Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGenerative Dense Retrieval: Memory Can Be a Burden
Generative Retrieval (GR), autoregressively decoding relevant document identifiers given a query, has been shown to perform well under the setting of small-scale corpora. By memorizing the document corpus with model parameters, GR implicitly achieves deep interaction between query and document. However, such a memorizing mechanism faces three drawbacks: (1) Poor memory accuracy for fine-grained features of documents; (2) Memory confusion gets worse as the corpus size increases; (3) Huge memory update costs for new documents. To alleviate these problems, we propose the Generative Dense Retrieval (GDR) paradigm. Specifically, GDR first uses the limited memory volume to achieve inter-cluster matching from query to relevant document clusters. Memorizing-free matching mechanism from Dense Retrieval (DR) is then introduced to conduct fine-grained intra-cluster matching from clusters to relevant documents. The coarse-to-fine process maximizes the advantages of GR's deep interaction and DR's scalability. Besides, we design a cluster identifier constructing strategy to facilitate corpus memory and a cluster-adaptive negative sampling strategy to enhance the intra-cluster mapping ability. Empirical results show that GDR obtains an average of 3.0 R@100 improvement on NQ dataset under multiple settings and has better scalability.
Semantic HELM: An Interpretable Memory for Reinforcement Learning
Reinforcement learning agents deployed in the real world often have to cope with partially observable environments. Therefore, most agents employ memory mechanisms to approximate the state of the environment. Recently, there have been impressive success stories in mastering partially observable environments, mostly in the realm of computer games like Dota 2, StarCraft II, or MineCraft. However, none of these methods are interpretable in the sense that it is not comprehensible for humans how the agent decides which actions to take based on its inputs. Yet, human understanding is necessary in order to deploy such methods in high-stake domains like autonomous driving or medical applications. We propose a novel memory mechanism that operates on human language to illuminate the decision-making process. First, we use CLIP to associate visual inputs with language tokens. Then we feed these tokens to a pretrained language model that serves the agent as memory and provides it with a coherent and interpretable representation of the past. Our memory mechanism achieves state-of-the-art performance in environments where memorizing the past is crucial to solve tasks. Further, we present situations where our memory component excels or fails to demonstrate strengths and weaknesses of our new approach.
Determining the Difficulties of Students With Dyslexia via Virtual Reality and Artificial Intelligence: An Exploratory Analysis
Learning disorders are neurological conditions that affect the brain's ability to interconnect communication areas. Dyslexic students experience problems with reading, memorizing, and exposing concepts; however the magnitude of these can be mitigated through both therapies and the creation of compensatory mechanisms. Several efforts have been made to mitigate these issues, leading to the creation of digital resources for students with specific learning disorders attending primary and secondary education levels. Conversely, a standard approach is still missed in higher education. The VRAIlexia project has been created to tackle this issue by proposing two different tools: a mobile application integrating virtual reality (VR) to collect data quickly and easily, and an artificial intelligencebased software (AI) to analyze the collected data for customizing the supporting methodology for each student. The first one has been created and is being distributed among dyslexic students in Higher Education Institutions, for the conduction of specific psychological and psychometric tests. The second tool applies specific artificial intelligence algorithms to the data gathered via the application and other surveys. These AI techniques have allowed us to identify the most relevant difficulties faced by the students' cohort. Our different models have obtained around 90\% mean accuracy for predicting the support tools and learning strategies.
Grokked Transformers are Implicit Reasoners: A Mechanistic Journey to the Edge of Generalization
We study whether transformers can learn to implicitly reason over parametric knowledge, a skill that even the most capable language models struggle with. Focusing on two representative reasoning types, composition and comparison, we consistently find that transformers can learn implicit reasoning, but only through grokking, i.e., extended training far beyond overfitting. The levels of generalization also vary across reasoning types: when faced with out-of-distribution examples, transformers fail to systematically generalize for composition but succeed for comparison. We delve into the model's internals throughout training, conducting analytical experiments that reveal: 1) the mechanism behind grokking, such as the formation of the generalizing circuit and its relation to the relative efficiency of generalizing and memorizing circuits, and 2) the connection between systematicity and the configuration of the generalizing circuit. Our findings guide data and training setup to better induce implicit reasoning and suggest potential improvements to the transformer architecture, such as encouraging cross-layer knowledge sharing. Furthermore, we demonstrate that for a challenging reasoning task with a large search space, GPT-4-Turbo and Gemini-1.5-Pro based on non-parametric memory fail badly regardless of prompting styles or retrieval augmentation, while a fully grokked transformer can achieve near-perfect accuracy, showcasing the power of parametric memory for complex reasoning.
Progress measures for grokking via mechanistic interpretability
Neural networks often exhibit emergent behavior, where qualitatively new capabilities arise from scaling up the amount of parameters, training data, or training steps. One approach to understanding emergence is to find continuous progress measures that underlie the seemingly discontinuous qualitative changes. We argue that progress measures can be found via mechanistic interpretability: reverse-engineering learned behaviors into their individual components. As a case study, we investigate the recently-discovered phenomenon of ``grokking'' exhibited by small transformers trained on modular addition tasks. We fully reverse engineer the algorithm learned by these networks, which uses discrete Fourier transforms and trigonometric identities to convert addition to rotation about a circle. We confirm the algorithm by analyzing the activations and weights and by performing ablations in Fourier space. Based on this understanding, we define progress measures that allow us to study the dynamics of training and split training into three continuous phases: memorization, circuit formation, and cleanup. Our results show that grokking, rather than being a sudden shift, arises from the gradual amplification of structured mechanisms encoded in the weights, followed by the later removal of memorizing components.
On Memorization of Large Language Models in Logical Reasoning
Large language models (LLMs) achieve good performance on challenging reasoning benchmarks, yet could also make basic reasoning mistakes. This contrasting behavior is puzzling when it comes to understanding the mechanisms behind LLMs' reasoning capabilities. One hypothesis is that the increasingly high and nearly saturated performance on common reasoning benchmarks could be due to the memorization of similar problems. In this paper, we systematically investigate this hypothesis with a quantitative measurement of memorization in reasoning tasks, using a dynamically generated logical reasoning benchmark based on Knights and Knaves (K&K) puzzles. We found that LLMs could interpolate the training puzzles (achieving near-perfect accuracy) after fine-tuning, yet fail when those puzzles are slightly perturbed, suggesting that the models heavily rely on memorization to solve those training puzzles. On the other hand, we show that while fine-tuning leads to heavy memorization, it also consistently improves generalization performance. In-depth analyses with perturbation tests, cross difficulty-level transferability, probing model internals, and fine-tuning with wrong answers suggest that the LLMs learn to reason on K&K puzzles despite training data memorization. This phenomenon indicates that LLMs exhibit a complex interplay between memorization and genuine reasoning abilities. Finally, our analysis with per-sample memorization score sheds light on how LLMs switch between reasoning and memorization in solving logical puzzles. Our code and data are available at https://memkklogic.github.io.
Schrodinger's Memory: Large Language Models
Memory is the foundation of LLMs' functionality, yet past research has lacked an in-depth exploration of their memory capabilities and underlying theory. In this paper, we apply UAT theory to explain the memory mechanism of LLMs and propose a new approach for evaluating LLM performance by comparing the memory capacities of different models. Through extensive experiments, we validate our theory and the memory abilities of LLMs. Finally, we compare the capabilities of the human brain and LLMs, highlighting both their similarities and differences in terms of working mechanisms.
MEMO: A Deep Network for Flexible Combination of Episodic Memories
Recent research developing neural network architectures with external memory have often used the benchmark bAbI question and answering dataset which provides a challenging number of tasks requiring reasoning. Here we employed a classic associative inference task from the memory-based reasoning neuroscience literature in order to more carefully probe the reasoning capacity of existing memory-augmented architectures. This task is thought to capture the essence of reasoning -- the appreciation of distant relationships among elements distributed across multiple facts or memories. Surprisingly, we found that current architectures struggle to reason over long distance associations. Similar results were obtained on a more complex task involving finding the shortest path between nodes in a path. We therefore developed MEMO, an architecture endowed with the capacity to reason over longer distances. This was accomplished with the addition of two novel components. First, it introduces a separation between memories (facts) stored in external memory and the items that comprise these facts in external memory. Second, it makes use of an adaptive retrieval mechanism, allowing a variable number of "memory hops" before the answer is produced. MEMO is capable of solving our novel reasoning tasks, as well as match state of the art results in bAbI.
Think Before You Act: Decision Transformers with Internal Working Memory
Large language model (LLM)-based decision-making agents have shown the ability to generalize across multiple tasks. However, their performance relies on massive data and compute. We argue that this inefficiency stems from the forgetting phenomenon, in which a model memorizes its behaviors in parameters throughout training. As a result, training on a new task may deteriorate the model's performance on previous tasks. In contrast to LLMs' implicit memory mechanism, the human brain utilizes distributed memory storage, which helps manage and organize multiple skills efficiently, mitigating the forgetting phenomenon. Thus inspired, we propose an internal working memory module to store, blend, and retrieve information for different downstream tasks. Evaluation results show that the proposed method improves training efficiency and generalization in both Atari games and meta-world object manipulation tasks. Moreover, we demonstrate that memory fine-tuning further enhances the adaptability of the proposed architecture.
Interpretable Catastrophic Forgetting of Large Language Model Fine-tuning via Instruction Vector
Fine-tuning large language models (LLMs) can cause them to lose their general capabilities. However, the intrinsic mechanisms behind such forgetting remain unexplored. In this paper, we begin by examining this phenomenon by focusing on knowledge understanding and instruction following, with the latter identified as the main contributor to forgetting during fine-tuning. Consequently, we propose the Instruction Vector (IV) framework to capture model representations highly related to specific instruction-following capabilities, thereby making it possible to understand model-intrinsic forgetting. Through the analysis of IV dynamics pre and post-training, we suggest that fine-tuning mostly adds specialized reasoning patterns instead of erasing previous skills, which may appear as forgetting. Building on this insight, we develop IV-guided training, which aims to preserve original computation graph, thereby mitigating catastrophic forgetting. Empirical tests on three benchmarks confirm the efficacy of this new approach, supporting the relationship between IVs and forgetting. Our code will be made available soon.
Relational Experience Replay: Continual Learning by Adaptively Tuning Task-wise Relationship
Continual learning is a promising machine learning paradigm to learn new tasks while retaining previously learned knowledge over streaming training data. Till now, rehearsal-based methods, keeping a small part of data from old tasks as a memory buffer, have shown good performance in mitigating catastrophic forgetting for previously learned knowledge. However, most of these methods typically treat each new task equally, which may not adequately consider the relationship or similarity between old and new tasks. Furthermore, these methods commonly neglect sample importance in the continual training process and result in sub-optimal performance on certain tasks. To address this challenging problem, we propose Relational Experience Replay (RER), a bi-level learning framework, to adaptively tune task-wise relationships and sample importance within each task to achieve a better `stability' and `plasticity' trade-off. As such, the proposed method is capable of accumulating new knowledge while consolidating previously learned old knowledge during continual learning. Extensive experiments conducted on three publicly available datasets (i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet) show that the proposed method can consistently improve the performance of all baselines and surpass current state-of-the-art methods.
How Do Multilingual Models Remember? Investigating Multilingual Factual Recall Mechanisms
Large Language Models (LLMs) store and retrieve vast amounts of factual knowledge acquired during pre-training. Prior research has localized and identified mechanisms behind knowledge recall; however, it has primarily focused on English monolingual models. The question of how these processes generalize to other languages and multilingual LLMs remains unexplored. In this paper, we address this gap by conducting a comprehensive analysis of two highly multilingual LLMs. We assess the extent to which previously identified components and mechanisms of factual recall in English apply to a multilingual context. Then, we examine when language plays a role in the recall process, uncovering evidence of language-independent and language-dependent mechanisms.
Continual Lifelong Learning with Neural Networks: A Review
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
How Do Large Language Models Acquire Factual Knowledge During Pretraining?
Despite the recent observation that large language models (LLMs) can store substantial factual knowledge, there is a limited understanding of the mechanisms of how they acquire factual knowledge through pretraining. This work addresses this gap by studying how LLMs acquire factual knowledge during pretraining. The findings reveal several important insights into the dynamics of factual knowledge acquisition during pretraining. First, counterintuitively, we observe that pretraining on more data shows no significant improvement in the model's capability to acquire and maintain factual knowledge. Next, there is a power-law relationship between training steps and forgetting of memorization and generalization of factual knowledge, and LLMs trained with duplicated training data exhibit faster forgetting. Third, training LLMs with larger batch sizes can enhance the models' robustness to forgetting. Overall, our observations suggest that factual knowledge acquisition in LLM pretraining occurs by progressively increasing the probability of factual knowledge presented in the pretraining data at each step. However, this increase is diluted by subsequent forgetting. Based on this interpretation, we demonstrate that we can provide plausible explanations for recently observed behaviors of LLMs, such as the poor performance of LLMs on long-tail knowledge and the benefits of deduplicating the pretraining corpus.
Memory^3: Language Modeling with Explicit Memory
The training and inference of large language models (LLMs) are together a costly process that transports knowledge from raw data to meaningful computation. Inspired by the memory hierarchy of the human brain, we reduce this cost by equipping LLMs with explicit memory, a memory format cheaper than model parameters and text retrieval-augmented generation (RAG). Conceptually, with most of its knowledge externalized to explicit memories, the LLM can enjoy a smaller parameter size, training cost, and inference cost, all proportional to the amount of remaining "abstract knowledge". As a preliminary proof of concept, we train from scratch a 2.4B LLM, which achieves better performance than much larger LLMs as well as RAG models, and maintains higher decoding speed than RAG. The model is named Memory^3, since explicit memory is the third form of memory in LLMs after implicit memory (model parameters) and working memory (context key-values). We introduce a memory circuitry theory to support the externalization of knowledge, and present novel techniques including a memory sparsification mechanism that makes storage tractable and a two-stage pretraining scheme that facilitates memory formation.
Talking Heads: Understanding Inter-layer Communication in Transformer Language Models
Although it is known that transformer language models (LMs) pass features from early layers to later layers, it is not well understood how this information is represented and routed by the model. By analyzing particular mechanism LMs use to accomplish this, we find that it is also used to recall items from a list, and show that this mechanism can explain an otherwise arbitrary-seeming sensitivity of the model to the order of items in the prompt. Specifically, we find that models write into low-rank subspaces of the residual stream to represent features which are then read out by specific later layers, forming low-rank communication channels between layers. By decomposing attention head weight matrices with the Singular Value Decomposition (SVD), we find that previously described interactions between heads separated by one or more layers can be predicted via analysis of their weight matrices. We show that it is possible to manipulate the internal model representations as well as edit model weights based on the mechanism we discover in order to significantly improve performance on our synthetic Laundry List task, which requires recall from a list, often improving task accuracy by over 20%. Our analysis reveals a surprisingly intricate interpretable structure learned from language model pretraining, and helps us understand why sophisticated LMs sometimes fail in simple domains, facilitating future analysis of more complex behaviors.
Recognition, recall, and retention of few-shot memories in large language models
The training of modern large language models (LLMs) takes place in a regime where most training examples are seen only a few times by the model during the course of training. What does a model remember about such examples seen only a few times during training and how long does that memory persist in the face of continuous training with new examples? Here, we investigate these questions through simple recognition, recall, and retention experiments with LLMs. In recognition experiments, we ask if the model can distinguish the seen example from a novel example; in recall experiments, we ask if the model can correctly recall the seen example when cued by a part of it; and in retention experiments, we periodically probe the model's memory for the original examples as the model is trained continuously with new examples. We find that a single exposure is generally sufficient for a model to achieve near perfect accuracy even in very challenging recognition experiments. We estimate that the recognition performance of even small language models easily exceeds human recognition performance reported in similar experiments with humans (Shepard, 1967). Achieving near perfect recall takes more exposures, but most models can do it in just 3 exposures. The flip side of this remarkable capacity for fast learning is that precise memories are quickly overwritten: recall performance for the original examples drops steeply over the first 10 training updates with new examples, followed by a more gradual decline. Even after 100K updates, however, some of the original examples are still recalled near perfectly. A qualitatively similar retention pattern has been observed in human long-term memory retention studies before (Bahrick, 1984). Finally, recognition is much more robust to interference than recall and memory for natural language sentences is generally superior to memory for stimuli without structure.
Iterative Forward Tuning Boosts In-Context Learning in Language Models
Despite the advancements in in-context learning (ICL) for large language models (LLMs), current research centers on specific prompt engineering, such as demonstration selection, with the expectation that a single iteration of demonstrations processing can generalize effectively to a given test sample. However, this perspective overlooks the potential benefits derived from multiple iterations involving demonstrations, a practice aligning more closely with the iterative decision-making process exhibited by humans, who often learn through analogy. In this study, we introduce a novel two-stage framework to boost ICL in LLMs. Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages. The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation. This mechanism operates by manipulating the Key-Value matrices without training, fostering enhanced understanding capabilities in LLMs by thinking demonstrations multiple times. We evaluated Deep-Thinking across a range of benchmarks and LLMs, showing its superior performance over vanilla ICL methods and its effectiveness in challenging tasks where demonstration selection is infeasible.
Learning to Prompt for Continual Learning
The mainstream paradigm behind continual learning has been to adapt the model parameters to non-stationary data distributions, where catastrophic forgetting is the central challenge. Typical methods rely on a rehearsal buffer or known task identity at test time to retrieve learned knowledge and address forgetting, while this work presents a new paradigm for continual learning that aims to train a more succinct memory system without accessing task identity at test time. Our method learns to dynamically prompt (L2P) a pre-trained model to learn tasks sequentially under different task transitions. In our proposed framework, prompts are small learnable parameters, which are maintained in a memory space. The objective is to optimize prompts to instruct the model prediction and explicitly manage task-invariant and task-specific knowledge while maintaining model plasticity. We conduct comprehensive experiments under popular image classification benchmarks with different challenging continual learning settings, where L2P consistently outperforms prior state-of-the-art methods. Surprisingly, L2P achieves competitive results against rehearsal-based methods even without a rehearsal buffer and is directly applicable to challenging task-agnostic continual learning. Source code is available at https://github.com/google-research/l2p.
Think-in-Memory: Recalling and Post-thinking Enable LLMs with Long-Term Memory
Memory-augmented Large Language Models (LLMs) have demonstrated remarkable performance in long-term human-machine interactions, which basically relies on iterative recalling and reasoning of history to generate high-quality responses. However, such repeated recall-reason steps easily produce biased thoughts, i.e., inconsistent reasoning results when recalling the same history for different questions. On the contrary, humans can keep thoughts in the memory and recall them without repeated reasoning. Motivated by this human capability, we propose a novel memory mechanism called TiM (Think-in-Memory) that enables LLMs to maintain an evolved memory for storing historical thoughts along the conversation stream. The TiM framework consists of two crucial stages: (1) before generating a response, a LLM agent recalls relevant thoughts from memory, and (2) after generating a response, the LLM agent post-thinks and incorporates both historical and new thoughts to update the memory. Thus, TiM can eliminate the issue of repeated reasoning by saving the post-thinking thoughts as the history. Besides, we formulate the basic principles to organize the thoughts in memory based on the well-established operations, (i.e., insert, forget, and merge operations), allowing for dynamic updates and evolution of the thoughts. Furthermore, we introduce Locality-Sensitive Hashing into TiM to achieve efficient retrieval for the long-term conversations. We conduct qualitative and quantitative experiments on real-world and simulated dialogues covering a wide range of topics, demonstrating that equipping existing LLMs with TiM significantly enhances their performance in generating responses for long-term interactions.
On the Structural Memory of LLM Agents
Memory plays a pivotal role in enabling large language model~(LLM)-based agents to engage in complex and long-term interactions, such as question answering (QA) and dialogue systems. While various memory modules have been proposed for these tasks, the impact of different memory structures across tasks remains insufficiently explored. This paper investigates how memory structures and memory retrieval methods affect the performance of LLM-based agents. Specifically, we evaluate four types of memory structures, including chunks, knowledge triples, atomic facts, and summaries, along with mixed memory that combines these components. In addition, we evaluate three widely used memory retrieval methods: single-step retrieval, reranking, and iterative retrieval. Extensive experiments conducted across four tasks and six datasets yield the following key insights: (1) Different memory structures offer distinct advantages, enabling them to be tailored to specific tasks; (2) Mixed memory structures demonstrate remarkable resilience in noisy environments; (3) Iterative retrieval consistently outperforms other methods across various scenarios. Our investigation aims to inspire further research into the design of memory systems for LLM-based agents.
