Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeContinuous Output Personality Detection Models via Mixed Strategy Training
The traditional personality models only yield binary results. This paper presents a novel approach for training personality detection models that produce continuous output values, using mixed strategies. By leveraging the PANDORA dataset, which includes extensive personality labeling of Reddit comments, we developed models that predict the Big Five personality traits with high accuracy. Our approach involves fine-tuning a RoBERTa-base model with various strategies such as Multi-Layer Perceptron (MLP) integration, and hyperparameter tuning. The results demonstrate that our models significantly outperform traditional binary classification methods, offering precise continuous outputs for personality traits, thus enhancing applications in AI, psychology, human resources, marketing and health care fields.
Orca: Enhancing Role-Playing Abilities of Large Language Models by Integrating Personality Traits
Large language models has catalyzed the development of personalized dialogue systems, numerous role-playing conversational agents have emerged. While previous research predominantly focused on enhancing the model's capability to follow instructions by designing character profiles, neglecting the psychological factors that drive human conversations. In this paper, we propose Orca, a framework for data processing and training LLMs of custom characters by integrating personality traits. Orca comprises four stages: (1) Personality traits inferring, leverage LLMs to infer user's BigFive personality trait reports and scores. (2) Data Augment, simulate user's profile, background story, and psychological activities. (3) Dataset construction, personality-conditioned instruction prompting (PCIP) to stimulate LLMs. (4) Modeling and Training, personality-conditioned instruction tuning (PTIT and PSIT), using the generated data to enhance existing open-source LLMs. We introduce OrcaBench, the first benchmark for evaluating the quality of content generated by LLMs on social platforms across multiple scales. Our experiments demonstrate that our proposed model achieves superior performance on this benchmark, demonstrating its excellence and effectiveness in perceiving personality traits that significantly improve role-playing abilities. Our Code is available at https://github.com/Aipura/Orca.
Personality Alignment of Large Language Models
Current methods for aligning large language models (LLMs) typically aim to reflect general human values and behaviors, but they often fail to capture the unique characteristics and preferences of individual users. To address this gap, we introduce the concept of Personality Alignment. This approach tailors LLMs' responses and decisions to match the specific preferences of individual users or closely related groups. Inspired by psychometrics, we created the Personality Alignment with Personality Inventories (PAPI) dataset, which includes data from 300,000 real subjects, each providing behavioral preferences based on the Big Five Personality Factors. This dataset allows us to quantitatively evaluate the extent to which LLMs can align with each subject's behavioral patterns. Recognizing the challenges of personality alignments: such as limited personal data, diverse preferences, and scalability requirements: we developed an activation intervention optimization method. This method enhances LLMs' ability to efficiently align with individual behavioral preferences using minimal data and computational resources. Remarkably, our method, PAS, achieves superior performance while requiring only 1/5 of the optimization time compared to DPO, offering practical value for personality alignment. Our work paves the way for future AI systems to make decisions and reason in truly personality ways, enhancing the relevance and meaning of AI interactions for each user and advancing human-centered artificial intelligence.The code has released in https://github.com/zhu-minjun/PAlign.
Personalized Dialogue Generation with Diversified Traits
Endowing a dialogue system with particular personality traits is essential to deliver more human-like conversations. However, due to the challenge of embodying personality via language expression and the lack of large-scale persona-labeled dialogue data, this research problem is still far from well-studied. In this paper, we investigate the problem of incorporating explicit personality traits in dialogue generation to deliver personalized dialogues. To this end, firstly, we construct PersonalDialog, a large-scale multi-turn dialogue dataset containing various traits from a large number of speakers. The dataset consists of 20.83M sessions and 56.25M utterances from 8.47M speakers. Each utterance is associated with a speaker who is marked with traits like Age, Gender, Location, Interest Tags, etc. Several anonymization schemes are designed to protect the privacy of each speaker. This large-scale dataset will facilitate not only the study of personalized dialogue generation, but also other researches on sociolinguistics or social science. Secondly, to study how personality traits can be captured and addressed in dialogue generation, we propose persona-aware dialogue generation models within the sequence to sequence learning framework. Explicit personality traits (structured by key-value pairs) are embedded using a trait fusion module. During the decoding process, two techniques, namely persona-aware attention and persona-aware bias, are devised to capture and address trait-related information. Experiments demonstrate that our model is able to address proper traits in different contexts. Case studies also show interesting results for this challenging research problem.
Do LLMs Possess a Personality? Making the MBTI Test an Amazing Evaluation for Large Language Models
The field of large language models (LLMs) has made significant progress, and their knowledge storage capacity is approaching that of human beings. Furthermore, advanced techniques, such as prompt learning and reinforcement learning, are being employed to address ethical concerns and hallucination problems associated with LLMs, bringing them closer to aligning with human values. This situation naturally raises the question of whether LLMs with human-like abilities possess a human-like personality? In this paper, we aim to investigate the feasibility of using the Myers-Briggs Type Indicator (MBTI), a widespread human personality assessment tool, as an evaluation metric for LLMs. Specifically, extensive experiments will be conducted to explore: 1) the personality types of different LLMs, 2) the possibility of changing the personality types by prompt engineering, and 3) How does the training dataset affect the model's personality. Although the MBTI is not a rigorous assessment, it can still reflect the similarity between LLMs and human personality. In practice, the MBTI has the potential to serve as a rough indicator. Our codes are available at https://github.com/HarderThenHarder/transformers_tasks/tree/main/LLM/llms_mbti.
