new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

MixSpeech: Cross-Modality Self-Learning with Audio-Visual Stream Mixup for Visual Speech Translation and Recognition

Multi-media communications facilitate global interaction among people. However, despite researchers exploring cross-lingual translation techniques such as machine translation and audio speech translation to overcome language barriers, there is still a shortage of cross-lingual studies on visual speech. This lack of research is mainly due to the absence of datasets containing visual speech and translated text pairs. In this paper, we present AVMuST-TED, the first dataset for Audio-Visual Multilingual Speech Translation, derived from TED talks. Nonetheless, visual speech is not as distinguishable as audio speech, making it difficult to develop a mapping from source speech phonemes to the target language text. To address this issue, we propose MixSpeech, a cross-modality self-learning framework that utilizes audio speech to regularize the training of visual speech tasks. To further minimize the cross-modality gap and its impact on knowledge transfer, we suggest adopting mixed speech, which is created by interpolating audio and visual streams, along with a curriculum learning strategy to adjust the mixing ratio as needed. MixSpeech enhances speech translation in noisy environments, improving BLEU scores for four languages on AVMuST-TED by +1.4 to +4.2. Moreover, it achieves state-of-the-art performance in lip reading on CMLR (11.1\%), LRS2 (25.5\%), and LRS3 (28.0\%).

Feedback-controlled solute transport through chemo-responsive polymer membranes

Polymer membranes are typically assumed to be inert and nonresponsive to the flux and density of the permeating particles in transport processes. Here, we study theoretically the consequences of membrane responsiveness and feedback on the steady-state force--flux relations and membrane permeability using a nonlinear-feedback solution-diffusion model of transport through a slab-like membrane. Therein, the solute concentration inside the membrane depends on the bulk concentration, c_0, the driving force, f, and the polymer volume fraction, phi. In our model, solute accumulation in the membrane causes a sigmoidal volume phase transition of the polymer, changing its permeability, which, in return, affects the membrane's solute uptake. This feedback leads to nonlinear force--flux relations, j(f), which we quantify in terms of the system's differential permeability, P_sys^{Delta}mathrm{dj}/{df}. We find that the membrane feedback can increase or decrease the solute flux by orders of magnitude, triggered by a small change in the driving force, and largely tunable by attractive versus repulsive solute--membrane interactions. Moreover, controlling the input, c_0 and f, can lead to steady-state bistability of phi and hysteresis in the force--flux relations. This work advocates that the fine-tuning of the membrane's chemo-responsiveness will enhance the nonlinear transport control features, providing great potential for future (self-)regulating membrane devices.