Promote, Suppress, Iterate: How Language Models Answer One-to-Many Factual Queries
To answer one-to-many factual queries (e.g., listing cities of a country), a language model (LM) must simultaneously recall knowledge and avoid repeating previous answers. How are these two subtasks implemented and integrated internally? Across multiple datasets and models, we identify a promote-then-suppress mechanism: the model first recalls all answers, and then suppresses previously generated ones. Specifically, LMs use both the subject and previous answer tokens to perform knowledge recall, with attention propagating subject information and MLPs promoting the answers. Then, attention attends to and suppresses previous answer tokens, while MLPs amplify the suppression signal. Our mechanism is corroborated by extensive experimental evidence: in addition to using early decoding and causal tracing, we analyze how components use different tokens by introducing both Token Lens, which decodes aggregated attention updates from specified tokens, and a knockout method that analyzes changes in MLP outputs after removing attention to specified tokens. Overall, we provide new insights into how LMs' internal components interact with different input tokens to support complex factual recall. Code is available at https://github.com/Lorenayannnnn/how-lms-answer-one-to-many-factual-queries.
The Ideal Continual Learner: An Agent That Never Forgets
The goal of continual learning is to find a model that solves multiple learning tasks which are presented sequentially to the learner. A key challenge in this setting is that the learner may forget how to solve a previous task when learning a new task, a phenomenon known as catastrophic forgetting. To address this challenge, many practical methods have been proposed, including memory-based, regularization-based, and expansion-based methods. However, a rigorous theoretical understanding of these methods remains elusive. This paper aims to bridge this gap between theory and practice by proposing a new continual learning framework called Ideal Continual Learner (ICL), which is guaranteed to avoid catastrophic forgetting by construction. We show that ICL unifies multiple well-established continual learning methods and gives new theoretical insights into the strengths and weaknesses of these methods. We also derive generalization bounds for ICL which allow us to theoretically quantify how rehearsal affects generalization. Finally, we connect ICL to several classic subjects and research topics of modern interest, which allows us to make historical remarks and inspire future directions.
Mechanism and Emergence of Stacked Attention Heads in Multi-Layer Transformers
In this paper, I introduce the retrieval problem, a simple reasoning task that can be solved only by transformers with a minimum number of layers. The task has an adjustable difficulty that can further increase the required number of layers to any arbitrary value. I demonstrate that large language models can solve the task under different prompting formulations without any fine-tuning. To understand how transformers solve the retrieval problem, I train several transformers on a minimal formulation. I find that successful learning occurs only under the presence of an implicit curriculum. I uncover the learned mechanisms by studying the attention maps in the trained transformers. I also study the training process, uncovering that attention heads always emerge in a specific sequence.
Emergent and Predictable Memorization in Large Language Models
Memorization, or the tendency of large language models (LLMs) to output entire sequences from their training data verbatim, is a key concern for safely deploying language models. In particular, it is vital to minimize a model's memorization of sensitive datapoints such as those containing personal identifiable information (PII). The prevalence of such undesirable memorization can pose issues for model trainers, and may even require discarding an otherwise functional model. We therefore seek to predict which sequences will be memorized before a large model's full train-time by extrapolating the memorization behavior of lower-compute trial runs. We measure memorization of the Pythia model suite and plot scaling laws for forecasting memorization, allowing us to provide equi-compute recommendations to maximize the reliability (recall) of such predictions. We additionally provide further novel discoveries on the distribution of memorization scores across models and data. We release all code and data necessary to reproduce the results in this paper at https://github.com/EleutherAI/pythia
Superposed Episodic and Semantic Memory via Sparse Distributed Representation
The abilities to perceive, learn, and use generalities, similarities, classes, i.e., semantic memory (SM), is central to cognition. Machine learning (ML), neural network, and AI research has been primarily driven by tasks requiring such abilities. However, another central facet of cognition, single-trial formation of permanent memories of experiences, i.e., episodic memory (EM), has had relatively little focus. Only recently has EM-like functionality been added to Deep Learning (DL) models, e.g., Neural Turing Machine, Memory Networks. However, in these cases: a) EM is implemented as a separate module, which entails substantial data movement (and so, time and power) between the DL net itself and EM; and b) individual items are stored localistically within the EM, precluding realizing the exponential representational efficiency of distributed over localist coding. We describe Sparsey, an unsupervised, hierarchical, spatial/spatiotemporal associative memory model differing fundamentally from mainstream ML models, most crucially, in its use of sparse distributed representations (SDRs), or, cell assemblies, which admits an extremely efficient, single-trial learning algorithm that maps input similarity into code space similarity (measured as intersection). SDRs of individual inputs are stored in superposition and because similarity is preserved, the patterns of intersections over the assigned codes reflect the similarity, i.e., statistical, structure, of all orders, not simply pairwise, over the inputs. Thus, SM, i.e., a generative model, is built as a computationally free side effect of the act of storing episodic memory traces of individual inputs, either spatial patterns or sequences. We report initial results on MNIST and on the Weizmann video event recognition benchmarks. While we have not yet attained SOTA class accuracy, learning takes only minutes on a single CPU.
Non Verbis, Sed Rebus: Large Language Models are Weak Solvers of Italian Rebuses
Rebuses are puzzles requiring constrained multi-step reasoning to identify a hidden phrase from a set of images and letters. In this work, we introduce a large collection of verbalized rebuses for the Italian language and use it to assess the rebus-solving capabilities of state-of-the-art large language models. While general-purpose systems such as LLaMA-3 and GPT-4o perform poorly on this task, ad-hoc fine-tuning seems to improve models' performance. However, we find that performance gains from training are largely motivated by memorization. Our results suggest that rebus solving remains a challenging test bed to evaluate large language models' linguistic proficiency and sequential instruction-following skills.
Fast & Slow Learning: Incorporating Synthetic Gradients in Neural Memory Controllers
Neural Memory Networks (NMNs) have received increased attention in recent years compared to deep architectures that use a constrained memory. Despite their new appeal, the success of NMNs hinges on the ability of the gradient-based optimiser to perform incremental training of the NMN controllers, determining how to leverage their high capacity for knowledge retrieval. This means that while excellent performance can be achieved when the training data is consistent and well distributed, rare data samples are hard to learn from as the controllers fail to incorporate them effectively during model training. Drawing inspiration from the human cognition process, in particular the utilisation of neuromodulators in the human brain, we propose to decouple the learning process of the NMN controllers to allow them to achieve flexible, rapid adaptation in the presence of new information. This trait is highly beneficial for meta-learning tasks where the memory controllers must quickly grasp abstract concepts in the target domain, and adapt stored knowledge. This allows the NMN controllers to quickly determine which memories are to be retained and which are to be erased, and swiftly adapt their strategy to the new task at hand. Through both quantitative and qualitative evaluations on multiple public benchmarks, including classification and regression tasks, we demonstrate the utility of the proposed approach. Our evaluations not only highlight the ability of the proposed NMN architecture to outperform the current state-of-the-art methods, but also provide insights on how the proposed augmentations help achieve such superior results. In addition, we demonstrate the practical implications of the proposed learning strategy, where the feedback path can be shared among multiple neural memory networks as a mechanism for knowledge sharing.
Causal Estimation of Memorisation Profiles
Understanding memorisation in language models has practical and societal implications, e.g., studying models' training dynamics or preventing copyright infringements. Prior work defines memorisation as the causal effect of training with an instance on the model's ability to predict that instance. This definition relies on a counterfactual: the ability to observe what would have happened had the model not seen that instance. Existing methods struggle to provide computationally efficient and accurate estimates of this counterfactual. Further, they often estimate memorisation for a model architecture rather than for a specific model instance. This paper fills an important gap in the literature, proposing a new, principled, and efficient method to estimate memorisation based on the difference-in-differences design from econometrics. Using this method, we characterise a model's memorisation profile--its memorisation trends across training--by only observing its behaviour on a small set of instances throughout training. In experiments with the Pythia model suite, we find that memorisation (i) is stronger and more persistent in larger models, (ii) is determined by data order and learning rate, and (iii) has stable trends across model sizes, thus making memorisation in larger models predictable from smaller ones.
Localizing Paragraph Memorization in Language Models
Can we localize the weights and mechanisms used by a language model to memorize and recite entire paragraphs of its training data? In this paper, we show that while memorization is spread across multiple layers and model components, gradients of memorized paragraphs have a distinguishable spatial pattern, being larger in lower model layers than gradients of non-memorized examples. Moreover, the memorized examples can be unlearned by fine-tuning only the high-gradient weights. We localize a low-layer attention head that appears to be especially involved in paragraph memorization. This head is predominantly focusing its attention on distinctive, rare tokens that are least frequent in a corpus-level unigram distribution. Next, we study how localized memorization is across the tokens in the prefix by perturbing tokens and measuring the caused change in the decoding. A few distinctive tokens early in a prefix can often corrupt the entire continuation. Overall, memorized continuations are not only harder to unlearn, but also to corrupt than non-memorized ones.
The Pitfalls of Memorization: When Memorization Hurts Generalization
Neural networks often learn simple explanations that fit the majority of the data while memorizing exceptions that deviate from these explanations.This behavior leads to poor generalization when the learned explanations rely on spurious correlations. In this work, we formalize the interplay between memorization and generalization, showing that spurious correlations would particularly lead to poor generalization when are combined with memorization. Memorization can reduce training loss to zero, leaving no incentive to learn robust, generalizable patterns. To address this, we propose memorization-aware training (MAT), which uses held-out predictions as a signal of memorization to shift a model's logits. MAT encourages learning robust patterns invariant across distributions, improving generalization under distribution shifts.
Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration
Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.
Large Language Models Are Semi-Parametric Reinforcement Learning Agents
Inspired by the insights in cognitive science with respect to human memory and reasoning mechanism, a novel evolvable LLM-based (Large Language Model) agent framework is proposed as REMEMBERER. By equipping the LLM with a long-term experience memory, REMEMBERER is capable of exploiting the experiences from the past episodes even for different task goals, which excels an LLM-based agent with fixed exemplars or equipped with a transient working memory. We further introduce Reinforcement Learning with Experience Memory (RLEM) to update the memory. Thus, the whole system can learn from the experiences of both success and failure, and evolve its capability without fine-tuning the parameters of the LLM. In this way, the proposed REMEMBERER constitutes a semi-parametric RL agent. Extensive experiments are conducted on two RL task sets to evaluate the proposed framework. The average results with different initialization and training sets exceed the prior SOTA by 4% and 2% for the success rate on two task sets and demonstrate the superiority and robustness of REMEMBERER.
Towards mental time travel: a hierarchical memory for reinforcement learning agents
Reinforcement learning agents often forget details of the past, especially after delays or distractor tasks. Agents with common memory architectures struggle to recall and integrate across multiple timesteps of a past event, or even to recall the details of a single timestep that is followed by distractor tasks. To address these limitations, we propose a Hierarchical Chunk Attention Memory (HCAM), which helps agents to remember the past in detail. HCAM stores memories by dividing the past into chunks, and recalls by first performing high-level attention over coarse summaries of the chunks, and then performing detailed attention within only the most relevant chunks. An agent with HCAM can therefore "mentally time-travel" -- remember past events in detail without attending to all intervening events. We show that agents with HCAM substantially outperform agents with other memory architectures at tasks requiring long-term recall, retention, or reasoning over memory. These include recalling where an object is hidden in a 3D environment, rapidly learning to navigate efficiently in a new neighborhood, and rapidly learning and retaining new object names. Agents with HCAM can extrapolate to task sequences much longer than they were trained on, and can even generalize zero-shot from a meta-learning setting to maintaining knowledge across episodes. HCAM improves agent sample efficiency, generalization, and generality (by solving tasks that previously required specialized architectures). Our work is a step towards agents that can learn, interact, and adapt in complex and temporally-extended environments.
Emergent mechanisms for long timescales depend on training curriculum and affect performance in memory tasks
Recurrent neural networks (RNNs) in the brain and in silico excel at solving tasks with intricate temporal dependencies. Long timescales required for solving such tasks can arise from properties of individual neurons (single-neuron timescale, tau, e.g., membrane time constant in biological neurons) or recurrent interactions among them (network-mediated timescale). However, the contribution of each mechanism for optimally solving memory-dependent tasks remains poorly understood. Here, we train RNNs to solve N-parity and N-delayed match-to-sample tasks with increasing memory requirements controlled by N by simultaneously optimizing recurrent weights and taus. We find that for both tasks RNNs develop longer timescales with increasing N, but depending on the learning objective, they use different mechanisms. Two distinct curricula define learning objectives: sequential learning of a single-N (single-head) or simultaneous learning of multiple Ns (multi-head). Single-head networks increase their tau with N and are able to solve tasks for large N, but they suffer from catastrophic forgetting. However, multi-head networks, which are explicitly required to hold multiple concurrent memories, keep tau constant and develop longer timescales through recurrent connectivity. Moreover, we show that the multi-head curriculum increases training speed and network stability to ablations and perturbations, and allows RNNs to generalize better to tasks beyond their training regime. This curriculum also significantly improves training GRUs and LSTMs for large-N tasks. Our results suggest that adapting timescales to task requirements via recurrent interactions allows learning more complex objectives and improves the RNN's performance.
Key-value memory in the brain
Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored patterns, where similarity is a function of retrieval cues and the stored patterns. While parsimonious, these models do not allow distinct representations for storage and retrieval, despite their distinct computational demands. Key-value memory systems, in contrast, distinguish representations used for storage (values) and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value memory, its role in modern machine learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.
Center Loss Regularization for Continual Learning
The ability to learn different tasks sequentially is essential to the development of artificial intelligence. In general, neural networks lack this capability, the major obstacle being catastrophic forgetting. It occurs when the incrementally available information from non-stationary data distributions is continually acquired, disrupting what the model has already learned. Our approach remembers old tasks by projecting the representations of new tasks close to that of old tasks while keeping the decision boundaries unchanged. We employ the center loss as a regularization penalty that enforces new tasks' features to have the same class centers as old tasks and makes the features highly discriminative. This, in turn, leads to the least forgetting of already learned information. This method is easy to implement, requires minimal computational and memory overhead, and allows the neural network to maintain high performance across many sequentially encountered tasks. We also demonstrate that using the center loss in conjunction with the memory replay outperforms other replay-based strategies. Along with standard MNIST variants for continual learning, we apply our method to continual domain adaptation scenarios with the Digits and PACS datasets. We demonstrate that our approach is scalable, effective, and gives competitive performance compared to state-of-the-art continual learning methods.
An Efficient Rehearsal Scheme for Catastrophic Forgetting Mitigation during Multi-stage Fine-tuning
Incrementally fine-tuning foundational models on new tasks or domains is now the de facto approach in NLP. A known pitfall of this approach is the catastrophic forgetting of prior knowledge that happens during fine-tuning. A common approach to alleviate such forgetting is to rehearse samples from prior tasks during fine-tuning. Several existing works assume a fixed memory buffer to store prior task examples, while relying on inferences (forward passes) with the model at hand for choosing examples for rehearsal from the buffer. However, given the increasing computational cost of model inference, and decreasing cost of data storage, we focus on the setting to rehearse samples with a fixed computational budget instead of a fixed memory budget. We propose a sampling scheme, \bf mix-cd, that prioritizes rehearsal of ``collateral damage'' samples, which are samples predicted correctly by the prior model but forgotten by the incrementally tuned one. The crux of our scheme is a procedure to efficiently estimate the density of collateral damage samples without incurring additional model inferences. Our approach is computationally efficient, easy to implement, and outperforms several leading continual learning methods in compute-constrained settings. All the code will be publicly available at https://github.com/jybai/mix-cd-rehearsal.
Unraveling the Complexity of Memory in RL Agents: an Approach for Classification and Evaluation
The incorporation of memory into agents is essential for numerous tasks within the domain of Reinforcement Learning (RL). In particular, memory is paramount for tasks that require the utilization of past information, adaptation to novel environments, and improved sample efficiency. However, the term ``memory'' encompasses a wide range of concepts, which, coupled with the lack of a unified methodology for validating an agent's memory, leads to erroneous judgments about agents' memory capabilities and prevents objective comparison with other memory-enhanced agents. This paper aims to streamline the concept of memory in RL by providing practical precise definitions of agent memory types, such as long-term versus short-term memory and declarative versus procedural memory, inspired by cognitive science. Using these definitions, we categorize different classes of agent memory, propose a robust experimental methodology for evaluating the memory capabilities of RL agents, and standardize evaluations. Furthermore, we empirically demonstrate the importance of adhering to the proposed methodology when evaluating different types of agent memory by conducting experiments with different RL agents and what its violation leads to.
Human-inspired Perspectives: A Survey on AI Long-term Memory
With the rapid advancement of AI systems, their abilities to store, retrieve, and utilize information over the long term - referred to as long-term memory - have become increasingly significant. These capabilities are crucial for enhancing the performance of AI systems across a wide range of tasks. However, there is currently no comprehensive survey that systematically investigates AI's long-term memory capabilities, formulates a theoretical framework, and inspires the development of next-generation AI long-term memory systems. This paper begins by systematically introducing the mechanisms of human long-term memory, then explores AI long-term memory mechanisms, establishing a mapping between the two. Based on the mapping relationships identified, we extend the current cognitive architectures and propose the Cognitive Architecture of Self-Adaptive Long-term Memory (SALM). SALM provides a theoretical framework for the practice of AI long-term memory and holds potential for guiding the creation of next-generation long-term memory driven AI systems. Finally, we delve into the future directions and application prospects of AI long-term memory.
ROME: Memorization Insights from Text, Probability and Hidden State in Large Language Models
Probing the memorization of large language models holds significant importance. Previous works have established metrics for quantifying memorization, explored various influencing factors, such as data duplication, model size, and prompt length, and evaluated memorization by comparing model outputs with training corpora. However, the training corpora are of enormous scale and its pre-processing is time-consuming. To explore memorization without accessing training data, we propose a novel approach, named ROME, wherein memorization is explored by comparing disparities across memorized and non-memorized. Specifically, models firstly categorize the selected samples into memorized and non-memorized groups, and then comparing the demonstrations in the two groups from the insights of text, probability, and hidden state. Experimental findings show the disparities in factors including word length, part-of-speech, word frequency, mean and variance, just to name a few.
Assessing Episodic Memory in LLMs with Sequence Order Recall Tasks
Current LLM benchmarks focus on evaluating models' memory of facts and semantic relations, primarily assessing semantic aspects of long-term memory. However, in humans, long-term memory also includes episodic memory, which links memories to their contexts, such as the time and place they occurred. The ability to contextualize memories is crucial for many cognitive tasks and everyday functions. This form of memory has not been evaluated in LLMs with existing benchmarks. To address the gap in evaluating memory in LLMs, we introduce Sequence Order Recall Tasks (SORT), which we adapt from tasks used to study episodic memory in cognitive psychology. SORT requires LLMs to recall the correct order of text segments, and provides a general framework that is both easily extendable and does not require any additional annotations. We present an initial evaluation dataset, Book-SORT, comprising 36k pairs of segments extracted from 9 books recently added to the public domain. Based on a human experiment with 155 participants, we show that humans can recall sequence order based on long-term memory of a book. We find that models can perform the task with high accuracy when relevant text is given in-context during the SORT evaluation. However, when presented with the book text only during training, LLMs' performance on SORT falls short. By allowing to evaluate more aspects of memory, we believe that SORT will aid in the emerging development of memory-augmented models.
Meta-learning of Sequential Strategies
In this report we review memory-based meta-learning as a tool for building sample-efficient strategies that learn from past experience to adapt to any task within a target class. Our goal is to equip the reader with the conceptual foundations of this tool for building new, scalable agents that operate on broad domains. To do so, we present basic algorithmic templates for building near-optimal predictors and reinforcement learners which behave as if they had a probabilistic model that allowed them to efficiently exploit task structure. Furthermore, we recast memory-based meta-learning within a Bayesian framework, showing that the meta-learned strategies are near-optimal because they amortize Bayes-filtered data, where the adaptation is implemented in the memory dynamics as a state-machine of sufficient statistics. Essentially, memory-based meta-learning translates the hard problem of probabilistic sequential inference into a regression problem.
Learning to Reason and Memorize with Self-Notes
Large language models have been shown to struggle with limited context memory and multi-step reasoning. We propose a simple method for solving both of these problems by allowing the model to take Self-Notes. Unlike recent scratchpad approaches, the model can deviate from the input context at any time to explicitly think. This allows the model to recall information and perform reasoning on the fly as it reads the context, thus extending its memory and enabling multi-step reasoning. Our experiments on multiple tasks demonstrate that our method can successfully generalize to longer and more complicated instances from their training setup by taking Self-Notes at inference time.
MemControl: Mitigating Memorization in Diffusion Models via Automated Parameter Selection
Diffusion models excel in generating images that closely resemble their training data but are also susceptible to data memorization, raising privacy, ethical, and legal concerns, particularly in sensitive domains such as medical imaging. We hypothesize that this memorization stems from the overparameterization of deep models and propose that regularizing model capacity during fine-tuning can mitigate this issue. Firstly, we empirically show that regulating the model capacity via Parameter-efficient fine-tuning (PEFT) mitigates memorization to some extent, however, it further requires the identification of the exact parameter subsets to be fine-tuned for high-quality generation. To identify these subsets, we introduce a bi-level optimization framework, MemControl, that automates parameter selection using memorization and generation quality metrics as rewards during fine-tuning. The parameter subsets discovered through MemControl achieve a superior tradeoff between generation quality and memorization. For the task of medical image generation, our approach outperforms existing state-of-the-art memorization mitigation strategies by fine-tuning as few as 0.019% of model parameters. Moreover, we demonstrate that the discovered parameter subsets are transferable to non-medical domains. Our framework is scalable to large datasets, agnostic to reward functions, and can be integrated with existing approaches for further memorization mitigation. To the best of our knowledge, this is the first study to empirically evaluate memorization in medical images and propose a targeted yet universal mitigation strategy. The code is available at https://github.com/Raman1121/Diffusion_Memorization_HPO.