MIRACLE: Towards Personalized Dialogue Generation with Latent-Space Multiple Personal Attribute Control
Personalized dialogue systems aim to endow the chatbot agent with more anthropomorphic traits for human-like interactions. Previous approaches have explored explicitly user profile modeling using text descriptions, implicit derivation of user embeddings, or utilizing handicraft prompts for ChatGPT-like models. However, textual personas are limited in describing multi-faceted attributes (e.g., language style, inner character nuances), implicit embedding suffers from personality sparsity, and handicraft prompts lack fine-grained and stable controllability. Hence, these approaches may struggle with complex personalized dialogue generation tasks that require generating controllable responses with multiple personal attributes. To this end, we propose \textsc{Miracle}, a novel personalized dialogue generation method through MultIple PeRsonal Attributes Control within Latent-Space Energy-based Models. ttributes Control within Latent-Space Energy-based Models. Specifically, our approach first disentangles complex personality into multi-faceted attributes. Subsequently, we employ a conditional variational auto-encoder to align with the dense personalized responses within a latent joint attribute space. We have also tailored a dedicated energy function and customized the ordinary differential equations sampling method to offer flexible attribute composition and precise attribute control. Extensive experiments demonstrate that Miracle outperforms several strong baselines in terms of personality controllability and response generation quality. Our dataset and code are available at https://github.com/LZY-the-boys/MIRACLE
Identifying and Manipulating Personality Traits in LLMs Through Activation Engineering
The field of large language models (LLMs) has grown rapidly in recent years, driven by the desire for better efficiency, interpretability, and safe use. Building on the novel approach of "activation engineering," this study explores personality modification in LLMs, drawing inspiration from research like Refusal in LLMs Is Mediated by a Single Direction (arXiv:2406.11717) and Steering Llama 2 via Contrastive Activation Addition (arXiv:2312.06681). We leverage activation engineering to develop a method for identifying and adjusting activation directions related to personality traits, which may allow for dynamic LLM personality fine-tuning. This work aims to further our understanding of LLM interpretability while examining the ethical implications of such developments.
LLM Agents in Interaction: Measuring Personality Consistency and Linguistic Alignment in Interacting Populations of Large Language Models
While both agent interaction and personalisation are vibrant topics in research on large language models (LLMs), there has been limited focus on the effect of language interaction on the behaviour of persona-conditioned LLM agents. Such an endeavour is important to ensure that agents remain consistent to their assigned traits yet are able to engage in open, naturalistic dialogues. In our experiments, we condition GPT-3.5 on personality profiles through prompting and create a two-group population of LLM agents using a simple variability-inducing sampling algorithm. We then administer personality tests and submit the agents to a collaborative writing task, finding that different profiles exhibit different degrees of personality consistency and linguistic alignment to their conversational partners. Our study seeks to lay the groundwork for better understanding of dialogue-based interaction between LLMs and highlights the need for new approaches to crafting robust, more human-like LLM personas for interactive environments.
Beyond Discrete Personas: Personality Modeling Through Journal Intensive Conversations
Large Language Models (LLMs) have significantly improved personalized conversational capabilities. However, existing datasets like Persona Chat, Synthetic Persona Chat, and Blended Skill Talk rely on static, predefined personas. This approach often results in dialogues that fail to capture human personalities' fluid and evolving nature. To overcome these limitations, we introduce a novel dataset with around 400,000 dialogues and a framework for generating personalized conversations using long-form journal entries from Reddit. Our approach clusters journal entries for each author and filters them by selecting the most representative cluster, ensuring that the retained entries best reflect the author's personality. We further refine the data by capturing the Big Five personality traits --openness, conscientiousness, extraversion, agreeableness, and neuroticism --ensuring that dialogues authentically reflect an individual's personality. Using Llama 3 70B, we generate high-quality, personality-rich dialogues grounded in these journal entries. Fine-tuning models on this dataset leads to an 11% improvement in capturing personality traits on average, outperforming existing approaches in generating more coherent and personality-driven dialogues.
BIG5-CHAT: Shaping LLM Personalities Through Training on Human-Grounded Data
In this work, we tackle the challenge of embedding realistic human personality traits into LLMs. Previous approaches have primarily focused on prompt-based methods that describe the behavior associated with the desired personality traits, suffering from realism and validity issues. To address these limitations, we introduce BIG5-CHAT, a large-scale dataset containing 100,000 dialogues designed to ground models in how humans express their personality in text. Leveraging this dataset, we explore Supervised Fine-Tuning and Direct Preference Optimization as training-based methods to align LLMs more naturally with human personality patterns. Our methods outperform prompting on personality assessments such as BFI and IPIP-NEO, with trait correlations more closely matching human data. Furthermore, our experiments reveal that models trained to exhibit higher conscientiousness, higher agreeableness, lower extraversion, and lower neuroticism display better performance on reasoning tasks, aligning with psychological findings on how these traits impact human cognitive performance. To our knowledge, this work is the first comprehensive study to demonstrate how training-based methods can shape LLM personalities through learning from real human behaviors.
Personality Traits in Large Language Models
The advent of large language models (LLMs) has revolutionized natural language processing, enabling the generation of coherent and contextually relevant text. As LLMs increasingly power conversational agents, the synthesized personality embedded in these models by virtue of their training on large amounts of human-generated data draws attention. Since personality is an important factor determining the effectiveness of communication, we present a comprehensive method for administering validated psychometric tests and quantifying, analyzing, and shaping personality traits exhibited in text generated from widely-used LLMs. We find that: 1) personality simulated in the outputs of some LLMs (under specific prompting configurations) is reliable and valid; 2) evidence of reliability and validity of LLM-simulated personality is stronger for larger and instruction fine-tuned models; and 3) personality in LLM outputs can be shaped along desired dimensions to mimic specific personality profiles. We also discuss potential applications and ethical implications of our measurement and shaping framework, especially regarding responsible use of LLMs.
CharacterChat: Learning towards Conversational AI with Personalized Social Support
In our modern, fast-paced, and interconnected world, the importance of mental well-being has grown into a matter of great urgency. However, traditional methods such as Emotional Support Conversations (ESC) face challenges in effectively addressing a diverse range of individual personalities. In response, we introduce the Social Support Conversation (S2Conv) framework. It comprises a series of support agents and the interpersonal matching mechanism, linking individuals with persona-compatible virtual supporters. Utilizing persona decomposition based on the MBTI (Myers-Briggs Type Indicator), we have created the MBTI-1024 Bank, a group that of virtual characters with distinct profiles. Through improved role-playing prompts with behavior preset and dynamic memory, we facilitate the development of the MBTI-S2Conv dataset, which contains conversations between the characters in the MBTI-1024 Bank. Building upon these foundations, we present CharacterChat, a comprehensive S2Conv system, which includes a conversational model driven by personas and memories, along with an interpersonal matching plugin model that dispatches the optimal supporters from the MBTI-1024 Bank for individuals with specific personas. Empirical results indicate the remarkable efficacy of CharacterChat in providing personalized social support and highlight the substantial advantages derived from interpersonal matching. The source code is available in https://github.com/morecry/CharacterChat.
