models (LLMs) in chatbot applications, enabling developers to adapt and personalize the LLM output without expensive training or fine-tuning. RAG systems use an external knowledge database to retrieve the most relevant documents for a given query, providing this context to the LLM generator. While RAG achieves impressive utility in many applications, its adoption to enable personalized generative models introduces new security risks. In this work, we propose new attack surfaces for an adversary to compromise a victim's RAG system, by injecting a single malicious document in its knowledge database. We design Phantom, general two-step attack framework against RAG augmented LLMs. The first step involves crafting a poisoned document designed to be retrieved by the RAG system within the top-k results only when an adversarial trigger, a specific sequence of words acting as backdoor, is present in the victim's queries. In the second step, a specially crafted adversarial string within the poisoned document triggers various adversarial attacks in the LLM generator, including denial of service, reputation damage, privacy violations, and harmful behaviors. We demonstrate our attacks on multiple LLM architectures, including Gemma, Vicuna, and Llama. 8 authors · May 30, 2024
- MODIPHY: Multimodal Obscured Detection for IoT using PHantom Convolution-Enabled Faster YOLO Low-light conditions and occluded scenarios impede object detection in real-world Internet of Things (IoT) applications like autonomous vehicles and security systems. While advanced machine learning models strive for accuracy, their computational demands clash with the limitations of resource-constrained devices, hampering real-time performance. In our current research, we tackle this challenge, by introducing "YOLO Phantom", one of the smallest YOLO models ever conceived. YOLO Phantom utilizes the novel Phantom Convolution block, achieving comparable accuracy to the latest YOLOv8n model while simultaneously reducing both parameters and model size by 43%, resulting in a significant 19% reduction in Giga Floating Point Operations (GFLOPs). YOLO Phantom leverages transfer learning on our multimodal RGB-infrared dataset to address low-light and occlusion issues, equipping it with robust vision under adverse conditions. Its real-world efficacy is demonstrated on an IoT platform with advanced low-light and RGB cameras, seamlessly connecting to an AWS-based notification endpoint for efficient real-time object detection. Benchmarks reveal a substantial boost of 17% and 14% in frames per second (FPS) for thermal and RGB detection, respectively, compared to the baseline YOLOv8n model. For community contribution, both the code and the multimodal dataset are available on GitHub. 3 authors · Feb 12, 2024
- Metal artefact reduction sequences for a piezoelectric bone conduction implant using a realistic head phantom in MRI Industry standards require medical device manufacturers to perform implant-induced artefact testing in phantoms at a pre-clinical stage to define the extent of artefacts that can be expected during MRI. Once a device is commercially available, studies on volunteers, cadavers or patients are performed to investigate implant-induced artefacts and artefact reduction methods more in-depth. This study describes the design and evaluation of a realistic head phantom for pre-clinical implant-induced artefact testing in a relevant environment. A case study is performed where a state-of-the-art piezoelectric bone conduction implant is used in the 1.5 T and 3 T MRI environments. Images were acquired using clinical and novel metal artefact reducing (MARS) sequences at both field strengths. Artefact width and length were measured in a healthy volunteer and compared with artefact sizes obtained in the phantom. Artefact sizes are reported that are similar in shape between the phantom and a volunteer, yet with dimensions differing up to 20% between both. When the implant magnet is removed, the artefact size can be reduced below a diameter of 5 cm, whilst the presence of an implant magnet and splint creates higher artefacts up to 20 cm in diameter. Pulse sequences have been altered to reduce the scan time up to 7 minutes, while preserving the image quality. These results show that the anthropomorphic phantom can be used at a preclinical stage to provide clinically relevant images, illustrating the impact of the artefact on important brain structures. 5 authors · Jun 6, 2023