Arithmetic Without Algorithms: Language Models Solve Math With a Bag of Heuristics
Do large language models (LLMs) solve reasoning tasks by learning robust generalizable algorithms, or do they memorize training data? To investigate this question, we use arithmetic reasoning as a representative task. Using causal analysis, we identify a subset of the model (a circuit) that explains most of the model's behavior for basic arithmetic logic and examine its functionality. By zooming in on the level of individual circuit neurons, we discover a sparse set of important neurons that implement simple heuristics. Each heuristic identifies a numerical input pattern and outputs corresponding answers. We hypothesize that the combination of these heuristic neurons is the mechanism used to produce correct arithmetic answers. To test this, we categorize each neuron into several heuristic types-such as neurons that activate when an operand falls within a certain range-and find that the unordered combination of these heuristic types is the mechanism that explains most of the model's accuracy on arithmetic prompts. Finally, we demonstrate that this mechanism appears as the main source of arithmetic accuracy early in training. Overall, our experimental results across several LLMs show that LLMs perform arithmetic using neither robust algorithms nor memorization; rather, they rely on a "bag of heuristics".
Measuring memorization in RLHF for code completion
Reinforcement learning with human feedback (RLHF) has become the dominant method to align large models to user preferences. Unlike fine-tuning, for which there are many studies regarding training data memorization, it is not clear how memorization is affected by or introduced in the RLHF alignment process. Understanding this relationship is important as real user data may be collected and used to align large models; if user data is memorized during RLHF and later regurgitated, this could raise privacy concerns. In this work, we analyze how training data memorization can surface and propagate through each phase of RLHF. We focus our study on code completion models, as code completion is one of the most popular use cases for large language models. We find that RLHF significantly decreases the chance that data used for reward modeling and reinforcement learning is memorized, in comparison to aligning via directly fine-tuning on this data, but that examples already memorized during the fine-tuning stage of RLHF, will, in the majority of cases, remain memorized after RLHF.
Examining Forgetting in Continual Pre-training of Aligned Large Language Models
Recent advances in Large Language Models (LLMs) have exhibited remarkable proficiency across various tasks. Given the potent applications of LLMs in numerous fields, there has been a surge in LLM development. In developing LLMs, a common practice involves continual pre-training on previously fine-tuned models. However, this can lead to catastrophic forgetting. In our work, we investigate the phenomenon of forgetting that occurs during continual pre-training on an existing fine-tuned LLM. We evaluate the impact of continuous pre-training on the fine-tuned LLM across various dimensions, including output format, knowledge, and reliability. Experiment results highlight the non-trivial challenge of addressing catastrophic forgetting during continual pre-training, especially the repetition issue.
Memory, Consciousness and Large Language Model
With the development in cognitive science and Large Language Models (LLMs), increasing connections have come to light between these two distinct fields. Building upon these connections, we propose a conjecture suggesting the existence of a duality between LLMs and Tulving's theory of memory. We identify a potential correspondence between Tulving's synergistic ecphory model (SEM) of retrieval and the emergent abilities observed in LLMs, serving as supporting evidence for our conjecture. Furthermore, we speculate that consciousness may be considered a form of emergent ability based on this duality. We also discuss how other theories of consciousness intersect with our research.
Extended Mind Transformers
Pre-trained language models demonstrate general intelligence and common sense, but long inputs quickly become a bottleneck for memorizing information at inference time. We resurface a simple method, Memorizing Transformers (Wu et al., 2022), that gives the model access to a bank of pre-computed memories. We show that it is possible to fix many of the shortcomings of the original method, such as the need for fine-tuning, by critically assessing how positional encodings should be updated for the keys and values retrieved. This intuitive method uses the model's own key/query system to select and attend to the most relevant memories at each generation step, rather than using external embeddings. We demonstrate the importance of external information being retrieved in a majority of decoder layers, contrary to previous work. We open source a new counterfactual long-range retrieval benchmark, and show that Extended Mind Transformers outperform today's state of the art by 6% on average.
MemoryBank: Enhancing Large Language Models with Long-Term Memory
Revolutionary advancements in Large Language Models have drastically reshaped our interactions with artificial intelligence systems. Despite this, a notable hindrance remains-the deficiency of a long-term memory mechanism within these models. This shortfall becomes increasingly evident in situations demanding sustained interaction, such as personal companion systems and psychological counseling. Therefore, we propose MemoryBank, a novel memory mechanism tailored for LLMs. MemoryBank enables the models to summon relevant memories, continually evolve through continuous memory updates, comprehend, and adapt to a user personality by synthesizing information from past interactions. To mimic anthropomorphic behaviors and selectively preserve memory, MemoryBank incorporates a memory updating mechanism, inspired by the Ebbinghaus Forgetting Curve theory, which permits the AI to forget and reinforce memory based on time elapsed and the relative significance of the memory, thereby offering a human-like memory mechanism. MemoryBank is versatile in accommodating both closed-source models like ChatGPT and open-source models like ChatGLM. We exemplify application of MemoryBank through the creation of an LLM-based chatbot named SiliconFriend in a long-term AI Companion scenario. Further tuned with psychological dialogs, SiliconFriend displays heightened empathy in its interactions. Experiment involves both qualitative analysis with real-world user dialogs and quantitative analysis with simulated dialogs. In the latter, ChatGPT acts as users with diverse characteristics and generates long-term dialog contexts covering a wide array of topics. The results of our analysis reveal that SiliconFriend, equipped with MemoryBank, exhibits a strong capability for long-term companionship as it can provide emphatic response, recall relevant memories and understand user personality.
CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning
Computer vision models suffer from a phenomenon known as catastrophic forgetting when learning novel concepts from continuously shifting training data. Typical solutions for this continual learning problem require extensive rehearsal of previously seen data, which increases memory costs and may violate data privacy. Recently, the emergence of large-scale pre-trained vision transformer models has enabled prompting approaches as an alternative to data-rehearsal. These approaches rely on a key-query mechanism to generate prompts and have been found to be highly resistant to catastrophic forgetting in the well-established rehearsal-free continual learning setting. However, the key mechanism of these methods is not trained end-to-end with the task sequence. Our experiments show that this leads to a reduction in their plasticity, hence sacrificing new task accuracy, and inability to benefit from expanded parameter capacity. We instead propose to learn a set of prompt components which are assembled with input-conditioned weights to produce input-conditioned prompts, resulting in a novel attention-based end-to-end key-query scheme. Our experiments show that we outperform the current SOTA method DualPrompt on established benchmarks by as much as 4.5% in average final accuracy. We also outperform the state of art by as much as 4.4% accuracy on a continual learning benchmark which contains both class-incremental and domain-incremental task shifts, corresponding to many practical settings. Our code is available at https://github.com/GT-RIPL/CODA-Prompt
Quantifying Memorization Across Neural Language Models
Large language models (LMs) have been shown to memorize parts of their training data, and when prompted appropriately, they will emit the memorized training data verbatim. This is undesirable because memorization violates privacy (exposing user data), degrades utility (repeated easy-to-memorize text is often low quality), and hurts fairness (some texts are memorized over others). We describe three log-linear relationships that quantify the degree to which LMs emit memorized training data. Memorization significantly grows as we increase (1) the capacity of a model, (2) the number of times an example has been duplicated, and (3) the number of tokens of context used to prompt the model. Surprisingly, we find the situation becomes more complicated when generalizing these results across model families. On the whole, we find that memorization in LMs is more prevalent than previously believed and will likely get worse as models continues to scale, at least without active mitigations.
Rethinking LLM Memorization through the Lens of Adversarial Compression
Large language models (LLMs) trained on web-scale datasets raise substantial concerns regarding permissible data usage. One major question is whether these models "memorize" all their training data or they integrate many data sources in some way more akin to how a human would learn and synthesize information. The answer hinges, to a large degree, on how we define memorization. In this work, we propose the Adversarial Compression Ratio (ACR) as a metric for assessing memorization in LLMs -- a given string from the training data is considered memorized if it can be elicited by a prompt shorter than the string itself. In other words, these strings can be "compressed" with the model by computing adversarial prompts of fewer tokens. We outline the limitations of existing notions of memorization and show how the ACR overcomes these challenges by (i) offering an adversarial view to measuring memorization, especially for monitoring unlearning and compliance; and (ii) allowing for the flexibility to measure memorization for arbitrary strings at a reasonably low compute. Our definition serves as a valuable and practical tool for determining when model owners may be violating terms around data usage, providing a potential legal tool and a critical lens through which to address such scenarios. Project page: https://locuslab.github.io/acr-memorization.
Knowledge Mechanisms in Large Language Models: A Survey and Perspective
Understanding knowledge mechanisms in Large Language Models (LLMs) is crucial for advancing towards trustworthy AGI. This paper reviews knowledge mechanism analysis from a novel taxonomy including knowledge utilization and evolution. Knowledge utilization delves into the mechanism of memorization, comprehension and application, and creation. Knowledge evolution focuses on the dynamic progression of knowledge within individual and group LLMs. Moreover, we discuss what knowledge LLMs have learned, the reasons for the fragility of parametric knowledge, and the potential dark knowledge (hypothesis) that will be challenging to address. We hope this work can help understand knowledge in LLMs and provide insights for future research.
Can Language Models Act as Knowledge Bases at Scale?
Large language models (LLMs) have demonstrated remarkable proficiency in understanding and generating responses to complex queries through large-scale pre-training. However, the efficacy of these models in memorizing and reasoning among large-scale structured knowledge, especially world knowledge that explicitly covers abundant factual information remains questionable. Addressing this gap, our research investigates whether LLMs can effectively store, recall, and reason with knowledge on a large scale comparable to latest knowledge bases (KBs) such as Wikidata. Specifically, we focus on three crucial aspects to study the viability: (1) the efficiency of LLMs with different sizes in memorizing the exact knowledge in the large-scale KB; (2) the flexibility of recalling the memorized knowledge in response to natural language queries; (3) the capability to infer new knowledge through reasoning. Our findings indicate that while LLMs hold promise as large-scale KBs capable of retrieving and responding with flexibility, enhancements in their reasoning capabilities are necessary to fully realize their potential.
Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted
Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs, yet concerns arise as research indicates their tendency to memorize and replicate training data, raising We also addressed the issue of memorization in diffusion models, where models tend to replicate exact training samples raising copyright infringement and privacy issues. Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens, proposing per-prompt inference-time or training-time mitigation strategies. In this paper, we focus on the feed-forward layers and begin by contrasting neuron activations of a set of memorized and non-memorized prompts. Experiments reveal a surprising finding: many different sets of memorized prompts significantly activate a common subspace in the model, demonstrating, for the first time, that memorization in the diffusion models lies in a special subspace. Subsequently, we introduce a novel post-hoc method for editing pre-trained models, whereby memorization is mitigated through the straightforward pruning of weights in specialized subspaces, avoiding the need to disrupt the training or inference process as seen in prior research. Finally, we demonstrate the robustness of the pruned model against training data extraction attacks, thereby unveiling new avenues for a practical and one-for-all solution to memorization.
Beyond Memorization: The Challenge of Random Memory Access in Language Models
Recent developments in Language Models (LMs) have shown their effectiveness in NLP tasks, particularly in knowledge-intensive tasks. However, the mechanisms underlying knowledge storage and memory access within their parameters remain elusive. In this paper, we investigate whether a generative LM (e.g., GPT-2) is able to access its memory sequentially or randomly. Through carefully-designed synthetic tasks, covering the scenarios of full recitation, selective recitation and grounded question answering, we reveal that LMs manage to sequentially access their memory while encountering challenges in randomly accessing memorized content. We find that techniques including recitation and permutation improve the random memory access capability of LMs. Furthermore, by applying this intervention to realistic scenarios of open-domain question answering, we validate that enhancing random access by recitation leads to notable improvements in question answering. The code to reproduce our experiments can be found at https://github.com/sail-sg/lm-random-memory-access.
Spurious Forgetting in Continual Learning of Language Models
Recent advancements in large language models (LLMs) reveal a perplexing phenomenon in continual learning: despite extensive training, models experience significant performance declines, raising questions about task alignment and underlying knowledge retention. This study first explores the concept of "spurious forgetting", proposing that such performance drops often reflect a decline in task alignment rather than true knowledge loss. Through controlled experiments with a synthesized dataset, we investigate the dynamics of model performance during the initial training phases of new tasks, discovering that early optimization steps can disrupt previously established task alignments. Our theoretical analysis connects these shifts to orthogonal updates in model weights, providing a robust framework for understanding this behavior. Ultimately, we introduce a Freezing strategy that fix the bottom layers of the model, leading to substantial improvements in four continual learning scenarios. Our findings underscore the critical distinction between task alignment and knowledge retention, paving the way for more effective strategies in continual learning.
A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
Memory Networks
We describe a new class of learning models called memory networks. Memory networks reason with inference components combined with a long-term memory component; they learn how to use these jointly. The long-term memory can be read and written to, with the goal of using it for prediction. We investigate these models in the context of question answering (QA) where the long-term memory effectively acts as a (dynamic) knowledge base, and the output is a textual response. We evaluate them on a large-scale QA task, and a smaller, but more complex, toy task generated from a simulated world. In the latter, we show the reasoning power of such models by chaining multiple supporting sentences to answer questions that require understanding the intension of verbs.
An Investigation of the Combination of Rehearsal and Knowledge Distillation in Continual Learning for Spoken Language Understanding
Continual learning refers to a dynamical framework in which a model receives a stream of non-stationary data over time and must adapt to new data while preserving previously acquired knowledge. Unluckily, neural networks fail to meet these two desiderata, incurring the so-called catastrophic forgetting phenomenon. Whereas a vast array of strategies have been proposed to attenuate forgetting in the computer vision domain, for speech-related tasks, on the other hand, there is a dearth of works. In this paper, we consider the joint use of rehearsal and knowledge distillation (KD) approaches for spoken language understanding under a class-incremental learning scenario. We report on multiple KD combinations at different levels in the network, showing that combining feature-level and predictions-level KDs leads to the best results. Finally, we provide an ablation study on the effect of the size of the rehearsal memory that corroborates the efficacy of our approach for low-resource devices.
A Unified and General Framework for Continual Learning
Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge. Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques. However, these methods lack a unified framework and common terminology for describing their approaches. This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies. Notably, this new framework is capable of encompassing established CL approaches as special instances within a unified and general optimization objective. An intriguing finding is that despite their diverse origins, these methods share common mathematical structures. This observation highlights the compatibility of these seemingly distinct techniques, revealing their interconnectedness through a shared underlying optimization objective. Moreover, the proposed general framework introduces an innovative concept called refresh learning, specifically designed to enhance the CL performance. This novel approach draws inspiration from neuroscience, where the human brain often sheds outdated information to improve the retention of crucial knowledge and facilitate the acquisition of new information. In essence, refresh learning operates by initially unlearning current data and subsequently relearning it. It serves as a versatile plug-in that seamlessly integrates with existing CL methods, offering an adaptable and effective enhancement to the learning process. Extensive experiments on CL benchmarks and theoretical analysis demonstrate the effectiveness of the proposed refresh learning. Code is available at https://github.com/joey-wang123/CL-refresh-learning.
Unforgettable Generalization in Language Models
When language models (LMs) are trained to forget (or "unlearn'') a skill, how precisely does their behavior change? We study the behavior of transformer LMs in which tasks have been forgotten via fine-tuning on randomized labels. Such LMs learn to generate near-random predictions for individual examples in the "training'' set used for forgetting. Across tasks, however, LMs exhibit extreme variability in whether LM predictions change on examples outside the training set. In some tasks (like entailment classification), forgetting generalizes robustly, and causes models to produce uninformative predictions on new task instances; in other tasks (like physical commonsense reasoning and scientific question answering) forgetting affects only the training examples, and models continue to perform the "forgotten'' task accurately even for examples very similar to those that appeared in the training set. Dataset difficulty is not predictive of whether a behavior can be forgotten; instead, generalization in forgetting is (weakly) predicted by the confidence of LMs' initial task predictions and the variability of LM representations of training data, with low confidence and low variability both associated with greater generalization. Perhaps most surprisingly, random-label forgetting appears to be somewhat insensitive to the contents of the training set: for example, models trained on science questions with random labels continue to answer other science questions accurately, but begin to produce random labels on entailment classification tasks. Finally, we show that even generalizable forgetting is shallow: linear probes trained on LMs' representations can still perform tasks reliably after forgetting. Our results highlight the difficulty and unpredictability of performing targeted skill removal from models via fine-tuning.
Thinking LLMs: General Instruction Following with Thought Generation
LLMs are typically trained to answer user questions or follow instructions similarly to how human experts respond. However, in the standard alignment framework they lack the basic ability of explicit thinking before answering. Thinking is important for complex questions that require reasoning and planning -- but can be applied to any task. We propose a training method for equipping existing LLMs with such thinking abilities for general instruction following without use of additional human data. We achieve this by an iterative search and optimization procedure that explores the space of possible thought generations, allowing the model to learn how to think without direct supervision. For each instruction, the thought candidates are scored using a judge model to evaluate their responses only, and then optimized via preference optimization. We show that this procedure leads to superior performance on AlpacaEval and Arena-Hard, and shows gains from thinking on non-reasoning categories such as marketing, health and general knowledge, in addition to more traditional reasoning & problem-solving tasks.
Memorization in Self-Supervised Learning Improves Downstream Generalization
Self-supervised learning (SSL) has recently received significant attention due to its ability to train high-performance encoders purely on unlabeled data-often scraped from the internet. This data can still be sensitive and empirical evidence suggests that SSL encoders memorize private information of their training data and can disclose them at inference time. Since existing theoretical definitions of memorization from supervised learning rely on labels, they do not transfer to SSL. To address this gap, we propose SSLMem, a framework for defining memorization within SSL. Our definition compares the difference in alignment of representations for data points and their augmented views returned by both encoders that were trained on these data points and encoders that were not. Through comprehensive empirical analysis on diverse encoder architectures and datasets we highlight that even though SSL relies on large datasets and strong augmentations-both known in supervised learning as regularization techniques that reduce overfitting-still significant fractions of training data points experience high memorization. Through our empirical results, we show that this memorization is essential for encoders to achieve higher generalization performance on different downstream tasks.
Attendre: Wait To Attend By Retrieval With Evicted Queries in Memory-Based Transformers for Long Context Processing
As LLMs have become capable of processing more complex types of inputs, researchers have recently studied how to efficiently and affordably process possibly arbitrarily long sequences. One effective approach is to use a FIFO memory to store keys and values of an attention sublayer from past chunks to allow subsequent queries to attend. However, this approach requires a large memory and/or takes into the consideration the specific LM architecture. Moreover, due to the causal nature between the key-values in prior context and the queries at present, this approach cannot be extended to bidirectional attention such as in an encoder-decoder or PrefixLM decoder-only architecture. In this paper, we propose to use eviction policies, such as LRA and LFA, to reduce the memory size and adapt to various architectures, and we also propose the Attendre layer, a wait-to-attend mechanism by retrieving the key-value memory (K/V memory) with evicted queries in the query memory (Q memory). As a first step, we evaluate this method in the context length extension setup using the TriviaQA reading comprehension task, and show the effectiveness of the approach.
How Abilities in Large Language Models are Affected by Supervised Fine-tuning Data Composition
Large language models (LLMs) with enormous pre-training tokens and parameter amounts emerge abilities, including math reasoning, code generation, and instruction following. These abilities are further enhanced by supervised fine-tuning (SFT). The open-source community has studied on ad-hoc SFT for each ability, while proprietary LLMs are versatile for all abilities. It is important to investigate how to unlock them with multiple abilities via SFT. In this study, we specifically focus on the data composition between mathematical reasoning, code generation, and general human-aligning abilities during SFT. From a scaling perspective, we investigate the relationship between model abilities and various factors including data amounts, data composition ratio, model parameters, and SFT strategies. Our experiments reveal that different abilities exhibit different scaling patterns, and larger models generally show superior performance with the same amount of data. Mathematical reasoning and code generation improve as data amounts increase consistently, while the general ability is enhanced with about a thousand samples and improves slowly. We find data composition results in various abilities improvements with low data amounts, while conflicts of abilities with high data amounts. Our experiments further show that composition data amount impacts performance, while the influence of composition ratio is insignificant. Regarding the SFT strategies, we evaluate sequential learning multiple abilities are prone to catastrophic forgetting. Our proposed Dual-stage Mixed Fine-tuning (DMT) strategy learns specialized abilities first and then learns general abilities with a small amount of specialized data to prevent forgetting, offering a promising solution to learn multiple abilities with different scaling patterns.