Automatically Select Emotion for Response via Personality-affected Emotion Transition
To provide consistent emotional interaction with users, dialog systems should be capable to automatically select appropriate emotions for responses like humans. However, most existing works focus on rendering specified emotions in responses or empathetically respond to the emotion of users, yet the individual difference in emotion expression is overlooked. This may lead to inconsistent emotional expressions and disinterest users. To tackle this issue, we propose to equip the dialog system with personality and enable it to automatically select emotions in responses by simulating the emotion transition of humans in conversation. In detail, the emotion of the dialog system is transitioned from its preceding emotion in context. The transition is triggered by the preceding dialog context and affected by the specified personality trait. To achieve this, we first model the emotion transition in the dialog system as the variation between the preceding emotion and the response emotion in the Valence-Arousal-Dominance (VAD) emotion space. Then, we design neural networks to encode the preceding dialog context and the specified personality traits to compose the variation. Finally, the emotion for response is selected from the sum of the preceding emotion and the variation. We construct a dialog dataset with emotion and personality labels and conduct emotion prediction tasks for evaluation. Experimental results validate the effectiveness of the personality-affected emotion transition.
PSYDIAL: Personality-based Synthetic Dialogue Generation using Large Language Models
We present a novel end-to-end personality-based synthetic dialogue data generation pipeline, specifically designed to elicit responses from large language models via prompting. We design the prompts to generate more human-like dialogues considering real-world scenarios when users engage with chatbots. We introduce PSYDIAL, the first Korean dialogue dataset focused on personality-based dialogues, curated using our proposed pipeline. Notably, we focus on the Extraversion dimension of the Big Five personality model in our research. Experimental results indicate that while pre-trained models and those fine-tuned with a chit-chat dataset struggle to generate responses reflecting personality, models trained with PSYDIAL show significant improvements. The versatility of our pipeline extends beyond dialogue tasks, offering potential for other non-dialogue related applications. This research opens doors for more nuanced, personality-driven conversational AI in Korean and potentially other languages. Our code is publicly available at https://github.com/jiSilverH/psydial.
Pushing on Personality Detection from Verbal Behavior: A Transformer Meets Text Contours of Psycholinguistic Features
Research at the intersection of personality psychology, computer science, and linguistics has recently focused increasingly on modeling and predicting personality from language use. We report two major improvements in predicting personality traits from text data: (1) to our knowledge, the most comprehensive set of theory-based psycholinguistic features and (2) hybrid models that integrate a pre-trained Transformer Language Model BERT and Bidirectional Long Short-Term Memory (BLSTM) networks trained on within-text distributions ('text contours') of psycholinguistic features. We experiment with BLSTM models (with and without Attention) and with two techniques for applying pre-trained language representations from the transformer model - 'feature-based' and 'fine-tuning'. We evaluate the performance of the models we built on two benchmark datasets that target the two dominant theoretical models of personality: the Big Five Essay dataset and the MBTI Kaggle dataset. Our results are encouraging as our models outperform existing work on the same datasets. More specifically, our models achieve improvement in classification accuracy by 2.9% on the Essay dataset and 8.28% on the Kaggle MBTI dataset. In addition, we perform ablation experiments to quantify the impact of different categories of psycholinguistic features in the respective personality prediction models.
Dynamic Generation of Personalities with Large Language Models
In the realm of mimicking human deliberation, large language models (LLMs) show promising performance, thereby amplifying the importance of this research area. Deliberation is influenced by both logic and personality. However, previous studies predominantly focused on the logic of LLMs, neglecting the exploration of personality aspects. In this work, we introduce Dynamic Personality Generation (DPG), a dynamic personality generation method based on Hypernetworks. Initially, we embed the Big Five personality theory into GPT-4 to form a personality assessment machine, enabling it to evaluate characters' personality traits from dialogues automatically. We propose a new metric to assess personality generation capability based on this evaluation method. Then, we use this personality assessment machine to evaluate dialogues in script data, resulting in a personality-dialogue dataset. Finally, we fine-tune DPG on the personality-dialogue dataset. Experiments prove that DPG's personality generation capability is stronger after fine-tuning on this dataset than traditional fine-tuning methods, surpassing prompt-based GPT-4.
Editing Personality for LLMs
This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs). This task seeks to adjust the models' responses to opinion-related questions on specified topics since an individual's personality often manifests in the form of their expressed opinions, thereby showcasing different personality traits. Specifically, we construct a new benchmark dataset PersonalityEdit to address this task. Drawing on the theory in Social Psychology, we isolate three representative traits, namely Neuroticism, Extraversion, and Agreeableness, as the foundation for our benchmark. We then gather data using GPT-4, generating responses that not only align with a specified topic but also embody the targeted personality trait. We conduct comprehensive experiments involving various baselines and discuss the representation of personality behavior in LLMs. Our intriguing findings uncover potential challenges of the proposed task, illustrating several remaining issues. We anticipate that our work can provide the NLP community with insights. Code and datasets will be released at https://github.com/zjunlp/EasyEdit.
LLMs Simulate Big Five Personality Traits: Further Evidence
An empirical investigation into the simulation of the Big Five personality traits by large language models (LLMs), namely Llama2, GPT4, and Mixtral, is presented. We analyze the personality traits simulated by these models and their stability. This contributes to the broader understanding of the capabilities of LLMs to simulate personality traits and the respective implications for personalized human-computer interaction.