RAM: Towards an Ever-Improving Memory System by Learning from Communications
We introduce RAM, an innovative RAG-based framework with an ever-improving memory. Inspired by humans' pedagogical process, RAM utilizes recursively reasoning-based retrieval and experience reflections to continually update the memory and learn from users' communicative feedback, namely communicative learning. Extensive experiments with both simulated and real users demonstrate significant improvements over traditional RAG and self-knowledge methods, particularly excelling in handling false premise and multi-hop questions. Furthermore, RAM exhibits promising adaptability to various feedback and retrieval method chain types, showcasing its potential for advancing AI capabilities in dynamic knowledge acquisition and lifelong learning.
Copyright Traps for Large Language Models
Questions of fair use of copyright-protected content to train Large Language Models (LLMs) are being very actively debated. Document-level inference has been proposed as a new task: inferring from black-box access to the trained model whether a piece of content has been seen during training. SOTA methods however rely on naturally occurring memorization of (part of) the content. While very effective against models that memorize a lot, we hypothesize--and later confirm--that they will not work against models that do not naturally memorize, e.g. medium-size 1B models. We here propose to use copyright traps, the inclusion of fictitious entries in original content, to detect the use of copyrighted materials in LLMs with a focus on models where memorization does not naturally occur. We carefully design an experimental setup, randomly inserting traps into original content (books) and train a 1.3B LLM. We first validate that the use of content in our target model would be undetectable using existing methods. We then show, contrary to intuition, that even medium-length trap sentences repeated a significant number of times (100) are not detectable using existing methods. However, we show that longer sequences repeated a large number of times can be reliably detected (AUC=0.75) and used as copyright traps. We further improve these results by studying how the number of times a sequence is seen improves detectability, how sequences with higher perplexity tend to be memorized more, and how taking context into account further improves detectability.
Keep Me Updated! Memory Management in Long-term Conversations
Remembering important information from the past and continuing to talk about it in the present are crucial in long-term conversations. However, previous literature does not deal with cases where the memorized information is outdated, which may cause confusion in later conversations. To address this issue, we present a novel task and a corresponding dataset of memory management in long-term conversations, in which bots keep track of and bring up the latest information about users while conversing through multiple sessions. In order to support more precise and interpretable memory, we represent memory as unstructured text descriptions of key information and propose a new mechanism of memory management that selectively eliminates invalidated or redundant information. Experimental results show that our approach outperforms the baselines that leave the stored memory unchanged in terms of engagingness and humanness, with larger performance gap especially in the later sessions.
Learn the Time to Learn: Replay Scheduling in Continual Learning
Replay methods have shown to be successful in mitigating catastrophic forgetting in continual learning scenarios despite having limited access to historical data. However, storing historical data is cheap in many real-world applications, yet replaying all historical data would be prohibited due to processing time constraints. In such settings, we propose learning the time to learn for a continual learning system, in which we learn replay schedules over which tasks to replay at different time steps. To demonstrate the importance of learning the time to learn, we first use Monte Carlo tree search to find the proper replay schedule and show that it can outperform fixed scheduling policies in terms of continual learning performance. Moreover, to improve the scheduling efficiency itself, we propose to use reinforcement learning to learn the replay scheduling policies that can generalize to new continual learning scenarios without added computational cost. In our experiments, we show the advantages of learning the time to learn, which brings current continual learning research closer to real-world needs.
Memoria: Hebbian Memory Architecture for Human-Like Sequential Processing
Transformers have demonstrated their success in various domains and tasks. However, Transformers struggle with long input sequences due to their limited capacity. While one solution is to increase input length, endlessly stretching the length is unrealistic. Furthermore, humans selectively remember and use only relevant information from inputs, unlike Transformers which process all raw data from start to end. We introduce Memoria, a general memory network that applies Hebbian theory which is a major theory explaining human memory formulation to enhance long-term dependencies in neural networks. Memoria stores and retrieves information called engram at multiple memory levels of working memory, short-term memory, and long-term memory, using connection weights that change according to Hebb's rule. Through experiments with popular Transformer-based models like BERT and GPT, we present that Memoria significantly improves the ability to consider long-term dependencies in various tasks. Results show that Memoria outperformed existing methodologies in sorting and language modeling, and long text classification.
LLM Circuit Analyses Are Consistent Across Training and Scale
Most currently deployed large language models (LLMs) undergo continuous training or additional finetuning. By contrast, most research into LLMs' internal mechanisms focuses on models at one snapshot in time (the end of pre-training), raising the question of whether their results generalize to real-world settings. Existing studies of mechanisms over time focus on encoder-only or toy models, which differ significantly from most deployed models. In this study, we track how model mechanisms, operationalized as circuits, emerge and evolve across 300 billion tokens of training in decoder-only LLMs, in models ranging from 70 million to 2.8 billion parameters. We find that task abilities and the functional components that support them emerge consistently at similar token counts across scale. Moreover, although such components may be implemented by different attention heads over time, the overarching algorithm that they implement remains. Surprisingly, both these algorithms and the types of components involved therein can replicate across model scale. These results suggest that circuit analyses conducted on small models at the end of pre-training can provide insights that still apply after additional pre-training and over model scale.
MoT: Memory-of-Thought Enables ChatGPT to Self-Improve
Large Language Models (LLMs) have shown impressive abilities in various tasks. However, fundamentally improving them depends on high-quality datasets or computationally expensive fine-tuning. On the contrary, humans can easily improve themselves by self-thinking and memory, without external resources. In this paper, we propose a framework, MoT, to let the LLM self-improve through Memory-of-Thought, without annotated datasets and parameter updates. Specifically, MoT is divided into two stages: 1. before the test stage, the LLM pre-thinks on the unlabeled dataset and saves the high-confidence thoughts as external memory; 2. During the test stage, given a test question, the LLM recalls relevant memory to help itself reason and answer it. Experimental results show that MoT can help ChatGPT significantly improve its abilities in arithmetic reasoning, commonsense reasoning, factual reasoning, and natural language inference. Further analyses show that each component contributes critically to the improvements and MoT can lead to consistent improvements across various CoT methods and LLMs.
Linking In-context Learning in Transformers to Human Episodic Memory
Understanding the connections between artificial and biological intelligent systems can reveal fundamental principles underlying general intelligence. While many artificial intelligence (AI) models have a neuroscience counterpart, such connections are largely missing in Transformer models and the self-attention mechanism. Here, we examine the relationship between attention heads and human episodic memory. We focus on the induction heads, which contribute to the in-context learning capabilities of Transformer-based large language models (LLMs). We demonstrate that induction heads are behaviorally, functionally, and mechanistically similar to the contextual maintenance and retrieval (CMR) model of human episodic memory. Our analyses of LLMs pre-trained on extensive text data show that CMR-like heads often emerge in the intermediate model layers and that their behavior qualitatively mirrors the memory biases seen in humans. Our findings uncover a parallel between the computational mechanisms of LLMs and human memory, offering valuable insights into both research fields.
Towards a Mechanistic Interpretation of Multi-Step Reasoning Capabilities of Language Models
Recent work has shown that language models (LMs) have strong multi-step (i.e., procedural) reasoning capabilities. However, it is unclear whether LMs perform these tasks by cheating with answers memorized from pretraining corpus, or, via a multi-step reasoning mechanism. In this paper, we try to answer this question by exploring a mechanistic interpretation of LMs for multi-step reasoning tasks. Concretely, we hypothesize that the LM implicitly embeds a reasoning tree resembling the correct reasoning process within it. We test this hypothesis by introducing a new probing approach (called MechanisticProbe) that recovers the reasoning tree from the model's attention patterns. We use our probe to analyze two LMs: GPT-2 on a synthetic task (k-th smallest element), and LLaMA on two simple language-based reasoning tasks (ProofWriter & AI2 Reasoning Challenge). We show that MechanisticProbe is able to detect the information of the reasoning tree from the model's attentions for most examples, suggesting that the LM indeed is going through a process of multi-step reasoning within its architecture in many cases.
Teaching LLMs How to Learn with Contextual Fine-Tuning
Prompting Large Language Models (LLMs), or providing context on the expected model of operation, is an effective way to steer the outputs of such models to satisfy human desiderata after they have been trained. But in rapidly evolving domains, there is often need to fine-tune LLMs to improve either the kind of knowledge in their memory or their abilities to perform open ended reasoning in new domains. When human's learn new concepts, we often do so by linking the new material that we are studying to concepts we have already learned before. To that end, we ask, "can prompting help us teach LLMs how to learn". In this work, we study a novel generalization of instruction tuning, called contextual fine-tuning, to fine-tune LLMs. Our method leverages instructional prompts designed to mimic human cognitive strategies in learning and problem-solving to guide the learning process during training, aiming to improve the model's interpretation and understanding of domain-specific knowledge. We empirically demonstrate that this simple yet effective modification improves the ability of LLMs to be fine-tuned rapidly on new datasets both within the medical and financial domains.
Preventing Verbatim Memorization in Language Models Gives a False Sense of Privacy
Studying data memorization in neural language models helps us understand the risks (e.g., to privacy or copyright) associated with models regurgitating training data and aids in the development of countermeasures. Many prior works -- and some recently deployed defenses -- focus on "verbatim memorization", defined as a model generation that exactly matches a substring from the training set. We argue that verbatim memorization definitions are too restrictive and fail to capture more subtle forms of memorization. Specifically, we design and implement an efficient defense that perfectly prevents all verbatim memorization. And yet, we demonstrate that this "perfect" filter does not prevent the leakage of training data. Indeed, it is easily circumvented by plausible and minimally modified "style-transfer" prompts -- and in some cases even the non-modified original prompts -- to extract memorized information. We conclude by discussing potential alternative definitions and why defining memorization is a difficult yet crucial open question for neural language models.
HFT: Half Fine-Tuning for Large Language Models
Large language models (LLMs) with one or more fine-tuning phases have become a necessary step to unlock various capabilities, enabling LLMs to follow natural language instructions or align with human preferences. However, it carries the risk of catastrophic forgetting during sequential training, the parametric knowledge or the ability learned in previous stages may be overwhelmed by incoming training data. In this paper, we find that by regularly resetting partial parameters, LLMs can restore some of the original knowledge. Inspired by this, we introduce Half Fine-Tuning (HFT) for LLMs, as a substitute for full fine-tuning (FFT), to mitigate the forgetting issues, where half of the parameters are selected to learn new tasks while the other half are frozen to remain previous knowledge. We provide a feasibility analysis from the perspective of optimization and interpret the parameter selection operation as a regularization term. Without changing the model architecture, HFT could be seamlessly integrated into existing fine-tuning frameworks. Extensive experiments and analysis on supervised fine-tuning, direct preference optimization, and continual learning consistently demonstrate the effectiveness, robustness, and efficiency of HFT. Compared with FFT, HFT not only significantly alleviates the forgetting problem, but also achieves the best performance in a series of downstream benchmarks, with an approximately 30% reduction in training time.
ChatDB: Augmenting LLMs with Databases as Their Symbolic Memory
Large language models (LLMs) with memory are computationally universal. However, mainstream LLMs are not taking full advantage of memory, and the designs are heavily influenced by biological brains. Due to their approximate nature and proneness to the accumulation of errors, conventional neural memory mechanisms cannot support LLMs to simulate complex reasoning. In this paper, we seek inspiration from modern computer architectures to augment LLMs with symbolic memory for complex multi-hop reasoning. Such a symbolic memory framework is instantiated as an LLM and a set of SQL databases, where the LLM generates SQL instructions to manipulate the SQL databases. We validate the effectiveness of the proposed memory framework on a synthetic dataset requiring complex reasoning. The project website is available at https://chatdatabase.github.io/ .
Contextual Position Encoding: Learning to Count What's Important
The attention mechanism is a critical component of Large Language Models (LLMs) that allows tokens in a sequence to interact with each other, but is order-invariant. Incorporating position encoding (PE) makes it possible to address by position, such as attending to the i-th token. However, current PE methods use token counts to derive position, and thus cannot generalize to higher levels of abstraction, such as attending to the i-th sentence. In this paper, we propose a new position encoding method, Contextual Position Encoding (CoPE), that allows positions to be conditioned on context by incrementing position only on certain tokens determined by the model. This allows more general position addressing such as attending to the i-th particular word, noun, or sentence. We show that CoPE can solve the selective copy, counting and Flip-Flop tasks where popular position embeddings fail, and improves perplexity on language modeling and coding tasks.
Enhancing LLM Intelligence with ARM-RAG: Auxiliary Rationale Memory for Retrieval Augmented Generation
Large Language Models (LLMs) are smart but forgetful. Recent studies, (e.g., (Bubeck et al., 2023)) on modern LLMs have shown that they are capable of performing amazing tasks typically necessitating human-level intelligence. However, unlike humans, frozen LLMs do not improve over time; they neither acquire new knowledge nor learn from their successes or failures. Some approaches to improving the intelligence of LLMs include fine-tuning models based on problem-solving performance (Zelikman et al., 2022), and building bigger and more sophisticated models (Bubeck et al., 2023). However, these methods have the drawback of requiring substantial data and computational resources to retrain existing models. In this paper, we explore the use of Retrieval Augmented Generation, also known as RAG (Lewis et al., 2021) to improve problem-solving performance. We propose ARM-RAG (Auxiliary Rationale Memory for Retrieval Augmented Generation), a system that learns from its successes without incurring high training costs. We demonstrate that the storage and subsequent retrieval of reasoning chains have a positive influence on performance in grade-school math problems.
Scaling Laws for Forgetting When Fine-Tuning Large Language Models
We study and quantify the problem of forgetting when fine-tuning pre-trained large language models (LLMs) on a downstream task. We find that parameter-efficient fine-tuning (PEFT) strategies, such as Low-Rank Adapters (LoRA), still suffer from catastrophic forgetting. In particular, we identify a strong inverse linear relationship between the fine-tuning performance and the amount of forgetting when fine-tuning LLMs with LoRA. We further obtain precise scaling laws that show forgetting increases as a shifted power law in the number of parameters fine-tuned and the number of update steps. We also examine the impact of forgetting on knowledge, reasoning, and the safety guardrails trained into Llama 2 7B chat. Our study suggests that forgetting cannot be avoided through early stopping or by varying the number of parameters fine-tuned. We believe this opens up an important safety-critical direction for future research to evaluate and develop fine-tuning schemes which mitigate forgetting
Understanding AI Cognition: A Neural Module for Inference Inspired by Human Memory Mechanisms
How humans and machines make sense of current inputs for relation reasoning and question-answering while putting the perceived information into context of our past memories, has been a challenging conundrum in cognitive science and artificial intelligence. Inspired by human brain's memory system and cognitive architectures, we propose a PMI framework that consists of perception, memory and inference components. Notably, the memory module comprises working and long-term memory, with the latter endowed with a higher-order structure to retain more accumulated knowledge and experiences. Through a differentiable competitive write access, current perceptions update working memory, which is later merged with long-term memory via outer product associations, averting memory overflow and minimizing information conflicts. In the inference module, relevant information is retrieved from two separate memory origins and associatively integrated to attain a more comprehensive and precise interpretation of current perceptions. We exploratively apply our PMI to improve prevailing Transformers and CNN models on question-answering tasks like bAbI-20k and Sort-of-CLEVR datasets, as well as relation calculation and image classification tasks, and in each case, our PMI enhancements consistently outshine their original counterparts significantly. Visualization analyses reveal that memory consolidation, along with the interaction and integration of information from diverse memory sources, substantially contributes to the model effectiveness on inference tasks.
ProSG: Using Prompt Synthetic Gradients to Alleviate Prompt Forgetting of RNN-like Language Models
RNN-like language models are getting renewed attention from NLP researchers in recent years and several models have made significant progress, which demonstrates performance comparable to traditional transformers. However, due to the recurrent nature of RNNs, this kind of language model can only store information in a set of fixed-length state vectors. As a consequence, they still suffer from forgetfulness though after a lot of improvements and optimizations, when given complex instructions or prompts. As the prompted generation is the main and most concerned function of LMs, solving the problem of forgetting in the process of generation is no wonder of vital importance. In this paper, focusing on easing the prompt forgetting during generation, we proposed an architecture to teach the model memorizing prompt during generation by synthetic gradient. To force the model to memorize the prompt, we derive the states that encode the prompt, then transform it into model parameter modification using low-rank gradient approximation, which hard-codes the prompt into model parameters temporarily. We construct a dataset for experiments, and the results have demonstrated the effectiveness of our method in solving the problem of forgetfulness in the process of prompted generation. We will release all the code upon acceptance.
Data-Copying in Generative Models: A Formal Framework
There has been some recent interest in detecting and addressing memorization of training data by deep neural networks. A formal framework for memorization in generative models, called "data-copying," was proposed by Meehan et. al. (2020). We build upon their work to show that their framework may fail to detect certain kinds of blatant memorization. Motivated by this and the theory of non-parametric methods, we provide an alternative definition of data-copying that applies more locally. We provide a method to detect data-copying, and provably show that it works with high probability when enough data is available. We also provide lower bounds that characterize the sample requirement for reliable detection.
Catastrophic Interference is Mitigated in Naturalistic Power-Law Learning Environments
Neural networks often suffer from catastrophic interference (CI): performance on previously learned tasks drops off significantly when learning a new task. This contrasts strongly with humans, who can sequentially learn new tasks without appreciably forgetting previous tasks. Prior work has explored various techniques for mitigating CI such as regularization, rehearsal, generative replay, and distillation methods. The current work takes a different approach, one guided by cognitive science research showing that in naturalistic environments, the probability of encountering a task decreases as a power-law of the time since it was last performed. We argue that a realistic evaluation of techniques for the mitigation of CI should be performed in simulated naturalistic learning environments. Thus, we evaluate the extent of mitigation of CI when training simple rehearsal-based methods in power-law environments similar to the ones humans face. Our work explores this novel rehearsal-based approach for a domain-incremental task: learning permutations in the MNIST task. We compare our rehearsal environment with other baselines to show its efficacy in promoting continual learning. Additionally, we investigate whether this environment shows forward facilitation, i.e., faster learning of later tasks. Next, we explore the robustness of our learning environment to the number of tasks, model size, and amount of data rehearsed after each task. Notably, our results show that the performance is comparable or superior to that of models trained using popular regularization methods and also to rehearsals in non-power-law environments. The benefits of this training paradigm include simplicity and the lack of a need for extra neural circuitry. In addition, because our method is orthogonal to other methods, future research can combine training in power-law environments with other continual learning mechanisms.
Understanding and controlling the geometry of memory organization in RNNs
Training recurrent neural networks (RNNs) is a high-dimensional process that requires updating numerous parameters. Therefore, it is often difficult to pinpoint the underlying learning mechanisms. To address this challenge, we propose to gain mechanistic insights into the phenomenon of abrupt learning by studying RNNs trained to perform diverse short-term memory tasks. In these tasks, RNN training begins with an initial search phase. Following a long period of plateau in accuracy, the values of the loss function suddenly drop, indicating abrupt learning. Analyzing the neural computation performed by these RNNs reveals geometric restructuring (GR) in their phase spaces prior to the drop. To promote these GR events, we introduce a temporal consistency regularization that accelerates (bioplausible) training, facilitates attractor formation, and enables efficient learning in strongly connected networks. Our findings offer testable predictions for neuroscientists and emphasize the need for goal-agnostic secondary mechanisms to facilitate learning in biological and artificial networks.
Dualformer: Controllable Fast and Slow Thinking by Learning with Randomized Reasoning Traces
In human cognition theory, human thinking is governed by two systems: the fast and intuitive System 1 and the slower but more deliberative System 2. Recent studies have shown that incorporating System 2 process into Transformers including large language models (LLMs), significantly enhances their reasoning capabilities. Nevertheless, models that purely resemble System 2 thinking require substantially higher computational costs and are much slower to respond. To address this challenge, we present Dualformer, a single Transformer model that seamlessly integrates both the fast and slow reasoning modes. Dualformer is obtained by training on data with randomized reasoning traces, where different parts of the traces are dropped during training. The dropping strategies are specifically tailored according to the trace structure, analogous to analyzing our thinking process and creating shortcuts with patterns. At inference time, our model can be configured to output only the solutions (fast mode) or both the reasoning chain and the final solution (slow mode), or automatically decide which mode to engage (auto mode). In all cases, Dualformer outperforms the corresponding baseline models in both performance and computational efficiency: (1) in slow mode, Dualformer optimally solves unseen 30 x 30 maze navigation tasks 97.6% of the time, surpassing the Searchformer (trained on data with complete reasoning traces) baseline performance of 93.3%, while only using 45.5% fewer reasoning steps; (2) in fast mode, Dualformer completes those tasks with an 80% optimal rate, significantly outperforming the Solution-Only model (trained on solution-only data), which has an optimal rate of only 30%. For math problems, our techniques have also achieved improved performance with LLM fine-tuning, showing its generalization beyond task-specific models.
Memory Injections: Correcting Multi-Hop Reasoning Failures during Inference in Transformer-Based Language Models
Answering multi-hop reasoning questions requires retrieving and synthesizing information from diverse sources. Large Language Models (LLMs) struggle to perform such reasoning consistently. Here we propose an approach to pinpoint and rectify multi-hop reasoning failures through targeted memory injections on LLM attention heads. First, we analyze the per-layer activations of GPT-2 models in response to single and multi-hop prompts. We then propose a mechanism that allows users to inject pertinent prompt-specific information, which we refer to as "memories," at critical LLM locations during inference. By thus enabling the LLM to incorporate additional relevant information during inference, we enhance the quality of multi-hop prompt completions. We show empirically that a simple, efficient, and targeted memory injection into a key attention layer can often increase the probability of the desired next token in multi-hop tasks, by up to 424%.
Does Learning Require Memorization? A Short Tale about a Long Tail
State-of-the-art results on image recognition tasks are achieved using over-parameterized learning algorithms that (nearly) perfectly fit the training set and are known to fit well even random labels. This tendency to memorize the labels of the training data is not explained by existing theoretical analyses. Memorization of the training data also presents significant privacy risks when the training data contains sensitive personal information and thus it is important to understand whether such memorization is necessary for accurate learning. We provide the first conceptual explanation and a theoretical model for this phenomenon. Specifically, we demonstrate that for natural data distributions memorization of labels is necessary for achieving close-to-optimal generalization error. Crucially, even labels of outliers and noisy labels need to be memorized. The model is motivated and supported by the results of several recent empirical works. In our model, data is sampled from a mixture of subpopulations and our results show that memorization is necessary whenever the distribution of subpopulation frequencies is long-tailed. Image and text data is known to be long-tailed and therefore our results establish a formal link between these empirical phenomena. Our results allow to quantify the cost of limiting memorization in learning and explain the disparate effects that privacy and model compression have on different subgroups.
Grokking Tickets: Lottery Tickets Accelerate Grokking
Grokking is one of the most surprising puzzles in neural network generalization: a network first reaches a memorization solution with perfect training accuracy and poor generalization, but with further training, it reaches a perfectly generalized solution. We aim to analyze the mechanism of grokking from the lottery ticket hypothesis, identifying the process to find the lottery tickets (good sparse subnetworks) as the key to describing the transitional phase between memorization and generalization. We refer to these subnetworks as ''Grokking tickets'', which is identified via magnitude pruning after perfect generalization. First, using ''Grokking tickets'', we show that the lottery tickets drastically accelerate grokking compared to the dense networks on various configurations (MLP and Transformer, and an arithmetic and image classification tasks). Additionally, to verify that ''Grokking ticket'' are a more critical factor than weight norms, we compared the ''good'' subnetworks with a dense network having the same L1 and L2 norms. Results show that the subnetworks generalize faster than the controlled dense model. In further investigations, we discovered that at an appropriate pruning rate, grokking can be achieved even without weight decay. We also show that speedup does not happen when using tickets identified at the memorization solution or transition between memorization and generalization or when pruning networks at the initialization (Random pruning, Grasp, SNIP, and Synflow). The results indicate that the weight norm of network parameters is not enough to explain the process of grokking, but the importance of finding good subnetworks to describe the transition from memorization to generalization. The implementation code can be accessed via this link: https://github.com/gouki510/Grokking-Tickets.
REMIND Your Neural Network to Prevent Catastrophic Forgetting
People learn throughout life. However, incrementally updating conventional neural networks leads to catastrophic forgetting. A common remedy is replay, which is inspired by how the brain consolidates memory. Replay involves fine-tuning a network on a mixture of new and old instances. While there is neuroscientific evidence that the brain replays compressed memories, existing methods for convolutional networks replay raw images. Here, we propose REMIND, a brain-inspired approach that enables efficient replay with compressed representations. REMIND is trained in an online manner, meaning it learns one example at a time, which is closer to how humans learn. Under the same constraints, REMIND outperforms other methods for incremental class learning on the ImageNet ILSVRC-2012 dataset. We probe REMIND's robustness to data ordering schemes known to induce catastrophic forgetting. We demonstrate REMIND's generality by pioneering online learning for Visual Question Answering (VQA).
HiAgent: Hierarchical Working Memory Management for Solving Long-Horizon Agent Tasks with Large Language Model
Large Language Model (LLM)-based agents exhibit significant potential across various domains, operating as interactive systems that process environmental observations to generate executable actions for target tasks. The effectiveness of these agents is significantly influenced by their memory mechanism, which records historical experiences as sequences of action-observation pairs. We categorize memory into two types: cross-trial memory, accumulated across multiple attempts, and in-trial memory (working memory), accumulated within a single attempt. While considerable research has optimized performance through cross-trial memory, the enhancement of agent performance through improved working memory utilization remains underexplored. Instead, existing approaches often involve directly inputting entire historical action-observation pairs into LLMs, leading to redundancy in long-horizon tasks. Inspired by human problem-solving strategies, this paper introduces HiAgent, a framework that leverages subgoals as memory chunks to manage the working memory of LLM-based agents hierarchically. Specifically, HiAgent prompts LLMs to formulate subgoals before generating executable actions and enables LLMs to decide proactively to replace previous subgoals with summarized observations, retaining only the action-observation pairs relevant to the current subgoal. Experimental results across five long-horizon tasks demonstrate that HiAgent achieves a twofold increase in success rate and reduces the average number of steps required by 3.8. Additionally, our analysis shows that HiAgent consistently improves performance across various steps, highlighting its robustness and generalizability. Project Page: https://github.com/HiAgent2024/HiAgent .
How BPE Affects Memorization in Transformers
Training data memorization in NLP can both be beneficial (e.g., closed-book QA) and undesirable (personal data extraction). In any case, successful model training requires a non-trivial amount of memorization to store word spellings, various linguistic idiosyncrasies and common knowledge. However, little is known about what affects the memorization behavior of NLP models, as the field tends to focus on the equally important question of generalization. In this work, we demonstrate that the size of the subword vocabulary learned by Byte-Pair Encoding (BPE) greatly affects both ability and tendency of standard Transformer models to memorize training data, even when we control for the number of learned parameters. We find that with a large subword vocabulary size, Transformer models fit random mappings more easily and are more vulnerable to membership inference attacks. Similarly, given a prompt, Transformer-based language models with large subword vocabularies reproduce the training data more often. We conjecture this effect is caused by reduction in the sequences' length that happens as the BPE vocabulary grows. Our findings can allow a more informed choice of hyper-parameters, that is better tailored for a particular use-case.
Spatially-Aware Transformer for Embodied Agents
Episodic memory plays a crucial role in various cognitive processes, such as the ability to mentally recall past events. While cognitive science emphasizes the significance of spatial context in the formation and retrieval of episodic memory, the current primary approach to implementing episodic memory in AI systems is through transformers that store temporally ordered experiences, which overlooks the spatial dimension. As a result, it is unclear how the underlying structure could be extended to incorporate the spatial axis beyond temporal order alone and thereby what benefits can be obtained. To address this, this paper explores the use of Spatially-Aware Transformer models that incorporate spatial information. These models enable the creation of place-centric episodic memory that considers both temporal and spatial dimensions. Adopting this approach, we demonstrate that memory utilization efficiency can be improved, leading to enhanced accuracy in various place-centric downstream tasks. Additionally, we propose the Adaptive Memory Allocator, a memory management method based on reinforcement learning that aims to optimize efficiency of memory utilization. Our experiments demonstrate the advantages of our proposed model in various environments and across multiple downstream tasks, including prediction, generation, reasoning, and reinforcement learning. The source code for our models and experiments will be available at https://github.com/junmokane/spatially-aware-transformer.
MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations
Large language models have demonstrated impressive performance on challenging mathematical reasoning tasks, which has triggered the discussion of whether the performance is achieved by true reasoning capability or memorization. To investigate this question, prior work has constructed mathematical benchmarks when questions undergo simple perturbations -- modifications that still preserve the underlying reasoning patterns of the solutions. However, no work has explored hard perturbations, which fundamentally change the nature of the problem so that the original solution steps do not apply. To bridge the gap, we construct MATH-P-Simple and MATH-P-Hard via simple perturbation and hard perturbation, respectively. Each consists of 279 perturbed math problems derived from level-5 (hardest) problems in the MATH dataset (Hendrycksmath et. al., 2021). We observe significant performance drops on MATH-P-Hard across various models, including o1-mini (-16.49%) and gemini-2.0-flash-thinking (-12.9%). We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills without assessing their applicability to modified contexts. This issue is amplified when using original problems for in-context learning. We call for research efforts to address this challenge, which is critical for developing more robust and reliable reasoning models.
Mix-CPT: A Domain Adaptation Framework via Decoupling Knowledge Learning and Format Alignment
Adapting general large language models (LLMs) to specialized domains presents great challenges due to varied data distributions. This adaptation typically requires continual pre-training on massive domain-specific corpora to facilitate knowledge memorization, followed by training to apply this knowledge following human instructions and preferences. However, this method may result in inefficient knowledge memorization due to a lack of awareness of knowledge utilization and imposes substantial demands on LLMs to simultaneously learn knowledge utilization and format alignment with limited training samples. To facilitate the domain adaptation of LLM, we revise this process and propose a new domain adaptation framework including domain knowledge learning and general format alignment, called Mix-CPT. Specifically, we first conduct a knowledge mixture continual pre-training that concurrently focuses on knowledge memorization and utilization, allowing for mutual reinforcement. To avoid catastrophic forgetting during the continual pre-training process, we further incorporate a logit swap self-distillation constraint. Subsequently, leveraging the knowledge and capabilities acquired during continual pre-training, we efficiently perform instruction tuning and alignment with a few general training samples to achieve format alignment. Extensive experiments demonstrate that our proposed Mix-CPT framework can simultaneously improve the task-solving capabilities of LLMs on the target and general domains compared to the traditional adaptation methods.
Relational recurrent neural networks
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a Relational Memory Core (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.
Disentangling Memory and Reasoning Ability in Large Language Models
Large Language Models (LLMs) have demonstrated strong performance in handling complex tasks requiring both extensive knowledge and reasoning abilities. However, the existing LLM inference pipeline operates as an opaque process without explicit separation between knowledge retrieval and reasoning steps, making the model's decision-making process unclear and disorganized. This ambiguity can lead to issues such as hallucinations and knowledge forgetting, which significantly impact the reliability of LLMs in high-stakes domains. In this paper, we propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions: (1) memory recall: which retrieves relevant knowledge, and (2) reasoning: which performs logical steps based on the recalled knowledge. To facilitate this decomposition, we introduce two special tokens memory and reason, guiding the model to distinguish between steps that require knowledge retrieval and those that involve reasoning. Our experiment results show that this decomposition not only improves model performance but also enhances the interpretability of the inference process, enabling users to identify sources of error and refine model responses effectively. The code is available at https://github.com/MingyuJ666/Disentangling-Memory-and-Reasoning.
Titans: Learning to Memorize at Test Time
Over more than a decade there has been an extensive research effort on how to effectively utilize recurrent models and attention. While recurrent models aim to compress the data into a fixed-size memory (called hidden state), attention allows attending to the entire context window, capturing the direct dependencies of all tokens. This more accurate modeling of dependencies, however, comes with a quadratic cost, limiting the model to a fixed-length context. We present a new neural long-term memory module that learns to memorize historical context and helps attention to attend to the current context while utilizing long past information. We show that this neural memory has the advantage of fast parallelizable training while maintaining a fast inference. From a memory perspective, we argue that attention due to its limited context but accurate dependency modeling performs as a short-term memory, while neural memory due to its ability to memorize the data, acts as a long-term, more persistent, memory. Based on these two modules, we introduce a new family of architectures, called Titans, and present three variants to address how one can effectively incorporate memory into this architecture. Our experimental results on language modeling, common-sense reasoning, genomics, and time series tasks show that Titans are more effective than Transformers and recent modern linear recurrent models. They further can effectively scale to larger than 2M context window size with higher accuracy in needle-in-haystack tasks compared to baselines.
Sources of Hallucination by Large Language Models on Inference Tasks
Large Language Models (LLMs) are claimed to be capable of Natural Language Inference (NLI), necessary for applied tasks like question answering and summarization. We present a series of behavioral studies on several LLM families (LLaMA, GPT-3.5, and PaLM) which probe their behavior using controlled experiments. We establish two biases originating from pretraining which predict much of their behavior, and show that these are major sources of hallucination in generative LLMs. First, memorization at the level of sentences: we show that, regardless of the premise, models falsely label NLI test samples as entailing when the hypothesis is attested in training data, and that entities are used as ``indices'' to access the memorized data. Second, statistical patterns of usage learned at the level of corpora: we further show a similar effect when the premise predicate is less frequent than that of the hypothesis in the training data, a bias following from previous studies. We demonstrate that LLMs perform significantly worse on NLI test samples which do not conform to these biases than those which do, and we offer these as valuable controls for future LLM evaluation.
M+: Extending MemoryLLM with Scalable Long-Term Memory
Equipping large language models (LLMs) with latent-space memory has attracted increasing attention as they can extend the context window of existing language models. However, retaining information from the distant past remains a challenge. For example, MemoryLLM (Wang et al., 2024a), as a representative work with latent-space memory, compresses past information into hidden states across all layers, forming a memory pool of 1B parameters. While effective for sequence lengths up to 16k tokens, it struggles to retain knowledge beyond 20k tokens. In this work, we address this limitation by introducing M+, a memory-augmented model based on MemoryLLM that significantly enhances long-term information retention. M+ integrates a long-term memory mechanism with a co-trained retriever, dynamically retrieving relevant information during text generation. We evaluate M+ on diverse benchmarks, including long-context understanding and knowledge retention tasks. Experimental results show that M+ significantly outperforms MemoryLLM and recent strong baselines, extending knowledge retention from under 20k to over 160k tokens with similar GPU memory overhead.
Learning to acquire novel cognitive tasks with evolution, plasticity and meta-meta-learning
A hallmark of intelligence is the ability to autonomously learn new flexible, cognitive behaviors - that is, behaviors where the appropriate action depends not just on immediate stimuli (as in simple reflexive stimulus-response associations), but on contextual information that must be adequately acquired, stored and processed. While many meta-learning algorithms can design agents that autonomously learn new tasks, cognitive tasks adds another level of learning and memory to typical ``learning-to-learn'' problems. Here we evolve neural networks, endowed with plastic connections and neuromodulation, over a sizable set of simple cognitive tasks adapted from a computational neuroscience framework. The resulting evolved networks can automatically modify their own connectivity to acquire a novel simple cognitive task, never seen during evolution, from stimuli and rewards alone, through the spontaneous operation of their evolved neural organization and plasticity system. Our results emphasize the importance of carefully considering the multiple learning loops involved in the emergence of intelligent behavior.
The Joint Effect of Task Similarity and Overparameterization on Catastrophic Forgetting -- An Analytical Model
In continual learning, catastrophic forgetting is affected by multiple aspects of the tasks. Previous works have analyzed separately how forgetting is affected by either task similarity or overparameterization. In contrast, our paper examines how task similarity and overparameterization jointly affect forgetting in an analyzable model. Specifically, we focus on two-task continual linear regression, where the second task is a random orthogonal transformation of an arbitrary first task (an abstraction of random permutation tasks). We derive an exact analytical expression for the expected forgetting - and uncover a nuanced pattern. In highly overparameterized models, intermediate task similarity causes the most forgetting. However, near the interpolation threshold, forgetting decreases monotonically with the expected task similarity. We validate our findings with linear regression on synthetic data, and with neural networks on established permutation task benchmarks.
Does Continual Learning Equally Forget All Parameters?
Distribution shift (e.g., task or domain shift) in continual learning (CL) usually results in catastrophic forgetting of neural networks. Although it can be alleviated by repeatedly replaying buffered data, the every-step replay is time-consuming. In this paper, we study which modules in neural networks are more prone to forgetting by investigating their training dynamics during CL. Our proposed metrics show that only a few modules are more task-specific and sensitively alter between tasks, while others can be shared across tasks as common knowledge. Hence, we attribute forgetting mainly to the former and find that finetuning them only on a small buffer at the end of any CL method can bring non-trivial improvement. Due to the small number of finetuned parameters, such ``Forgetting Prioritized Finetuning (FPF)'' is efficient in computation. We further propose a more efficient and simpler method that entirely removes the every-step replay and replaces them by only k-times of FPF periodically triggered during CL. Surprisingly, this ``k-FPF'' performs comparably to FPF and outperforms the SOTA CL methods but significantly reduces their computational overhead and cost. In experiments on several benchmarks of class- and domain-incremental CL, FPF consistently improves existing CL methods by a large margin, and k-FPF further excels in efficiency without degrading the accuracy. We also empirically studied the impact of buffer size, epochs per task, and finetuning modules on the cost and accuracy of our methods.
Aspects of human memory and Large Language Models
Large Language Models (LLMs) are huge artificial neural networks which primarily serve to generate text, but also provide a very sophisticated probabilistic model of language use. Since generating a semantically consistent text requires a form of effective memory, we investigate the memory properties of LLMs and find surprising similarities with key characteristics of human memory. We argue that the human-like memory properties of the Large Language Model do not follow automatically from the LLM architecture but are rather learned from the statistics of the training textual data. These results strongly suggest that the biological features of human memory leave an imprint on the way that we structure our textual narratives.
Grounded Language Learning Fast and Slow
Recent work has shown that large text-based neural language models, trained with conventional supervised learning objectives, acquire a surprising propensity for few- and one-shot learning. Here, we show that an embodied agent situated in a simulated 3D world, and endowed with a novel dual-coding external memory, can exhibit similar one-shot word learning when trained with conventional reinforcement learning algorithms. After a single introduction to a novel object via continuous visual perception and a language prompt ("This is a dax"), the agent can re-identify the object and manipulate it as instructed ("Put the dax on the bed"). In doing so, it seamlessly integrates short-term, within-episode knowledge of the appropriate referent for the word "dax" with long-term lexical and motor knowledge acquired across episodes (i.e. "bed" and "putting"). We find that, under certain training conditions and with a particular memory writing mechanism, the agent's one-shot word-object binding generalizes to novel exemplars within the same ShapeNet category, and is effective in settings with unfamiliar numbers of objects. We further show how dual-coding memory can be exploited as a signal for intrinsic motivation, stimulating the agent to seek names for objects that may be useful for later executing instructions. Together, the results demonstrate that deep neural networks can exploit meta-learning, episodic memory and an explicitly multi-modal environment to account for 'fast-mapping', a fundamental pillar of human cognitive development and a potentially transformative capacity for agents that interact with human users.
MemoryPrompt: A Light Wrapper to Improve Context Tracking in Pre-trained Language Models
Transformer-based language models (LMs) track contextual information through large, hard-coded input windows. We introduce MemoryPrompt, a leaner approach in which the LM is complemented by a small auxiliary recurrent network that passes information to the LM by prefixing its regular input with a sequence of vectors, akin to soft prompts, without requiring LM finetuning. Tested on a task designed to probe a LM's ability to keep track of multiple fact updates, a MemoryPrompt-augmented LM outperforms much larger LMs that have access to the full input history. We also test MemoryPrompt on a long-distance dialogue dataset, where its performance is comparable to that of a model conditioned on the entire conversation history. In both experiments we also observe that, unlike full-finetuning approaches, MemoryPrompt does not suffer from catastrophic forgetting when adapted to new tasks, thus not disrupting the generalist capabilities of the underlying LM.
DualHSIC: HSIC-Bottleneck and Alignment for Continual Learning
Rehearsal-based approaches are a mainstay of continual learning (CL). They mitigate the catastrophic forgetting problem by maintaining a small fixed-size buffer with a subset of data from past tasks. While most rehearsal-based approaches study how to effectively exploit the knowledge from the buffered past data, little attention is paid to the inter-task relationships with the critical task-specific and task-invariant knowledge. By appropriately leveraging inter-task relationships, we propose a novel CL method named DualHSIC to boost the performance of existing rehearsal-based methods in a simple yet effective way. DualHSIC consists of two complementary components that stem from the so-called Hilbert Schmidt independence criterion (HSIC): HSIC-Bottleneck for Rehearsal (HBR) lessens the inter-task interference and HSIC Alignment (HA) promotes task-invariant knowledge sharing. Extensive experiments show that DualHSIC can be seamlessly plugged into existing rehearsal-based methods for consistent performance improvements, and also outperforms recent state-of-the-art regularization-enhanced rehearsal methods. Source code will be released.