Do LLMs Have Distinct and Consistent Personality? TRAIT: Personality Testset designed for LLMs with Psychometrics
The idea of personality in descriptive psychology, traditionally defined through observable behavior, has now been extended to Large Language Models (LLMs) to better understand their behavior. This raises a question: do LLMs exhibit distinct and consistent personality traits, similar to humans? Existing self-assessment personality tests, while applicable, lack the necessary validity and reliability for precise personality measurements. To address this, we introduce TRAIT, a new tool consisting of 8K multi-choice questions designed to assess the personality of LLMs with validity and reliability. TRAIT is built on the psychometrically validated human questionnaire, Big Five Inventory (BFI) and Short Dark Triad (SD-3), enhanced with the ATOMIC10X knowledge graph for testing personality in a variety of real scenarios. TRAIT overcomes the reliability and validity issues when measuring personality of LLM with self-assessment, showing the highest scores across three metrics: refusal rate, prompt sensitivity, and option order sensitivity. It reveals notable insights into personality of LLM: 1) LLMs exhibit distinct and consistent personality, which is highly influenced by their training data (i.e., data used for alignment tuning), and 2) current prompting techniques have limited effectiveness in eliciting certain traits, such as high psychopathy or low conscientiousness, suggesting the need for further research in this direction.
Eliciting Personality Traits in Large Language Models
Large Language Models (LLMs) are increasingly being utilized by both candidates and employers in the recruitment context. However, with this comes numerous ethical concerns, particularly related to the lack of transparency in these "black-box" models. Although previous studies have sought to increase the transparency of these models by investigating the personality traits of LLMs, many of the previous studies have provided them with personality assessments to complete. On the other hand, this study seeks to obtain a better understanding of such models by examining their output variations based on different input prompts. Specifically, we use a novel elicitation approach using prompts derived from common interview questions, as well as prompts designed to elicit particular Big Five personality traits to examine whether the models were susceptible to trait-activation like humans are, to measure their personality based on the language used in their outputs. To do so, we repeatedly prompted multiple LMs with different parameter sizes, including Llama-2, Falcon, Mistral, Bloom, GPT, OPT, and XLNet (base and fine tuned versions) and examined their personality using classifiers trained on the myPersonality dataset. Our results reveal that, generally, all LLMs demonstrate high openness and low extraversion. However, whereas LMs with fewer parameters exhibit similar behaviour in personality traits, newer and LMs with more parameters exhibit a broader range of personality traits, with increased agreeableness, emotional stability, and openness. Furthermore, a greater number of parameters is positively associated with openness and conscientiousness. Moreover, fine-tuned models exhibit minor modulations in their personality traits, contingent on the dataset. Implications and directions for future research are discussed.
EERPD: Leveraging Emotion and Emotion Regulation for Improving Personality Detection
Personality is a fundamental construct in psychology, reflecting an individual's behavior, thinking, and emotional patterns. Previous researches have made some progress in personality detection, primarily by utilizing the whole text to predict personality. However, these studies generally tend to overlook psychological knowledge: they rarely apply the well-established correlations between emotion regulation and personality. Based on this, we propose a new personality detection method called EERPD. This method introduces the use of emotion regulation, a psychological concept highly correlated with personality, for personality prediction. By combining this feature with emotion features, it retrieves few-shot examples and provides process CoTs for inferring labels from text. This approach enhances the understanding of LLM for personality within text and improves the performance in personality detection. Experimental results demonstrate that EERPD significantly enhances the accuracy and robustness of personality detection, outperforming previous SOTA by 15.05/4.29 in average F1 on the two benchmark datasets.
PsyPlay: Personality-Infused Role-Playing Conversational Agents
The current research on Role-Playing Conversational Agents (RPCAs) with Large Language Models (LLMs) primarily focuses on imitating specific speaking styles and utilizing character backgrounds, neglecting the depiction of deeper personality traits.~In this study, we introduce personality-infused role-playing for LLM agents, which encourages agents to accurately portray their designated personality traits during dialogues. We then propose PsyPlay, a dialogue generation framework that facilitates the expression of rich personalities among multiple LLM agents. Specifically, PsyPlay enables agents to assume roles with distinct personality traits and engage in discussions centered around specific topics, consistently exhibiting their designated personality traits throughout the interactions. Validation on generated dialogue data demonstrates that PsyPlay can accurately portray the intended personality traits, achieving an overall success rate of 80.31% on GPT-3.5. Notably, we observe that LLMs aligned with positive values are more successful in portraying positive personality roles compared to negative ones. Moreover, we construct a dialogue corpus for personality-infused role-playing, called PsyPlay-Bench. The corpus, which consists of 4745 instances of correctly portrayed dialogues using PsyPlay, aims to further facilitate research in personalized role-playing and dialogue personality detection.
SPeCtrum: A Grounded Framework for Multidimensional Identity Representation in LLM-Based Agent
Existing methods for simulating individual identities often oversimplify human complexity, which may lead to incomplete or flattened representations. To address this, we introduce SPeCtrum, a grounded framework for constructing authentic LLM agent personas by incorporating an individual's multidimensional self-concept. SPeCtrum integrates three core components: Social Identity (S), Personal Identity (P), and Personal Life Context (C), each contributing distinct yet interconnected aspects of identity. To evaluate SPeCtrum's effectiveness in identity representation, we conducted automated and human evaluations. Automated evaluations using popular drama characters showed that Personal Life Context (C)-derived from short essays on preferences and daily routines-modeled characters' identities more effectively than Social Identity (S) and Personal Identity (P) alone and performed comparably to the full SPC combination. In contrast, human evaluations involving real-world individuals found that the full SPC combination provided a more comprehensive self-concept representation than C alone. Our findings suggest that while C alone may suffice for basic identity simulation, integrating S, P, and C enhances the authenticity and accuracy of real-world identity representation. Overall, SPeCtrum offers a structured approach for simulating individuals in LLM agents, enabling more personalized human-AI interactions and improving the realism of simulation-based behavioral studies.
PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for Personality Detection
Recent advances in large language models (LLMs), such as ChatGPT, have showcased remarkable zero-shot performance across various NLP tasks. However, the potential of LLMs in personality detection, which involves identifying an individual's personality from their written texts, remains largely unexplored. Drawing inspiration from Psychological Questionnaires, which are carefully designed by psychologists to evaluate individual personality traits through a series of targeted items, we argue that these items can be regarded as a collection of well-structured chain-of-thought (CoT) processes. By incorporating these processes, LLMs can enhance their capabilities to make more reasonable inferences on personality from textual input. In light of this, we propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner. In particular, we employ a LLM as an AI assistant with a specialization in text analysis. We prompt the assistant to rate individual items at each turn and leverage the historical rating results to derive a conclusive personality preference. Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection, achieving an average F1 score improvement of 4.23/10.63 points on two benchmark datasets compared to the standard prompting method. Our code is available at https://github.com/TaoYang225/PsyCoT.