CoIN: A Benchmark of Continual Instruction tuNing for Multimodel Large Language Model
Instruction tuning represents a prevalent strategy employed by Multimodal Large Language Models (MLLMs) to align with human instructions and adapt to new tasks. Nevertheless, MLLMs encounter the challenge of adapting to users' evolving knowledge and demands. Therefore, how to retain existing skills while acquiring new knowledge needs to be investigated. In this paper, we present a comprehensive benchmark, namely Continual Instruction tuNing (CoIN), to assess existing MLLMs in the sequential instruction tuning paradigm. CoIN comprises 10 commonly used datasets spanning 8 task categories, ensuring a diverse range of instructions and tasks. Besides, the trained model is evaluated from two aspects: Instruction Following and General Knowledge, which assess the alignment with human intention and knowledge preserved for reasoning, respectively. Experiments on CoIN demonstrate that current powerful MLLMs still suffer catastrophic forgetting, and the failure in intention alignment assumes the main responsibility, instead of the knowledge forgetting. To this end, we introduce MoELoRA to MLLMs which is effective to retain the previous instruction alignment. Experimental results consistently illustrate the forgetting decreased from this method on CoIN.
Recurrent Action Transformer with Memory
Recently, the use of transformers in offline reinforcement learning has become a rapidly developing area. This is due to their ability to treat the agent's trajectory in the environment as a sequence, thereby reducing the policy learning problem to sequence modeling. In environments where the agent's decisions depend on past events, it is essential to capture both the event itself and the decision point in the context of the model. However, the quadratic complexity of the attention mechanism limits the potential for context expansion. One solution to this problem is to enhance transformers with memory mechanisms. In this paper, we propose the Recurrent Action Transformer with Memory (RATE) - a model that incorporates recurrent memory. To evaluate our model, we conducted extensive experiments on both memory-intensive environments (VizDoom-Two-Color, T-Maze) and classic Atari games and MuJoCo control environments. The results show that the use of memory can significantly improve performance in memory-intensive environments while maintaining or improving results in classic environments. We hope that our findings will stimulate research on memory mechanisms for transformers applicable to offline reinforcement learning.
CMT: A Memory Compression Method for Continual Knowledge Learning of Large Language Models
Large Language Models (LLMs) need to adapt to the continuous changes in data, tasks, and user preferences. Due to their massive size and the high costs associated with training, LLMs are not suitable for frequent retraining. However, updates are necessary to keep them in sync with rapidly evolving human knowledge. To address these challenges, this paper proposes the Compression Memory Training (CMT) method, an efficient and effective online adaptation framework for LLMs that features robust knowledge retention capabilities. Inspired by human memory mechanisms, CMT compresses and extracts information from new documents to be stored in a memory bank. When answering to queries related to these new documents, the model aggregates these document memories from the memory bank to better answer user questions. The parameters of the LLM itself do not change during training and inference, reducing the risk of catastrophic forgetting. To enhance the encoding, retrieval, and aggregation of memory, we further propose three new general and flexible techniques, including memory-aware objective, self-matching and top-aggregation. Extensive experiments conducted on three continual learning datasets (i.e., StreamingQA, SQuAD and ArchivalQA) demonstrate that the proposed method improves model adaptability and robustness across multiple base LLMs (e.g., +4.07 EM & +4.19 F1 in StreamingQA with Llama-2-7b).
OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities
In most current research, large language models (LLMs) are able to perform reasoning tasks by generating chains of thought through the guidance of specific prompts. However, there still exists a significant discrepancy between their capability in solving complex reasoning problems and that of humans. At present, most approaches focus on chains of thought (COT) and tool use, without considering the adoption and application of human cognitive frameworks. It is well-known that when confronting complex reasoning challenges, humans typically employ various cognitive abilities, and necessitate interaction with all aspects of tools, knowledge, and the external environment information to accomplish intricate tasks. This paper introduces a novel intelligent framework, referred to as OlaGPT. OlaGPT carefully studied a cognitive architecture framework, and propose to simulate certain aspects of human cognition. The framework involves approximating different cognitive modules, including attention, memory, reasoning, learning, and corresponding scheduling and decision-making mechanisms. Inspired by the active learning mechanism of human beings, it proposes a learning unit to record previous mistakes and expert opinions, and dynamically refer to them to strengthen their ability to solve similar problems. The paper also outlines common effective reasoning frameworks for human problem-solving and designs Chain-of-Thought (COT) templates accordingly. A comprehensive decision-making mechanism is also proposed to maximize model accuracy. The efficacy of OlaGPT has been stringently evaluated on multiple reasoning datasets, and the experimental outcomes reveal that OlaGPT surpasses state-of-the-art benchmarks, demonstrating its superior performance. Our implementation of OlaGPT is available on GitHub: https://github.com/oladata-team/OlaGPT.
MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory
While current large language models (LLMs) demonstrate some capabilities in knowledge-intensive tasks, they are limited by relying on their parameters as an implicit storage mechanism. As a result, they struggle with infrequent knowledge and temporal degradation. In addition, the uninterpretable nature of parametric memorization makes it challenging to understand and prevent hallucination. Parametric memory pools and model editing are only partial solutions. Retrieval Augmented Generation (RAG) x2013 though non-parametric x2013 has its own limitations: it lacks structure, complicates interpretability and makes it hard to effectively manage stored knowledge. In this paper, we introduce MemLLM, a novel method of enhancing LLMs by integrating a structured and explicit read-and-write memory module. MemLLM tackles the aforementioned challenges by enabling dynamic interaction with the memory and improving the LLM's capabilities in using stored knowledge. Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular. We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation.
On the Over-Memorization During Natural, Robust and Catastrophic Overfitting
Overfitting negatively impacts the generalization ability of deep neural networks (DNNs) in both natural and adversarial training. Existing methods struggle to consistently address different types of overfitting, typically designing strategies that focus separately on either natural or adversarial patterns. In this work, we adopt a unified perspective by solely focusing on natural patterns to explore different types of overfitting. Specifically, we examine the memorization effect in DNNs and reveal a shared behaviour termed over-memorization, which impairs their generalization capacity. This behaviour manifests as DNNs suddenly becoming high-confidence in predicting certain training patterns and retaining a persistent memory for them. Furthermore, when DNNs over-memorize an adversarial pattern, they tend to simultaneously exhibit high-confidence prediction for the corresponding natural pattern. These findings motivate us to holistically mitigate different types of overfitting by hindering the DNNs from over-memorization natural patterns. To this end, we propose a general framework, Distraction Over-Memorization (DOM), which explicitly prevents over-memorization by either removing or augmenting the high-confidence natural patterns. Extensive experiments demonstrate the effectiveness of our proposed method in mitigating overfitting across various training paradigms.
Retrieval Head Mechanistically Explains Long-Context Factuality
Despite the recent progress in long-context language models, it remains elusive how transformer-based models exhibit the capability to retrieve relevant information from arbitrary locations within the long context. This paper aims to address this question. Our systematic investigation across a wide spectrum of models reveals that a special type of attention heads are largely responsible for retrieving information, which we dub retrieval heads. We identify intriguing properties of retrieval heads:(1) universal: all the explored models with long-context capability have a set of retrieval heads; (2) sparse: only a small portion (less than 5\%) of the attention heads are retrieval. (3) intrinsic: retrieval heads already exist in models pretrained with short context. When extending the context length by continual pretraining, it is still the same set of heads that perform information retrieval. (4) dynamically activated: take Llama-2 7B for example, 12 retrieval heads always attend to the required information no matter how the context is changed. The rest of the retrieval heads are activated in different contexts. (5) causal: completely pruning retrieval heads leads to failure in retrieving relevant information and results in hallucination, while pruning random non-retrieval heads does not affect the model's retrieval ability. We further show that retrieval heads strongly influence chain-of-thought (CoT) reasoning, where the model needs to frequently refer back the question and previously-generated context. Conversely, tasks where the model directly generates the answer using its intrinsic knowledge are less impacted by masking out retrieval heads. These observations collectively explain which internal part of the model seeks information from the input tokens. We believe our insights will foster future research on reducing hallucination, improving reasoning, and compressing the KV cache.
Model Editing at Scale leads to Gradual and Catastrophic Forgetting
Editing knowledge in large language models is an attractive capability to have which allows us to correct incorrectly learnt facts during pre-training, as well as update the model with an ever-growing list of new facts. While existing model editing techniques have shown promise, they are usually evaluated using metrics for reliability, specificity and generalization over one or few edits. We argue that for model editing to have practical utility, we must be able to make multiple edits to the same model. With this in mind, we evaluate the current model editing methods at scale, focusing on two state of the art methods: ROME and MEMIT. We find that as the model is edited sequentially with multiple facts, it continually forgets previously edited facts and the ability to perform downstream tasks. This forgetting happens in two phases -- an initial gradual but progressive forgetting phase followed by abrupt or catastrophic forgetting phase. Both gradual and catastrophic forgetting limit the usefulness of model editing methods at scale -- the former making model editing less effective as multiple edits are made to the model while the latter caps the scalability of such model editing methods. Our analysis also highlights other key limitations of ROME and MEMIT at scale. With our work, we push for the development and evaluation of model editing methods keeping scalability in mind.
Long-Term Ad Memorability: Understanding and Generating Memorable Ads
Marketers spend billions of dollars on advertisements, but to what end? At purchase time, if customers cannot recognize the brand for which they saw an ad, the money spent on the ad is essentially wasted. Despite its importance in marketing, until now, there has been no study on the memorability of ads in the ML literature. All previous memorability studies have been conducted on short-term recall on specific content types like object and action videos. On the other hand, the advertising industry only cares about long-term memorability, and ads are almost always highly multimodal. Therefore, we release the first memorability dataset, LAMDBA, consisting of 1749 participants and 2205 ads covering 276 brands. Running statistical tests over different participant subpopulations and ad types, we find many interesting insights into what makes an ad memorable, e.g., fast-moving ads are more memorable than those with slower scenes; people who use ad-blockers remember a lower number of ads than those who don't. Next, we present a novel model, Henry, to predict the memorability of a content which achieves state-of-the-art performance across all prominent literature memorability datasets. Henry shows strong generalization performance with better results in 0-shot on unseen datasets. Finally, with the intent of memorable ad generation, we present a scalable method to build a high-quality memorable ad generation model by leveraging automatically annotated data. Our approach, SEED (Self rEwarding mEmorability Modeling), starts with a language model trained on LAMBDA as seed data and progressively trains the LLM to generate more memorable ads. We show that the generated advertisements have 44\% higher memorability scores than the original ads. Further, we release a large-scale ad dataset, UltraLAMBDA, consisting of 5 million ads with their automatically-assigned memorability scores.
An Empirical Study of Memorization in NLP
A recent study by Feldman (2020) proposed a long-tail theory to explain the memorization behavior of deep learning models. However, memorization has not been empirically verified in the context of NLP, a gap addressed by this work. In this paper, we use three different NLP tasks to check if the long-tail theory holds. Our experiments demonstrate that top-ranked memorized training instances are likely atypical, and removing the top-memorized training instances leads to a more serious drop in test accuracy compared with removing training instances randomly. Furthermore, we develop an attribution method to better understand why a training instance is memorized. We empirically show that our memorization attribution method is faithful, and share our interesting finding that the top-memorized parts of a training instance tend to be features negatively correlated with the class label.
Toward Adaptive Reasoning in Large Language Models with Thought Rollback
Large language models (LLMs) have been routinely used to solve various tasks using step-by-step reasoning. However, the structure of intermediate reasoning steps, or thoughts, is rigid and unidirectional, such as chains, trees, or acyclic-directed graphs. Consequently, the resulting inflexible and forward-only reasoning may not address challenging tasks and fail when the LLM frequently gives false responses, i.e., ``hallucinations''. This paper proposes a new reasoning framework, called Thought Rollback (TR), allowing LLMs to adaptively build thought structure while maintaining effective reasoning toward problem-solving under ``hallucinations''. The core mechanism of TR is rolling back thoughts, which allows LLMs to perform error analysis on thoughts, and thus roll back to any previously mistaken thought for revision. Subsequently, by including such trial-and-error in the prompt to guide the LLM, each rollback leads to one more reliable reasoning path. Therefore, starting with a simple prompt without human annotations, LLM with TR adaptively and gradually explores thoughts for a correct solution. Comprehensive experiments on mathematical problems and multi-task reasoning demonstrate the state-of-the-art performance of TR in terms of problem-solving rate and interaction cost. For instance, the solving rate of GPT-4 with TR outperforms the current best by 9% on the MATH dataset.
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Horizon Generation
We explore how iterative revising a chain of thoughts with the help of information retrieval significantly improves large language models' reasoning and generation ability in long-horizon generation tasks, while hugely mitigating hallucination. In particular, the proposed method -- *retrieval-augmented thoughts* (RAT) -- revises each thought step one by one with retrieved information relevant to the task query, the current and the past thought steps, after the initial zero-shot CoT is generated. Applying RAT to GPT-3.5, GPT-4, and CodeLLaMA-7b substantially improves their performances on various long-horizon generation tasks; on average of relatively increasing rating scores by 13.63% on code generation, 16.96% on mathematical reasoning, 19.2% on creative writing, and 42.78% on embodied task planning. The demo page can be found at https://craftjarvis.github.io/RAT
Step Back to Leap Forward: Self-Backtracking for Boosting Reasoning of Language Models
The integration of slow-thinking mechanisms into large language models (LLMs) offers a promising way toward achieving Level 2 AGI Reasoners, as exemplified by systems like OpenAI's o1. However, several significant challenges remain, including inefficient overthinking and an overreliance on auxiliary reward models. We point out that these limitations stem from LLMs' inability to internalize the search process, a key component of effective reasoning. A critical step toward addressing this issue is enabling LLMs to autonomously determine when and where to backtrack, a fundamental operation in traditional search algorithms. To this end, we propose a self-backtracking mechanism that equips LLMs with the ability to backtrack during both training and inference. This mechanism not only enhances reasoning ability but also efficiency by transforming slow-thinking processes into fast-thinking through self-improvement. Empirical evaluations demonstrate that our proposal significantly enhances the reasoning capabilities of LLMs, achieving a performance gain of over 40 percent compared to the optimal-path supervised fine-tuning method. We believe this study introduces a novel and promising pathway for developing more advanced and robust Reasoners.
Gradient Episodic Memory for Continual Learning
One major obstacle towards AI is the poor ability of models to solve new problems quicker, and without forgetting previously acquired knowledge. To better understand this issue, we study the problem of continual learning, where the model observes, once and one by one, examples concerning a sequence of tasks. First, we propose a set of metrics to evaluate models learning over a continuum of data. These metrics characterize models not only by their test accuracy, but also in terms of their ability to transfer knowledge across tasks. Second, we propose a model for continual learning, called Gradient Episodic Memory (GEM) that alleviates forgetting, while allowing beneficial transfer of knowledge to previous tasks. Our experiments on variants of the MNIST and CIFAR-100 datasets demonstrate the strong performance of GEM when compared to the state-of-the-art.
Memory, Benchmark & Robots: A Benchmark for Solving Complex Tasks with Reinforcement Learning
Memory is crucial for enabling agents to tackle complex tasks with temporal and spatial dependencies. While many reinforcement learning (RL) algorithms incorporate memory, the field lacks a universal benchmark to assess an agent's memory capabilities across diverse scenarios. This gap is particularly evident in tabletop robotic manipulation, where memory is essential for solving tasks with partial observability and ensuring robust performance, yet no standardized benchmarks exist. To address this, we introduce MIKASA (Memory-Intensive Skills Assessment Suite for Agents), a comprehensive benchmark for memory RL, with three key contributions: (1) we propose a comprehensive classification framework for memory-intensive RL tasks, (2) we collect MIKASA-Base - a unified benchmark that enables systematic evaluation of memory-enhanced agents across diverse scenarios, and (3) we develop MIKASA-Robo - a novel benchmark of 32 carefully designed memory-intensive tasks that assess memory capabilities in tabletop robotic manipulation. Our contributions establish a unified framework for advancing memory RL research, driving the development of more reliable systems for real-world applications. The code is available at https://sites.google.com/view/memorybenchrobots/.
Continual Learning of Large Language Models: A Comprehensive Survey
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models
Large language models (LLMs) need knowledge updates to meet the ever-growing world facts and correct the hallucinated responses, facilitating the methods of lifelong model editing. Where the updated knowledge resides in memories is a fundamental question for model editing. In this paper, we find that editing either long-term memory (direct model parameters) or working memory (non-parametric knowledge of neural network activations/representations by retrieval) will result in an impossible triangle -- reliability, generalization, and locality can not be realized together in the lifelong editing settings. For long-term memory, directly editing the parameters will cause conflicts with irrelevant pretrained knowledge or previous edits (poor reliability and locality). For working memory, retrieval-based activations can hardly make the model understand the edits and generalize (poor generalization). Therefore, we propose WISE to bridge the gap between memories. In WISE, we design a dual parametric memory scheme, which consists of the main memory for the pretrained knowledge and a side memory for the edited knowledge. We only edit the knowledge in the side memory and train a router to decide which memory to go through when given a query. For continual editing, we devise a knowledge-sharding mechanism where different sets of edits reside in distinct subspaces of parameters, and are subsequently merged into a shared memory without conflicts. Extensive experiments show that WISE can outperform previous model editing methods and overcome the impossible triangle under lifelong model editing of question answering, hallucination, and out-of-distribution settings across trending LLM architectures, e.g., GPT, LLaMA, and Mistral. Code will be released at https://github.com/zjunlp/EasyEdit.
Transformers are Meta-Reinforcement Learners
The transformer architecture and variants presented remarkable success across many machine learning tasks in recent years. This success is intrinsically related to the capability of handling long sequences and the presence of context-dependent weights from the attention mechanism. We argue that these capabilities suit the central role of a Meta-Reinforcement Learning algorithm. Indeed, a meta-RL agent needs to infer the task from a sequence of trajectories. Furthermore, it requires a fast adaptation strategy to adapt its policy for a new task -- which can be achieved using the self-attention mechanism. In this work, we present TrMRL (Transformers for Meta-Reinforcement Learning), a meta-RL agent that mimics the memory reinstatement mechanism using the transformer architecture. It associates the recent past of working memories to build an episodic memory recursively through the transformer layers. We show that the self-attention computes a consensus representation that minimizes the Bayes Risk at each layer and provides meaningful features to compute the best actions. We conducted experiments in high-dimensional continuous control environments for locomotion and dexterous manipulation. Results show that TrMRL presents comparable or superior asymptotic performance, sample efficiency, and out-of-distribution generalization compared to the baselines in these environments.
Scaling Laws for Associative Memories
Learning arguably involves the discovery and memorization of abstract rules. The aim of this paper is to study associative memory mechanisms. Our model is based on high-dimensional matrices consisting of outer products of embeddings, which relates to the inner layers of transformer language models. We derive precise scaling laws with respect to sample size and parameter size, and discuss the statistical efficiency of different estimators, including optimization-based algorithms. We provide extensive numerical experiments to validate and interpret theoretical results, including fine-grained visualizations of the stored memory associations.
Towards Robust and Efficient Continual Language Learning
As the application space of language models continues to evolve, a natural question to ask is how we can quickly adapt models to new tasks. We approach this classic question from a continual learning perspective, in which we aim to continue fine-tuning models trained on past tasks on new tasks, with the goal of "transferring" relevant knowledge. However, this strategy also runs the risk of doing more harm than good, i.e., negative transfer. In this paper, we construct a new benchmark of task sequences that target different possible transfer scenarios one might face, such as a sequence of tasks with high potential of positive transfer, high potential for negative transfer, no expected effect, or a mixture of each. An ideal learner should be able to maximally exploit information from all tasks that have any potential for positive transfer, while also avoiding the negative effects of any distracting tasks that may confuse it. We then propose a simple, yet effective, learner that satisfies many of our desiderata simply by leveraging a selective strategy for initializing new models from past task checkpoints. Still, limitations remain, and we hope this benchmark can help the community to further build and analyze such learners.
Adaptive Chameleon or Stubborn Sloth: Unraveling the Behavior of Large Language Models in Knowledge Clashes
By providing external information to large language models (LLMs), tool augmentation (including retrieval augmentation) has emerged as a promising solution for addressing the limitations of LLMs' static parametric memory. However, how receptive are LLMs to such external evidence, especially when the evidence conflicts with their parametric memory? We present the first comprehensive and controlled investigation into the behavior of LLMs when encountering knowledge conflicts. We propose a systematic framework to elicit high-quality parametric memory from LLMs and construct the corresponding counter-memory, which enables us to conduct a series of controlled experiments. Our investigation reveals seemingly contradicting behaviors of LLMs. On the one hand, different from prior wisdom, we find that LLMs can be highly receptive to external evidence even when that conflicts with their parametric memory, given that the external evidence is coherent and convincing. On the other hand, LLMs also demonstrate a strong confirmation bias when the external evidence contains some information that is consistent with their parametric memory, despite being presented with conflicting evidence at the same time. These results pose important implications that are worth careful consideration for the further development and deployment of tool- and retrieval-augmented LLMs.
Learning to Modulate pre-trained Models in RL
Reinforcement Learning (RL) has been successful in various domains like robotics, game playing, and simulation. While RL agents have shown impressive capabilities in their specific tasks, they insufficiently adapt to new tasks. In supervised learning, this adaptation problem is addressed by large-scale pre-training followed by fine-tuning to new down-stream tasks. Recently, pre-training on multiple tasks has been gaining traction in RL. However, fine-tuning a pre-trained model often suffers from catastrophic forgetting, that is, the performance on the pre-training tasks deteriorates when fine-tuning on new tasks. To investigate the catastrophic forgetting phenomenon, we first jointly pre-train a model on datasets from two benchmark suites, namely Meta-World and DMControl. Then, we evaluate and compare a variety of fine-tuning methods prevalent in natural language processing, both in terms of performance on new tasks, and how well performance on pre-training tasks is retained. Our study shows that with most fine-tuning approaches, the performance on pre-training tasks deteriorates significantly. Therefore, we propose a novel method, Learning-to-Modulate (L2M), that avoids the degradation of learned skills by modulating the information flow of the frozen pre-trained model via a learnable modulation pool. Our method achieves state-of-the-art performance on the Continual-World benchmark, while retaining performance on the pre-training tasks. Finally, to aid future research in this area, we release a dataset encompassing 50 Meta-World and 16 DMControl tasks.
Scaling Laws and Interpretability of Learning from Repeated Data
Recent large language models have been trained on vast datasets, but also often on repeated data, either intentionally for the purpose of upweighting higher quality data, or unintentionally because data deduplication is not perfect and the model is exposed to repeated data at the sentence, paragraph, or document level. Some works have reported substantial negative performance effects of this repeated data. In this paper we attempt to study repeated data systematically and to understand its effects mechanistically. To do this, we train a family of models where most of the data is unique but a small fraction of it is repeated many times. We find a strong double descent phenomenon, in which repeated data can lead test loss to increase midway through training. A predictable range of repetition frequency leads to surprisingly severe degradation in performance. For instance, performance of an 800M parameter model can be degraded to that of a 2x smaller model (400M params) by repeating 0.1% of the data 100 times, despite the other 90% of the training tokens remaining unique. We suspect there is a range in the middle where the data can be memorized and doing so consumes a large fraction of the model's capacity, and this may be where the peak of degradation occurs. Finally, we connect these observations to recent mechanistic interpretability work - attempting to reverse engineer the detailed computations performed by the model - by showing that data repetition disproportionately damages copying and internal structures associated with generalization, such as induction heads, providing a possible mechanism for the shift from generalization to memorization. Taken together, these results provide a hypothesis for why repeating a relatively small fraction of data in large language models could lead to disproportionately large harms to performance.
MOS: Model Surgery for Pre-Trained Model-Based Class-Incremental Learning
Class-Incremental Learning (CIL) requires models to continually acquire knowledge of new classes without forgetting old ones. Despite Pre-trained Models (PTMs) have shown excellent performance in CIL, catastrophic forgetting still occurs as the model learns new concepts. Existing work seeks to utilize lightweight components to adjust the PTM, while the forgetting phenomenon still comes from {\em parameter and retrieval} levels. Specifically, iterative updates of the model result in parameter drift, while mistakenly retrieving irrelevant modules leads to the mismatch during inference. To this end, we propose MOdel Surgery (MOS) to rescue the model from forgetting previous knowledge. By training task-specific adapters, we continually adjust the PTM to downstream tasks. To mitigate parameter-level forgetting, we present an adapter merging approach to learn task-specific adapters, which aims to bridge the gap between different components while reserve task-specific information. Besides, to address retrieval-level forgetting, we introduce a training-free self-refined adapter retrieval mechanism during inference, which leverages the model's inherent ability for better adapter retrieval. By jointly rectifying the model with those steps, MOS can robustly resist catastrophic forgetting in the learning process. Extensive experiments on seven benchmark datasets validate MOS's state-of-the-art performance. Code is available at: https://github.com/sun-hailong/AAAI25-MOS
Dual Process Learning: Controlling Use of In-Context vs. In-Weights Strategies with Weight Forgetting
Language models have the ability to perform in-context learning (ICL), allowing them to flexibly adapt their behavior based on context. This contrasts with in-weights learning, where information is statically encoded in model parameters from iterated observations of the data. Despite this apparent ability to learn in-context, language models are known to struggle when faced with unseen or rarely seen tokens. Hence, we study structural in-context learning, which we define as the ability of a model to execute in-context learning on arbitrary tokens -- so called because the model must generalize on the basis of e.g. sentence structure or task structure, rather than semantic content encoded in token embeddings. An ideal model would be able to do both: flexibly deploy in-weights operations (in order to robustly accommodate ambiguous or unknown contexts using encoded semantic information) and structural in-context operations (in order to accommodate novel tokens). We study structural in-context algorithms in a simple part-of-speech setting using both practical and toy models. We find that active forgetting, a technique that was recently introduced to help models generalize to new languages, forces models to adopt structural in-context learning solutions. Finally, we introduce temporary forgetting, a straightforward extension of active forgetting that enables one to control how much a model relies on in-weights vs. in-context solutions. Importantly, temporary forgetting allows us to induce a dual process strategy where in-context and in-weights solutions coexist within a single model.
XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin Memory Model
We present XMem, a video object segmentation architecture for long videos with unified feature memory stores inspired by the Atkinson-Shiffrin memory model. Prior work on video object segmentation typically only uses one type of feature memory. For videos longer than a minute, a single feature memory model tightly links memory consumption and accuracy. In contrast, following the Atkinson-Shiffrin model, we develop an architecture that incorporates multiple independent yet deeply-connected feature memory stores: a rapidly updated sensory memory, a high-resolution working memory, and a compact thus sustained long-term memory. Crucially, we develop a memory potentiation algorithm that routinely consolidates actively used working memory elements into the long-term memory, which avoids memory explosion and minimizes performance decay for long-term prediction. Combined with a new memory reading mechanism, XMem greatly exceeds state-of-the-art performance on long-video datasets while being on par with state-of-the-art methods (that do not work on long videos) on short-video datasets. Code is available at https://hkchengrex.github.io/XMem
Reinforcement Learning with Fast and Forgetful Memory
Nearly all real world tasks are inherently partially observable, necessitating the use of memory in Reinforcement Learning (RL). Most model-free approaches summarize the trajectory into a latent Markov state using memory models borrowed from Supervised Learning (SL), even though RL tends to exhibit different training and efficiency characteristics. Addressing this discrepancy, we introduce Fast and Forgetful Memory, an algorithm-agnostic memory model designed specifically for RL. Our approach constrains the model search space via strong structural priors inspired by computational psychology. It is a drop-in replacement for recurrent neural networks (RNNs) in recurrent RL algorithms, achieving greater reward than RNNs across various recurrent benchmarks and algorithms without changing any hyperparameters. Moreover, Fast and Forgetful Memory exhibits training speeds two orders of magnitude faster than RNNs, attributed to its logarithmic time and linear space complexity. Our implementation is available at https://github.com/proroklab/ffm.
Memory-Augmented LLM Personalization with Short- and Long-Term Memory Coordination
Large Language Models (LLMs), such as GPT3.5, have exhibited remarkable proficiency in comprehending and generating natural language. However, their unpersonalized generation paradigm may result in suboptimal user-specific outcomes. Typically, users converse differently based on their knowledge and preferences. This necessitates the task of enhancing user-oriented LLM which remains unexplored. While one can fully train an LLM for this objective, the resource consumption is unaffordable. Prior research has explored memory-based methods to store and retrieve knowledge to enhance generation without retraining for new queries. However, we contend that a mere memory module is inadequate to comprehend a user's preference, and fully training an LLM can be excessively costly. In this study, we propose a novel computational bionic memory mechanism, equipped with a parameter-efficient fine-tuning schema, to personalize LLMs. Our extensive experimental results demonstrate the effectiveness and superiority of the proposed approach. To encourage further research into this area, we are releasing a new conversation dataset generated entirely by LLM based on an open-source medical corpus, as well as our implementation code.
Evaluating Cognitive Maps and Planning in Large Language Models with CogEval
Recently an influx of studies claim emergent cognitive abilities in large language models (LLMs). Yet, most rely on anecdotes, overlook contamination of training sets, or lack systematic Evaluation involving multiple tasks, control conditions, multiple iterations, and statistical robustness tests. Here we make two major contributions. First, we propose CogEval, a cognitive science-inspired protocol for the systematic evaluation of cognitive capacities in Large Language Models. The CogEval protocol can be followed for the evaluation of various abilities. Second, here we follow CogEval to systematically evaluate cognitive maps and planning ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B). We base our task prompts on human experiments, which offer both established construct validity for evaluating planning, and are absent from LLM training sets. We find that, while LLMs show apparent competence in a few planning tasks with simpler structures, systematic evaluation reveals striking failure modes in planning tasks, including hallucinations of invalid trajectories and getting trapped in loops. These findings do not support the idea of emergent out-of-the-box planning ability in LLMs. This could be because LLMs do not understand the latent relational structures underlying planning problems, known as cognitive maps, and fail at unrolling goal-directed trajectories based on the underlying structure. Implications for application and future directions are discussed.
Development of Cognitive Intelligence in Pre-trained Language Models
Recent studies show evidence for emergent cognitive abilities in Large Pre-trained Language Models (PLMs). The increasing cognitive alignment of these models has made them candidates for cognitive science theories. Prior research into the emergent cognitive abilities of PLMs has largely been path-independent to model training, i.e., has focused on the final model weights and not the intermediate steps. However, building plausible models of human cognition using PLMs would benefit from considering the developmental alignment of their performance during training to the trajectories of children's thinking. Guided by psychometric tests of human intelligence, we choose four sets of tasks to investigate the alignment of ten popular families of PLMs and evaluate their available intermediate and final training steps. These tasks are Numerical ability, Linguistic abilities, Conceptual understanding, and Fluid reasoning. We find a striking regularity: regardless of model size, the developmental trajectories of PLMs consistently exhibit a window of maximal alignment to human cognitive development. Before that window, training appears to endow "blank slate" models with the requisite structure to be poised to rapidly learn from experience. After that window, training appears to serve the engineering goal of reducing loss but not the scientific goal of increasing alignment with human cognition.
One-dimensional Adapter to Rule Them All: Concepts, Diffusion Models and Erasing Applications
The prevalent use of commercial and open-source diffusion models (DMs) for text-to-image generation prompts risk mitigation to prevent undesired behaviors. Existing concept erasing methods in academia are all based on full parameter or specification-based fine-tuning, from which we observe the following issues: 1) Generation alternation towards erosion: Parameter drift during target elimination causes alternations and potential deformations across all generations, even eroding other concepts at varying degrees, which is more evident with multi-concept erased; 2) Transfer inability & deployment inefficiency: Previous model-specific erasure impedes the flexible combination of concepts and the training-free transfer towards other models, resulting in linear cost growth as the deployment scenarios increase. To achieve non-invasive, precise, customizable, and transferable elimination, we ground our erasing framework on one-dimensional adapters to erase multiple concepts from most DMs at once across versatile erasing applications. The concept-SemiPermeable structure is injected as a Membrane (SPM) into any DM to learn targeted erasing, and meantime the alteration and erosion phenomenon is effectively mitigated via a novel Latent Anchoring fine-tuning strategy. Once obtained, SPMs can be flexibly combined and plug-and-play for other DMs without specific re-tuning, enabling timely and efficient adaptation to diverse scenarios. During generation, our Facilitated Transport mechanism dynamically regulates the permeability of each SPM to respond to different input prompts, further minimizing the impact on other concepts. Quantitative and qualitative results across ~40 concepts, 7 DMs and 4 erasing applications have demonstrated the superior erasing of SPM. Our code and pre-tuned SPMs will be available on the project page https://lyumengyao.github.io/projects/spm.
Mechanistic Unlearning: Robust Knowledge Unlearning and Editing via Mechanistic Localization
Methods for knowledge editing and unlearning in large language models seek to edit or remove undesirable knowledge or capabilities without compromising general language modeling performance. This work investigates how mechanistic interpretability -- which, in part, aims to identify model components (circuits) associated to specific interpretable mechanisms that make up a model capability -- can improve the precision and effectiveness of editing and unlearning. We find a stark difference in unlearning and edit robustness when training components localized by different methods. We highlight an important distinction between methods that localize components based primarily on preserving outputs, and those finding high level mechanisms with predictable intermediate states. In particular, localizing edits/unlearning to components associated with the lookup-table mechanism for factual recall 1) leads to more robust edits/unlearning across different input/output formats, and 2) resists attempts to relearn the unwanted information, while also reducing unintended side effects compared to baselines, on both a sports facts dataset and the CounterFact dataset across multiple models. We also find that certain localized edits disrupt the latent knowledge in the model more than any other baselines, making unlearning more robust to various attacks.
Understanding Catastrophic Forgetting and Remembering in Continual Learning with Optimal Relevance Mapping
Catastrophic forgetting in neural networks is a significant problem for continual learning. A majority of the current methods replay previous data during training, which violates the constraints of an ideal continual learning system. Additionally, current approaches that deal with forgetting ignore the problem of catastrophic remembering, i.e. the worsening ability to discriminate between data from different tasks. In our work, we introduce Relevance Mapping Networks (RMNs) which are inspired by the Optimal Overlap Hypothesis. The mappings reflects the relevance of the weights for the task at hand by assigning large weights to essential parameters. We show that RMNs learn an optimized representational overlap that overcomes the twin problem of catastrophic forgetting and remembering. Our approach achieves state-of-the-art performance across all common continual learning datasets, even significantly outperforming data replay methods while not violating the constraints for an ideal continual learning system. Moreover, RMNs retain the ability to detect data from new tasks in an unsupervised manner, thus proving their resilience against catastrophic remembering.
On the Markov Property of Neural Algorithmic Reasoning: Analyses and Methods
Neural algorithmic reasoning is an emerging research direction that endows neural networks with the ability to mimic algorithmic executions step-by-step. A common paradigm in existing designs involves the use of historical embeddings in predicting the results of future execution steps. Our observation in this work is that such historical dependence intrinsically contradicts the Markov nature of algorithmic reasoning tasks. Based on this motivation, we present our ForgetNet, which does not use historical embeddings and thus is consistent with the Markov nature of the tasks. To address challenges in training ForgetNet at early stages, we further introduce G-ForgetNet, which uses a gating mechanism to allow for the selective integration of historical embeddings. Such an enhanced capability provides valuable computational pathways during the model's early training phase. Our extensive experiments, based on the CLRS-30 algorithmic reasoning benchmark, demonstrate that both ForgetNet and G-ForgetNet achieve better generalization capability than existing methods. Furthermore, we investigate the behavior of the gating mechanism, highlighting its degree of alignment with our intuitions and its effectiveness for robust performance.
Intermediate-Task Transfer Learning with Pretrained Models for Natural Language Understanding: When and Why Does It Work?
While pretrained models such as BERT have shown large gains across natural language understanding tasks, their performance can be improved by further training the model on a data-rich intermediate task, before fine-tuning it on a target task. However, it is still poorly understood when and why intermediate-task training is beneficial for a given target task. To investigate this, we perform a large-scale study on the pretrained RoBERTa model with 110 intermediate-target task combinations. We further evaluate all trained models with 25 probing tasks meant to reveal the specific skills that drive transfer. We observe that intermediate tasks requiring high-level inference and reasoning abilities tend to work best. We also observe that target task performance is strongly correlated with higher-level abilities such as coreference resolution. However, we fail to observe more granular correlations between probing and target task performance, highlighting the need for further work on broad-coverage probing benchmarks. We also observe evidence that the forgetting of knowledge learned during pretraining may limit our analysis, highlighting the need for further work on transfer learning methods in these settings.
Meta-trained agents implement Bayes-optimal agents
Memory-based meta-learning is a powerful technique to build agents that adapt fast to any task within a target distribution. A previous theoretical study has argued that this remarkable performance is because the meta-training protocol incentivises agents to behave Bayes-optimally. We empirically investigate this claim on a number of prediction and bandit tasks. Inspired by ideas from theoretical computer science, we show that meta-learned and Bayes-optimal agents not only behave alike, but they even share a similar computational structure, in the sense that one agent system can approximately simulate the other. Furthermore, we show that Bayes-optimal agents are fixed points of the meta-learning dynamics. Our results suggest that memory-based meta-learning might serve as a general technique for numerically approximating Bayes-optimal agents - that is, even for task distributions for which we currently don't possess tractable models.
MemGEN: Memory is All You Need
We propose a new learning paradigm called Deep Memory. It has the potential to completely revolutionize the Machine Learning field. Surprisingly, this paradigm has not been reinvented yet, unlike Deep Learning. At the core of this approach is the Learning By Heart principle, well studied in primary schools all over the world. Inspired by poem recitation, or by pi decimal memorization, we propose a concrete algorithm that mimics human behavior. We implement this paradigm on the task of generative modeling, and apply to images, natural language and even the pi decimals as long as one can print them as text. The proposed algorithm even generated this paper, in a one-shot learning setting. In carefully designed experiments, we show that the generated samples are indistinguishable from the training examples, as measured by any statistical tests or metrics.
CoAT: Chain-of-Associated-Thoughts Framework for Enhancing Large Language Models Reasoning
Research on LLM technologies is rapidly emerging, with most of them employing a 'fast thinking' approach to inference. Most LLMs generate the final result based solely on a single query and LLM's reasoning capabilities. However, with the advent of OpenAI-o1, 'slow thinking' techniques have garnered increasing attention because its process is closer to the human thought process. Inspired by the human ability to constantly associate and replenish knowledge during thinking, we developed the novel Chain-of-Associated-Thoughts (CoAT) framework, which introduces an innovative synergy between the Monte Carlo Tree Search (MCTS) algorithm and a dynamic mechanism for integrating new key information, termed 'associative memory'. By combining the structured exploration capabilities of MCTS with the adaptive learning capacity of associative memory, CoAT significantly expands the LLM search space, enabling our framework to explore diverse reasoning pathways and dynamically update its knowledge base in real-time. This allows the framework to not only revisit and refine earlier inferences but also adaptively incorporate evolving information, ensuring that the final output is both accurate and comprehensive. To validate the effectiveness of our framework, we conducted extensive experiments across a range of generative and reasoning tasks. These experiments demonstrated that our framework outperforms conventional inference processes on accuracy, coherence, and diversity. The framework's ability to iteratively expand its search space while retaining contextually relevant information results.
Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction
Memory retention challenges in deep neural architectures have ongoing limitations in the ability to process and recall extended contextual information. Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency across longer outputs. A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers, reinforcing token representations over extended sequences. The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism to systematically integrate past contextual embeddings without introducing external memory modules. Experimental results demonstrate improvements in recall accuracy across a range of sequence lengths, with notable gains in the retention of rarely occurring tokens and numerical reasoning consistency. Further analysis of computational efficiency indicates that the additional processing overhead remains within acceptable thresholds, enabling scalability across different model sizes. Evaluations in long-form text generation and ambiguous query resolution highlight the capacity of memory reweaving to enhance continuity and reduce inconsistencies over extended outputs. Attention weight distributions reveal more structured allocation patterns, suggesting that reweaved latent states contribute to improved contextual awareness. The findings establish a framework for refining memory retention mechanisms in language models, addressing long-standing challenges in handling complex, multi-step reasoning tasks.
MEMORYLLM: Towards Self-Updatable Large Language Models
Existing Large Language Models (LLMs) usually remain static after deployment, which might make it hard to inject new knowledge into the model. We aim to build models containing a considerable portion of self-updatable parameters, enabling the model to integrate new knowledge effectively and efficiently. To this end, we introduce MEMORYLLM, a model that comprises a transformer and a fixed-size memory pool within the latent space of the transformer. MEMORYLLM can self-update with text knowledge and memorize the knowledge injected earlier. Our evaluations demonstrate the ability of MEMORYLLM to effectively incorporate new knowledge, as evidenced by its performance on model editing benchmarks. Meanwhile, the model exhibits long-term information retention capacity, which is validated through our custom-designed evaluations and long-context benchmarks. MEMORYLLM also shows operational integrity without any sign of performance degradation even after nearly a million memory updates.
Attention: Marginal Probability is All You Need?
Attention mechanisms are a central property of cognitive systems allowing them to selectively deploy cognitive resources in a flexible manner. Attention has been long studied in the neurosciences and there are numerous phenomenological models that try to capture its core properties. Recently attentional mechanisms have become a dominating architectural choice of machine learning and are the central innovation of Transformers. The dominant intuition and formalism underlying their development has drawn on ideas of keys and queries in database management systems. In this work, we propose an alternative Bayesian foundation for attentional mechanisms and show how this unifies different attentional architectures in machine learning. This formulation allows to to identify commonality across different attention ML architectures as well as suggest a bridge to those developed in neuroscience. We hope this work will guide more sophisticated intuitions into the key properties of attention architectures and suggest new ones.