Exploring Personality and Online Social Engagement: An Investigation of MBTI Users on Twitter
Text-based personality prediction by computational models is an emerging field with the potential to significantly improve on key weaknesses of survey-based personality assessment. We investigate 3848 profiles from Twitter with self-labeled Myers-Briggs personality traits (MBTI) - a framework closely related to the Five Factor Model of personality - to better understand how text-based digital traces from social engagement online can be used to predict user personality traits. We leverage BERT, a state-of-the-art NLP architecture based on deep learning, to analyze various sources of text that hold most predictive power for our task. We find that biographies, statuses, and liked tweets contain significant predictive power for all dimensions of the MBTI system. We discuss our findings and their implications for the validity of the MBTI and the lexical hypothesis, a foundational theory underlying the Five Factor Model that links language use and behavior. Our results hold optimistic implications for personality psychologists, computational linguists, and other social scientists aiming to predict personality from observational text data and explore the links between language and core behavioral traits.
PHAnToM: Personality Has An Effect on Theory-of-Mind Reasoning in Large Language Models
Recent advances in large language models (LLMs) demonstrate that their capabilities are comparable, or even superior, to humans in many tasks in natural language processing. Despite this progress, LLMs are still inadequate at social-cognitive reasoning, which humans are naturally good at. Drawing inspiration from psychological research on the links between certain personality traits and Theory-of-Mind (ToM) reasoning, and from prompt engineering research on the hyper-sensitivity of prompts in affecting LLMs capabilities, this study investigates how inducing personalities in LLMs using prompts affects their ToM reasoning capabilities. Our findings show that certain induced personalities can significantly affect the LLMs' reasoning capabilities in three different ToM tasks. In particular, traits from the Dark Triad have a larger variable effect on LLMs like GPT-3.5, Llama 2, and Mistral across the different ToM tasks. We find that LLMs that exhibit a higher variance across personality prompts in ToM also tends to be more controllable in personality tests: personality traits in LLMs like GPT-3.5, Llama 2 and Mistral can be controllably adjusted through our personality prompts. In today's landscape where role-play is a common strategy when using LLMs, our research highlights the need for caution, as models that adopt specific personas with personalities potentially also alter their reasoning abilities in an unexpected manner.
PsyDI: Towards a Personalized and Progressively In-depth Chatbot for Psychological Measurements
In the field of psychology, traditional assessment methods, such as standardized scales, are frequently critiqued for their static nature, lack of personalization, and reduced participant engagement, while comprehensive counseling evaluations are often inaccessible. The complexity of quantifying psychological traits further limits these methods. Despite advances with large language models (LLMs), many still depend on single-round Question-and-Answer interactions. To bridge this gap, we introduce PsyDI, a personalized and progressively in-depth chatbot designed for psychological measurements, exemplified by its application in the Myers-Briggs Type Indicator (MBTI) framework. PsyDI leverages user-related multi-modal information and engages in customized, multi-turn interactions to provide personalized, easily accessible measurements, while ensuring precise MBTI type determination. To address the challenge of unquantifiable psychological traits, we introduce a novel training paradigm that involves learning the ranking of proxy variables associated with these traits, culminating in a robust score model for MBTI measurements. The score model enables PsyDI to conduct comprehensive and precise measurements through multi-turn interactions within a unified estimation context. Through various experiments, we validate the efficacy of both the score model and the PsyDI pipeline, demonstrating its potential to serve as a general framework for psychological measurements. Furthermore, the online deployment of PsyDI has garnered substantial user engagement, with over 3,000 visits, resulting in the collection of numerous multi-turn dialogues annotated with MBTI types, which facilitates further research.
Does Role-Playing Chatbots Capture the Character Personalities? Assessing Personality Traits for Role-Playing Chatbots
The emergence of large-scale pretrained language models has revolutionized the capabilities of new AI application, especially in the realm of crafting chatbots with distinct personas. Given the "stimulus-response" nature of chatbots, this paper unveils an innovative open-ended interview-style approach for personality assessment on role-playing chatbots, which offers a richer comprehension of their intrinsic personalities. We conduct personality assessments on 32 role-playing chatbots created by the ChatHaruhi library, across both the Big Five and MBTI dimensions, and measure their alignment with human perception. Evaluation results underscore that modern role-playing chatbots based on LLMs can effectively portray personality traits of corresponding characters, with an alignment rate of 82.8% compared with human-perceived personalities. Besides, we also suggest potential strategies for shaping chatbots' personalities. Hence, this paper serves as a cornerstone study for role-playing chatbots that intersects computational linguistics and psychology. Our resources are available at https://github.com/LC1332/Chat-Haruhi-Suzumiya
Fusion is all you need: Face Fusion for Customized Identity-Preserving Image Synthesis
Text-to-image (T2I) models have significantly advanced the development of artificial intelligence, enabling the generation of high-quality images in diverse contexts based on specific text prompts. However, existing T2I-based methods often struggle to accurately reproduce the appearance of individuals from a reference image and to create novel representations of those individuals in various settings. To address this, we leverage the pre-trained UNet from Stable Diffusion to incorporate the target face image directly into the generation process. Our approach diverges from prior methods that depend on fixed encoders or static face embeddings, which often fail to bridge encoding gaps. Instead, we capitalize on UNet's sophisticated encoding capabilities to process reference images across multiple scales. By innovatively altering the cross-attention layers of the UNet, we effectively fuse individual identities into the generative process. This strategic integration of facial features across various scales not only enhances the robustness and consistency of the generated images but also facilitates efficient multi-reference and multi-identity generation. Our method sets a new benchmark in identity-preserving image generation, delivering state-of-the-art results in similarity metrics while maintaining prompt alignment.
Automatic Text-based Personality Recognition on Monologues and Multiparty Dialogues Using Attentive Networks and Contextual Embeddings
Previous works related to automatic personality recognition focus on using traditional classification models with linguistic features. However, attentive neural networks with contextual embeddings, which have achieved huge success in text classification, are rarely explored for this task. In this project, we have two major contributions. First, we create the first dialogue-based personality dataset, FriendsPersona, by annotating 5 personality traits of speakers from Friends TV Show through crowdsourcing. Second, we present a novel approach to automatic personality recognition using pre-trained contextual embeddings (BERT and RoBERTa) and attentive neural networks. Our models largely improve the state-of-art results on the monologue Essays dataset by 2.49%, and establish a solid benchmark on our FriendsPersona. By comparing results in two datasets, we demonstrate the challenges of modeling personality in multi-party dialogue.
Self-Assessment Tests are Unreliable Measures of LLM Personality
As large language models (LLM) evolve in their capabilities, various recent studies have tried to quantify their behavior using psychological tools created to study human behavior. One such example is the measurement of "personality" of LLMs using self-assessment personality tests developed to measure human personality. Yet almost none of these works verify the applicability of these tests on LLMs. In this paper, we analyze the reliability of LLM personality scores obtained from self-assessment personality tests using two simple experiments. We first introduce the property of prompt sensitivity, where three semantically equivalent prompts representing three intuitive ways of administering self-assessment tests on LLMs are used to measure the personality of the same LLM. We find that all three prompts lead to very different personality scores, a difference that is statistically significant for all traits in a large majority of scenarios. We then introduce the property of option-order symmetry for personality measurement of LLMs. Since most of the self-assessment tests exist in the form of multiple choice question (MCQ) questions, we argue that the scores should also be robust to not just the prompt template but also the order in which the options are presented. This test unsurprisingly reveals that the self-assessment test scores are not robust to the order of the options. These simple tests, done on ChatGPT and three Llama2 models of different sizes, show that self-assessment personality tests created for humans are unreliable measures of personality in LLMs.
Identifying Personality Traits Using Overlap Dynamics in Multiparty Dialogue
Research on human spoken language has shown that speech plays an important role in identifying speaker personality traits. In this work, we propose an approach for identifying speaker personality traits using overlap dynamics in multiparty spoken dialogues. We first define a set of novel features representing the overlap dynamics of each speaker. We then investigate the impact of speaker personality traits on these features using ANOVA tests. We find that features of overlap dynamics significantly vary for speakers with different levels of both Extraversion and Conscientiousness. Finally, we find that classifiers using only overlap dynamics features outperform random guessing in identifying Extraversion and Agreeableness, and that the improvements are statistically significant.
PersonaLLM: Investigating the Ability of Large Language Models to Express Personality Traits
Despite the many use cases for large language models (LLMs) in creating personalized chatbots, there has been limited research on evaluating the extent to which the behaviors of personalized LLMs accurately and consistently reflect specific personality traits. We consider studying the behavior of LLM-based agents which we refer to as LLM personas and present a case study with GPT-3.5 and GPT-4 to investigate whether LLMs can generate content that aligns with their assigned personality profiles. To this end, we simulate distinct LLM personas based on the Big Five personality model, have them complete the 44-item Big Five Inventory (BFI) personality test and a story writing task, and then assess their essays with automatic and human evaluations. Results show that LLM personas' self-reported BFI scores are consistent with their designated personality types, with large effect sizes observed across five traits. Additionally, LLM personas' writings have emerging representative linguistic patterns for personality traits when compared with a human writing corpus. Furthermore, human evaluation shows that humans can perceive some personality traits with an accuracy of up to 80\%. Interestingly, the accuracy drops significantly when the annotators were informed of the AI's authorship.
Personality Style Recognition via Machine Learning: Identifying Anaclitic and Introjective Personality Styles from Patients' Speech
In disentangling the heterogeneity observed in psychopathology, personality of the patients is considered crucial. While it has been demonstrated that personality traits are reflected in the language used by a patient, we hypothesize that this enables automatic inference of the personality type directly from speech utterances, potentially more accurately than through a traditional questionnaire-based approach explicitly designed for personality classification. To validate this hypothesis, we adopt natural language processing (NLP) and standard machine learning tools for classification. We test this on a dataset of recorded clinical diagnostic interviews (CDI) on a sample of 79 patients diagnosed with major depressive disorder (MDD) -- a condition for which differentiated treatment based on personality styles has been advocated -- and classified into anaclitic and introjective personality styles. We start by analyzing the interviews to see which linguistic features are associated with each style, in order to gain a better understanding of the styles. Then, we develop automatic classifiers based on (a) standardized questionnaire responses; (b) basic text features, i.e., TF-IDF scores of words and word sequences; (c) more advanced text features, using LIWC (linguistic inquiry and word count) and context-aware features using BERT (bidirectional encoder representations from transformers); (d) audio features. We find that automated classification with language-derived features (i.e., based on LIWC) significantly outperforms questionnaire-based classification models. Furthermore, the best performance is achieved by combining LIWC with the questionnaire features. This suggests that more work should be put into developing linguistically based automated techniques for characterizing personality, however questionnaires still to some extent complement such methods.
Social Biases through the Text-to-Image Generation Lens
Text-to-Image (T2I) generation is enabling new applications that support creators, designers, and general end users of productivity software by generating illustrative content with high photorealism starting from a given descriptive text as a prompt. Such models are however trained on massive amounts of web data, which surfaces the peril of potential harmful biases that may leak in the generation process itself. In this paper, we take a multi-dimensional approach to studying and quantifying common social biases as reflected in the generated images, by focusing on how occupations, personality traits, and everyday situations are depicted across representations of (perceived) gender, age, race, and geographical location. Through an extensive set of both automated and human evaluation experiments we present findings for two popular T2I models: DALLE-v2 and Stable Diffusion. Our results reveal that there exist severe occupational biases of neutral prompts majorly excluding groups of people from results for both models. Such biases can get mitigated by increasing the amount of specification in the prompt itself, although the prompting mitigation will not address discrepancies in image quality or other usages of the model or its representations in other scenarios. Further, we observe personality traits being associated with only a limited set of people at the intersection of race, gender, and age. Finally, an analysis of geographical location representations on everyday situations (e.g., park, food, weddings) shows that for most situations, images generated through default location-neutral prompts are closer and more similar to images generated for locations of United States and Germany.
Empathic Conversations: A Multi-level Dataset of Contextualized Conversations
Empathy is a cognitive and emotional reaction to an observed situation of others. Empathy has recently attracted interest because it has numerous applications in psychology and AI, but it is unclear how different forms of empathy (e.g., self-report vs counterpart other-report, concern vs. distress) interact with other affective phenomena or demographics like gender and age. To better understand this, we created the {\it Empathic Conversations} dataset of annotated negative, empathy-eliciting dialogues in which pairs of participants converse about news articles. People differ in their perception of the empathy of others. These differences are associated with certain characteristics such as personality and demographics. Hence, we collected detailed characterization of the participants' traits, their self-reported empathetic response to news articles, their conversational partner other-report, and turn-by-turn third-party assessments of the level of self-disclosure, emotion, and empathy expressed. This dataset is the first to present empathy in multiple forms along with personal distress, emotion, personality characteristics, and person-level demographic information. We present baseline models for predicting some of these features from conversations.
Controlling Personality Style in Dialogue with Zero-Shot Prompt-Based Learning
Prompt-based or in-context learning has achieved high zero-shot performance on many natural language generation (NLG) tasks. Here we explore the performance of prompt-based learning for simultaneously controlling the personality and the semantic accuracy of an NLG for task-oriented dialogue. We experiment with prompt-based learning on the PERSONAGE restaurant recommendation corpus to generate semantically and stylistically-controlled text for 5 different Big-5 personality types: agreeable, disagreeable, conscientious, unconscientious, and extravert. We test two different classes of discrete prompts to generate utterances for a particular personality style: (1) prompts that demonstrate generating directly from a meaning representation that includes a personality specification; and (2) prompts that rely on first converting the meaning representation to a textual pseudo-reference, and then using the pseudo-reference in a textual style transfer (TST) prompt. In each case, we show that we can vastly improve performance by over-generating outputs and ranking them, testing several ranking functions based on automatic metrics for semantic accuracy, personality-match, and fluency. We also test whether NLG personality demonstrations from the restaurant domain can be used with meaning representations for the video game domain to generate personality stylized utterances about video games. Our findings show that the TST prompts produces the highest semantic accuracy (78.46% for restaurants and 87.6% for video games) and personality accuracy (100% for restaurants and 97% for video games). Our results on transferring personality style to video game utterances are surprisingly good. To our knowledge, there is no previous work testing the application of prompt-based learning to simultaneously controlling both style and semantic accuracy in NLG.
Who is ChatGPT? Benchmarking LLMs' Psychological Portrayal Using PsychoBench
Large Language Models (LLMs) have recently showcased their remarkable capacities, not only in natural language processing tasks but also across diverse domains such as clinical medicine, legal consultation, and education. LLMs become more than mere applications, evolving into assistants capable of addressing diverse user requests. This narrows the distinction between human beings and artificial intelligence agents, raising intriguing questions regarding the potential manifestation of personalities, temperaments, and emotions within LLMs. In this paper, we propose a framework, PsychoBench, for evaluating diverse psychological aspects of LLMs. Comprising thirteen scales commonly used in clinical psychology, PsychoBench further classifies these scales into four distinct categories: personality traits, interpersonal relationships, motivational tests, and emotional abilities. Our study examines five popular models, namely text-davinci-003, ChatGPT, GPT-4, LLaMA-2-7b, and LLaMA-2-13b. Additionally, we employ a jailbreak approach to bypass the safety alignment protocols and test the intrinsic natures of LLMs. We have made PsychoBench openly accessible via https://github.com/CUHK-ARISE/PsychoBench.
Deep Impression: Audiovisual Deep Residual Networks for Multimodal Apparent Personality Trait Recognition
Here, we develop an audiovisual deep residual network for multimodal apparent personality trait recognition. The network is trained end-to-end for predicting the Big Five personality traits of people from their videos. That is, the network does not require any feature engineering or visual analysis such as face detection, face landmark alignment or facial expression recognition. Recently, the network won the third place in the ChaLearn First Impressions Challenge with a test accuracy of 0.9109.
DP-Adapter: Dual-Pathway Adapter for Boosting Fidelity and Text Consistency in Customizable Human Image Generation
With the growing popularity of personalized human content creation and sharing, there is a rising demand for advanced techniques in customized human image generation. However, current methods struggle to simultaneously maintain the fidelity of human identity and ensure the consistency of textual prompts, often resulting in suboptimal outcomes. This shortcoming is primarily due to the lack of effective constraints during the simultaneous integration of visual and textual prompts, leading to unhealthy mutual interference that compromises the full expression of both types of input. Building on prior research that suggests visual and textual conditions influence different regions of an image in distinct ways, we introduce a novel Dual-Pathway Adapter (DP-Adapter) to enhance both high-fidelity identity preservation and textual consistency in personalized human image generation. Our approach begins by decoupling the target human image into visually sensitive and text-sensitive regions. For visually sensitive regions, DP-Adapter employs an Identity-Enhancing Adapter (IEA) to preserve detailed identity features. For text-sensitive regions, we introduce a Textual-Consistency Adapter (TCA) to minimize visual interference and ensure the consistency of textual semantics. To seamlessly integrate these pathways, we develop a Fine-Grained Feature-Level Blending (FFB) module that efficiently combines hierarchical semantic features from both pathways, resulting in more natural and coherent synthesis outcomes. Additionally, DP-Adapter supports various innovative applications, including controllable headshot-to-full-body portrait generation, age editing, old-photo to reality, and expression editing.
Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation
Recent advances in generative diffusion models have enabled the previously unfeasible capability of generating 3D assets from a single input image or a text prompt. In this work, we aim to enhance the quality and functionality of these models for the task of creating controllable, photorealistic human avatars. We achieve this by integrating a 3D morphable model into the state-of-the-art multiview-consistent diffusion approach. We demonstrate that accurate conditioning of a generative pipeline on the articulated 3D model enhances the baseline model performance on the task of novel view synthesis from a single image. More importantly, this integration facilitates a seamless and accurate incorporation of facial expression and body pose control into the generation process. To the best of our knowledge, our proposed framework is the first diffusion model to enable the creation of fully 3D-consistent, animatable, and photorealistic human avatars from a single image of an unseen subject; extensive quantitative and qualitative evaluations demonstrate the advantages of our approach over existing state-of-the-art avatar creation models on both novel view and novel expression synthesis tasks.
Synergistic Integration of Large Language Models and Cognitive Architectures for Robust AI: An Exploratory Analysis
This paper explores the integration of two AI subdisciplines employed in the development of artificial agents that exhibit intelligent behavior: Large Language Models (LLMs) and Cognitive Architectures (CAs). We present three integration approaches, each grounded in theoretical models and supported by preliminary empirical evidence. The modular approach, which introduces four models with varying degrees of integration, makes use of chain-of-thought prompting, and draws inspiration from augmented LLMs, the Common Model of Cognition, and the simulation theory of cognition. The agency approach, motivated by the Society of Mind theory and the LIDA cognitive architecture, proposes the formation of agent collections that interact at micro and macro cognitive levels, driven by either LLMs or symbolic components. The neuro-symbolic approach, which takes inspiration from the CLARION cognitive architecture, proposes a model where bottom-up learning extracts symbolic representations from an LLM layer and top-down guidance utilizes symbolic representations to direct prompt engineering in the LLM layer. These approaches aim to harness the strengths of both LLMs and CAs, while mitigating their weaknesses, thereby advancing the development of more robust AI systems. We discuss the tradeoffs and challenges associated with each approach.
IDAdapter: Learning Mixed Features for Tuning-Free Personalization of Text-to-Image Models
Leveraging Stable Diffusion for the generation of personalized portraits has emerged as a powerful and noteworthy tool, enabling users to create high-fidelity, custom character avatars based on their specific prompts. However, existing personalization methods face challenges, including test-time fine-tuning, the requirement of multiple input images, low preservation of identity, and limited diversity in generated outcomes. To overcome these challenges, we introduce IDAdapter, a tuning-free approach that enhances the diversity and identity preservation in personalized image generation from a single face image. IDAdapter integrates a personalized concept into the generation process through a combination of textual and visual injections and a face identity loss. During the training phase, we incorporate mixed features from multiple reference images of a specific identity to enrich identity-related content details, guiding the model to generate images with more diverse styles, expressions, and angles compared to previous works. Extensive evaluations demonstrate the effectiveness of our method, achieving both diversity and identity fidelity in generated images.
Can ChatGPT Assess Human Personalities? A General Evaluation Framework
Large Language Models (LLMs) especially ChatGPT have produced impressive results in various areas, but their potential human-like psychology is still largely unexplored. Existing works study the virtual personalities of LLMs but rarely explore the possibility of analyzing human personalities via LLMs. This paper presents a generic evaluation framework for LLMs to assess human personalities based on Myers Briggs Type Indicator (MBTI) tests. Specifically, we first devise unbiased prompts by randomly permuting options in MBTI questions and adopt the average testing result to encourage more impartial answer generation. Then, we propose to replace the subject in question statements to enable flexible queries and assessments on different subjects from LLMs. Finally, we re-formulate the question instructions in a manner of correctness evaluation to facilitate LLMs to generate clearer responses. The proposed framework enables LLMs to flexibly assess personalities of different groups of people. We further propose three evaluation metrics to measure the consistency, robustness, and fairness of assessment results from state-of-the-art LLMs including ChatGPT and InstructGPT. Our experiments reveal ChatGPT's ability to assess human personalities, and the average results demonstrate that it can achieve more consistent and fairer assessments in spite of lower robustness against prompt biases compared with InstructGPT.
MDPE: A Multimodal Deception Dataset with Personality and Emotional Characteristics
Deception detection has garnered increasing attention in recent years due to the significant growth of digital media and heightened ethical and security concerns. It has been extensively studied using multimodal methods, including video, audio, and text. In addition, individual differences in deception production and detection are believed to play a crucial role.Although some studies have utilized individual information such as personality traits to enhance the performance of deception detection, current systems remain limited, partly due to a lack of sufficient datasets for evaluating performance. To address this issue, we introduce a multimodal deception dataset MDPE. Besides deception features, this dataset also includes individual differences information in personality and emotional expression characteristics. It can explore the impact of individual differences on deception behavior. It comprises over 104 hours of deception and emotional videos from 193 subjects. Furthermore, we conducted numerous experiments to provide valuable insights for future deception detection research. MDPE not only supports deception detection, but also provides conditions for tasks such as personality recognition and emotion recognition, and can even study the relationships between them. We believe that MDPE will become a valuable resource for promoting research in the field of affective computing.
Assessment and manipulation of latent constructs in pre-trained language models using psychometric scales
Human-like personality traits have recently been discovered in large language models, raising the hypothesis that their (known and as yet undiscovered) biases conform with human latent psychological constructs. While large conversational models may be tricked into answering psychometric questionnaires, the latent psychological constructs of thousands of simpler transformers, trained for other tasks, cannot be assessed because appropriate psychometric methods are currently lacking. Here, we show how standard psychological questionnaires can be reformulated into natural language inference prompts, and we provide a code library to support the psychometric assessment of arbitrary models. We demonstrate, using a sample of 88 publicly available models, the existence of human-like mental health-related constructs (including anxiety, depression, and Sense of Coherence) which conform with standard theories in human psychology and show similar correlations and mitigation strategies. The ability to interpret and rectify the performance of language models by using psychological tools can boost the development of more explainable, controllable, and trustworthy models.
What makes your model a low-empathy or warmth person: Exploring the Origins of Personality in LLMs
Large language models (LLMs) have demonstrated remarkable capabilities in generating human-like text and exhibiting personality traits similar to those in humans. However, the mechanisms by which LLMs encode and express traits such as agreeableness and impulsiveness remain poorly understood. Drawing on the theory of social determinism, we investigate how long-term background factors, such as family environment and cultural norms, interact with short-term pressures like external instructions, shaping and influencing LLMs' personality traits. By steering the output of LLMs through the utilization of interpretable features within the model, we explore how these background and pressure factors lead to changes in the model's traits without the need for further fine-tuning. Additionally, we suggest the potential impact of these factors on model safety from the perspective of personality.