Locating and Editing Factual Associations in Mamba
We investigate the mechanisms of factual recall in the Mamba state space model. Our work is inspired by previous findings in autoregressive transformer language models suggesting that their knowledge recall is localized to particular modules at specific token locations; we therefore ask whether factual recall in Mamba can be similarly localized. To investigate this, we conduct four lines of experiments on Mamba. First, we apply causal tracing or interchange interventions to localize key components inside Mamba that are responsible for recalling facts, revealing that specific components within middle layers show strong causal effects at the last token of the subject, while the causal effect of intervening on later layers is most pronounced at the last token of the prompt, matching previous findings on autoregressive transformers. Second, we show that rank-one model editing methods can successfully insert facts at specific locations, again resembling findings on transformer models. Third, we examine the linearity of Mamba's representations of factual relations. Finally we adapt attention-knockout techniques to Mamba to dissect information flow during factual recall. We compare Mamba directly to a similar-sized transformer and conclude that despite significant differences in architectural approach, when it comes to factual recall, the two architectures share many similarities.
A Human-Inspired Reading Agent with Gist Memory of Very Long Contexts
Current Large Language Models (LLMs) are not only limited to some maximum context length, but also are not able to robustly consume long inputs. To address these limitations, we propose ReadAgent, an LLM agent system that increases effective context length up to 20x in our experiments. Inspired by how humans interactively read long documents, we implement ReadAgent as a simple prompting system that uses the advanced language capabilities of LLMs to (1) decide what content to store together in a memory episode, (2) compress those memory episodes into short episodic memories called gist memories, and (3) take actions to look up passages in the original text if ReadAgent needs to remind itself of relevant details to complete a task. We evaluate ReadAgent against baselines using retrieval methods, using the original long contexts, and using the gist memories. These evaluations are performed on three long-document reading comprehension tasks: QuALITY, NarrativeQA, and QMSum. ReadAgent outperforms the baselines on all three tasks while extending the effective context window by 3-20x.
LLM In-Context Recall is Prompt Dependent
The proliferation of Large Language Models (LLMs) highlights the critical importance of conducting thorough evaluations to discern their comparative advantages, limitations, and optimal use cases. Particularly important is assessing their capacity to accurately retrieve information included in a given prompt. A model's ability to do this significantly influences how effectively it can utilize contextual details, thus impacting its practical efficacy and dependability in real-world applications. Our research analyzes the in-context recall performance of various LLMs using the needle-in-a-haystack method. In this approach, a factoid (the "needle") is embedded within a block of filler text (the "haystack"), which the model is asked to retrieve. We assess the recall performance of each model across various haystack lengths and with varying needle placements to identify performance patterns. This study demonstrates that an LLM's recall capability is not only contingent upon the prompt's content but also may be compromised by biases in its training data. Conversely, adjustments to model architecture, training strategy, or fine-tuning can improve performance. Our analysis provides insight into LLM behavior, offering direction for the development of more effective applications of LLMs.
"Sorry, Come Again?" Prompting -- Enhancing Comprehension and Diminishing Hallucination with [PAUSE]-injected Optimal Paraphrasing
Hallucination has emerged as the most vulnerable aspect of contemporary Large Language Models (LLMs). In this paper, we introduce the Sorry, Come Again (SCA) prompting, aimed to avoid LLM hallucinations by enhancing comprehension through: (i) optimal paraphrasing and (ii) injecting [PAUSE] tokens to delay LLM generation. First, we provide an in-depth analysis of linguistic nuances: formality, readability, and concreteness of prompts for 21 LLMs, and elucidate how these nuances contribute to hallucinated generation. Prompts with lower readability, formality, or concreteness pose comprehension challenges for LLMs, similar to those faced by humans. In such scenarios, an LLM tends to speculate and generate content based on its imagination (associative memory) to fill these information gaps. Although these speculations may occasionally align with factual information, their accuracy is not assured, often resulting in hallucination. Recent studies reveal that an LLM often neglects the middle sections of extended prompts, a phenomenon termed as lost in the middle. While a specific paraphrase may suit one LLM, the same paraphrased version may elicit a different response from another LLM. Therefore, we propose an optimal paraphrasing technique to identify the most comprehensible paraphrase of a given prompt, evaluated using Integrated Gradient (and its variations) to guarantee that the LLM accurately processes all words. While reading lengthy sentences, humans often pause at various points to better comprehend the meaning read thus far. We have fine-tuned an LLM with injected [PAUSE] tokens, allowing the LLM to pause while reading lengthier prompts. This has brought several key contributions: (i) determining the optimal position to inject [PAUSE], (ii) determining the number of [PAUSE] tokens to be inserted, and (iii) introducing reverse proxy tuning to fine-tune the LLM for [PAUSE] insertion.
Memory-assisted prompt editing to improve GPT-3 after deployment
Large LMs such as GPT-3 are powerful, but can commit mistakes that are obvious to humans. For example, GPT-3 would mistakenly interpret "What word is similar to good?" to mean a homophone, while the user intended a synonym. Our goal is to effectively correct such errors via user interactions with the system but without retraining, which will be prohibitively costly. We pair GPT-3 with a growing memory of recorded cases where the model misunderstood the user's intents, along with user feedback for clarification. Such a memory allows our system to produce enhanced prompts for any new query based on the user feedback for error correction on similar cases in the past. On four tasks (two lexical tasks, two advanced ethical reasoning tasks), we show how a (simulated) user can interactively teach a deployed GPT-3, substantially increasing its accuracy over the queries with different kinds of misunderstandings by the GPT-3. Our approach is a step towards the low-cost utility enhancement for very large pre-trained LMs. Code, data, and instructions to implement MEMPROMPT for a new task at https://www.memprompt.com/.
Do language models plan ahead for future tokens?
Do transformers "think ahead" during inference at a given position? It is known transformers prepare information in the hidden states of the forward pass at t that is then used in future forward passes t+tau. We posit two explanations for this phenomenon: pre-caching, in which off-diagonal gradient terms present in training result in the model computing features at t irrelevant to the present inference task but useful for the future, and breadcrumbs, in which features most relevant to time step t are already the same as those that would most benefit inference at time t+tau. We test these hypotheses by training language models without propagating gradients to past timesteps, a scheme we formalize as myopic training. In a synthetic data setting, we find clear evidence for pre-caching. In the autoregressive language modeling setting, our experiments are more suggestive of the breadcrumbs hypothesis.
IF2Net: Innately Forgetting-Free Networks for Continual Learning
Continual learning can incrementally absorb new concepts without interfering with previously learned knowledge. Motivated by the characteristics of neural networks, in which information is stored in weights on connections, we investigated how to design an Innately Forgetting-Free Network (IF2Net) for continual learning context. This study proposed a straightforward yet effective learning paradigm by ingeniously keeping the weights relative to each seen task untouched before and after learning a new task. We first presented the novel representation-level learning on task sequences with random weights. This technique refers to tweaking the drifted representations caused by randomization back to their separate task-optimal working states, but the involved weights are frozen and reused (opposite to well-known layer-wise updates of weights). Then, sequential decision-making without forgetting can be achieved by projecting the output weight updates into the parsimonious orthogonal space, making the adaptations not disturb old knowledge while maintaining model plasticity. IF2Net allows a single network to inherently learn unlimited mapping rules without telling task identities at test time by integrating the respective strengths of randomization and orthogonalization. We validated the effectiveness of our approach in the extensive theoretical analysis and empirical study.
How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning
Despite superior reasoning prowess demonstrated by Large Language Models (LLMs) with Chain-of-Thought (CoT) prompting, a lack of understanding prevails around the internal mechanisms of the models that facilitate CoT generation. This work investigates the neural sub-structures within LLMs that manifest CoT reasoning from a mechanistic point of view. From an analysis of LLaMA-2 7B applied to multistep reasoning over fictional ontologies, we demonstrate that LLMs deploy multiple parallel pathways of answer generation for step-by-step reasoning. These parallel pathways provide sequential answers from the input question context as well as the generated CoT. We observe a striking functional rift in the middle layers of the LLM. Token representations in the initial half remain strongly biased towards the pretraining prior, with the in-context taking over abruptly in the later half. This internal phase shift manifests in different functional components: attention heads that write the answer token predominantly appear in the later half, attention heads that move information along ontological relationships appear exclusively in the initial half, and so on. To the best of our knowledge, this is the first attempt towards mechanistic investigation of CoT reasoning in LLMs.
On Training Sample Memorization: Lessons from Benchmarking Generative Modeling with a Large-scale Competition
Many recent developments on generative models for natural images have relied on heuristically-motivated metrics that can be easily gamed by memorizing a small sample from the true distribution or training a model directly to improve the metric. In this work, we critically evaluate the gameability of these metrics by designing and deploying a generative modeling competition. Our competition received over 11000 submitted models. The competitiveness between participants allowed us to investigate both intentional and unintentional memorization in generative modeling. To detect intentional memorization, we propose the ``Memorization-Informed Fr\'echet Inception Distance'' (MiFID) as a new memorization-aware metric and design benchmark procedures to ensure that winning submissions made genuine improvements in perceptual quality. Furthermore, we manually inspect the code for the 1000 top-performing models to understand and label different forms of memorization. Our analysis reveals that unintentional memorization is a serious and common issue in popular generative models. The generated images and our memorization labels of those models as well as code to compute MiFID are released to facilitate future studies on benchmarking generative models.
Overcoming catastrophic forgetting in neural networks
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.
Banishing LLM Hallucinations Requires Rethinking Generalization
Despite their powerful chat, coding, and reasoning abilities, Large Language Models (LLMs) frequently hallucinate. Conventional wisdom suggests that hallucinations are a consequence of a balance between creativity and factuality, which can be mitigated, but not eliminated, by grounding the LLM in external knowledge sources. Through extensive systematic experiments, we show that these traditional approaches fail to explain why LLMs hallucinate in practice. Specifically, we show that LLMs augmented with a massive Mixture of Memory Experts (MoME) can easily memorize large datasets of random numbers. We corroborate these experimental findings with a theoretical construction showing that simple neural networks trained to predict the next token hallucinate when the training loss is above a threshold as it usually does in practice when training on internet scale data. We interpret our findings by comparing against traditional retrieval methods for mitigating hallucinations. We use our findings to design a first generation model for removing hallucinations -- Lamini-1 -- that stores facts in a massive mixture of millions of memory experts that are retrieved dynamically.
The Stochastic Parrot on LLM's Shoulder: A Summative Assessment of Physical Concept Understanding
In a systematic way, we investigate a widely asked question: Do LLMs really understand what they say?, which relates to the more familiar term Stochastic Parrot. To this end, we propose a summative assessment over a carefully designed physical concept understanding task, PhysiCo. Our task alleviates the memorization issue via the usage of grid-format inputs that abstractly describe physical phenomena. The grids represents varying levels of understanding, from the core phenomenon, application examples to analogies to other abstract patterns in the grid world. A comprehensive study on our task demonstrates: (1) state-of-the-art LLMs, including GPT-4o, o1 and Gemini 2.0 flash thinking, lag behind humans by ~40%; (2) the stochastic parrot phenomenon is present in LLMs, as they fail on our grid task but can describe and recognize the same concepts well in natural language; (3) our task challenges the LLMs due to intrinsic difficulties rather than the unfamiliar grid format, as in-context learning and fine-tuning on same formatted data added little to their performance.
Explaining grokking through circuit efficiency
One of the most surprising puzzles in neural network generalisation is grokking: a network with perfect training accuracy but poor generalisation will, upon further training, transition to perfect generalisation. We propose that grokking occurs when the task admits a generalising solution and a memorising solution, where the generalising solution is slower to learn but more efficient, producing larger logits with the same parameter norm. We hypothesise that memorising circuits become more inefficient with larger training datasets while generalising circuits do not, suggesting there is a critical dataset size at which memorisation and generalisation are equally efficient. We make and confirm four novel predictions about grokking, providing significant evidence in favour of our explanation. Most strikingly, we demonstrate two novel and surprising behaviours: ungrokking, in which a network regresses from perfect to low test accuracy, and semi-grokking, in which a network shows delayed generalisation to partial rather than perfect test accuracy.
Empirical Study of Mutual Reinforcement Effect and Application in Few-shot Text Classification Tasks via Prompt
The Mutual Reinforcement Effect (MRE) investigates the synergistic relationship between word-level and text-level classifications in text classification tasks. It posits that the performance of both classification levels can be mutually enhanced. However, this mechanism has not been adequately demonstrated or explained in prior research. To address this gap, we employ empirical experiment to observe and substantiate the MRE theory. Our experiments on 21 MRE mix datasets revealed the presence of MRE in the model and its impact. Specifically, we conducted compare experiments use fine-tune. The results of findings from comparison experiments corroborates the existence of MRE. Furthermore, we extended the application of MRE to prompt learning, utilizing word-level information as a verbalizer to bolster the model's prediction of text-level classification labels. In our final experiment, the F1-score significantly surpassed the baseline in 18 out of 21 MRE Mix datasets, further validating the notion that word-level information enhances the language model's comprehension of the text as a whole.
Landmark Attention: Random-Access Infinite Context Length for Transformers
While transformers have shown remarkable success in natural language processing, their attention mechanism's large memory requirements have limited their ability to handle longer contexts. Prior approaches, such as recurrent memory or retrieval-based augmentation, have either compromised the random-access flexibility of attention (i.e., the capability to select any token in the entire context) or relied on separate mechanisms for relevant context retrieval, which may not be compatible with the model's attention. In this paper, we present a novel approach that allows access to the complete context while retaining random-access flexibility, closely resembling running attention on the entire context. Our method uses a landmark token to represent each block of the input and trains the attention to use it for selecting relevant blocks, enabling retrieval of blocks directly through the attention mechanism instead of by relying on a separate mechanism. Our approach seamlessly integrates with specialized data structures and the system's memory hierarchy, enabling processing of arbitrarily long context lengths. We demonstrate that our method can obtain comparable performance with Transformer-XL while significantly reducing the number of retrieved tokens in each step. Finally, we show that fine-tuning LLaMA 7B with our method successfully extends its context length capacity up to 32k tokens, allowing for inference at the context lengths of GPT-4.
Can LLMs Learn from Previous Mistakes? Investigating LLMs' Errors to Boost for Reasoning
Recent works have shown the benefits to LLMs from fine-tuning golden-standard Chain-of-Thought (CoT) rationales or using them as correct examples in few-shot prompting. While humans can indeed imitate correct examples, learning from our mistakes is another vital aspect of human cognition. Hence, a question naturally arises: can LLMs learn and benefit from their mistakes, especially for their reasoning? This study investigates this problem from both the prompting and model-tuning perspectives. We begin by introducing CoTErrorSet, a new benchmark with 609,432 questions, each designed with both correct and error references, and demonstrating the types and reasons for making such mistakes. To explore the effectiveness of those mistakes, we design two methods: (1) Self-rethinking prompting guides LLMs to rethink whether they have made similar previous mistakes; and (2) Mistake tuning involves finetuning models in both correct and incorrect reasoning domains, rather than only tuning models to learn ground truth in traditional methodology. We conduct a series of experiments to prove LLMs can obtain benefits from mistakes in both directions. Our two methods offer potentially cost-effective strategies by leveraging errors to enhance reasoning capabilities, which costs significantly less than creating meticulously hand-crafted golden references. We ultimately make a thorough analysis of the reasons behind LLMs' errors, which provides directions that future research needs to overcome. CoTErrorSet will be published soon on \url{https://github.com/YookiTong/Learn-from-Mistakes-CotErrorSet}.
DOTS: Learning to Reason Dynamically in LLMs via Optimal Reasoning Trajectories Search
Enhancing the capability of large language models (LLMs) in reasoning has gained significant attention in recent years. Previous studies have demonstrated the effectiveness of various prompting strategies in aiding LLMs in reasoning (called "reasoning actions"), such as step-by-step thinking, reflecting before answering, solving with programs, and their combinations. However, these approaches often applied static, predefined reasoning actions uniformly to all questions, without considering the specific characteristics of each question or the capability of the task-solving LLM. In this paper, we propose DOTS, an approach enabling LLMs to reason dynamically via optimal reasoning trajectory search, tailored to the specific characteristics of each question and the inherent capability of the task-solving LLM. Our approach involves three key steps: i) defining atomic reasoning action modules that can be composed into various reasoning action trajectories; ii) searching for the optimal action trajectory for each training question through iterative exploration and evaluation for the specific task-solving LLM; and iii) using the collected optimal trajectories to train an LLM to plan for the reasoning trajectories of unseen questions. In particular, we propose two learning paradigms, i.e., fine-tuning an external LLM as a planner to guide the task-solving LLM, or directly fine-tuning the task-solving LLM with an internalized capability for reasoning actions planning. Our experiments across eight reasoning tasks show that our method consistently outperforms static reasoning techniques and the vanilla instruction tuning approach. Further analysis reveals that our method enables LLMs to adjust their computation based on problem complexity, allocating deeper thinking and reasoning to harder problems.
Towards Adaptive Mechanism Activation in Language Agent
Language Agent could be endowed with different mechanisms for autonomous task accomplishment. Current agents typically rely on fixed mechanisms or a set of mechanisms activated in a predefined order, limiting their adaptation to varied potential task solution structures. To this end, this paper proposes Adaptive Language Agent Mechanism Activation Learning with Self-Exploration (ALAMA), which focuses on optimizing mechanism activation adaptability without reliance on expert models. Initially, it builds a harmonized agent framework (UniAct) to Unify different mechanisms via Actions. Then it leverages a training-efficient optimization method based on self-exploration to enable the UniAct to adaptively activate the appropriate mechanisms according to the potential characteristics of the task. Experimental results demonstrate significant improvements in downstream agent tasks, affirming the effectiveness of our approach in facilitating more dynamic and context-sensitive mechanism activation.
Learning Memory Mechanisms for Decision Making through Demonstrations
In Partially Observable Markov Decision Processes, integrating an agent's history into memory poses a significant challenge for decision-making. Traditional imitation learning, relying on observation-action pairs for expert demonstrations, fails to capture the expert's memory mechanisms used in decision-making. To capture memory processes as demonstrations, we introduce the concept of memory dependency pairs (p, q) indicating that events at time p are recalled for decision-making at time q. We introduce AttentionTuner to leverage memory dependency pairs in Transformers and find significant improvements across several tasks compared to standard Transformers when evaluated on Memory Gym and the Long-term Memory Benchmark. Code is available at https://github.com/WilliamYue37/AttentionTuner.
Be like a Goldfish, Don't Memorize! Mitigating Memorization in Generative LLMs
Large language models can memorize and repeat their training data, causing privacy and copyright risks. To mitigate memorization, we introduce a subtle modification to the next-token training objective that we call the goldfish loss. During training, a randomly sampled subset of tokens are excluded from the loss computation. These dropped tokens are not memorized by the model, which prevents verbatim reproduction of a complete chain of tokens from the training set. We run extensive experiments training billion-scale Llama-2 models, both pre-trained and trained from scratch, and demonstrate significant reductions in extractable memorization with little to no impact on downstream benchmarks.
Unfamiliar Finetuning Examples Control How Language Models Hallucinate
Large language models (LLMs) have a tendency to generate plausible-sounding yet factually incorrect responses, especially when queried on unfamiliar concepts. In this work, we explore the underlying mechanisms that govern how finetuned LLMs hallucinate. Our investigation reveals an interesting pattern: as inputs become more unfamiliar, LLM outputs tend to default towards a ``hedged'' prediction, whose form is determined by how the unfamiliar examples in the finetuning data are supervised. Thus, by strategically modifying these examples' supervision, we can control LLM predictions for unfamiliar inputs (e.g., teach them to say ``I don't know''). Based on these principles, we develop an RL approach that more reliably mitigates hallucinations for long-form generation tasks, by tackling the challenges presented by reward model hallucinations. We validate our findings with a series of controlled experiments in multiple-choice QA on MMLU, as well as long-form biography and book/movie plot generation tasks.
Analyzing and Reducing Catastrophic Forgetting in Parameter Efficient Tuning
Existing research has shown that large language models (LLMs) exhibit remarkable performance in language understanding and generation. However, when LLMs are continuously fine-tuned on complex and diverse domain-specific downstream tasks, the inference performance on historical tasks decreases dramatically, which is known as a catastrophic forgetting problem. A trade-off needs to be kept between learning plasticity and memory stability. Plenty of existing works have explored strategies like memory replay, regularization and parameter isolation, but little is known about the geometric connection of various adjacent minima in the continual LLMs fine-tuning scenarios. In this work, we investigate the geometric connections of different minima through the lens of mode connectivity, which means different minima can be connected by a low-loss valley. Through extensive experiments, we uncover the mode connectivity phenomenon in the LLMs continual learning scenario and find that it can strike a balance between plasticity and stability. Building upon these findings, we propose a simple yet effective method called Interpolation-based LoRA (I-LoRA), which constructs a dual-memory experience replay framework based on LoRA parameter interpolations. Extensive experiments and analysis on eight domain-specific CL benchmarks demonstrate that I-LoRA consistently show significant improvement over the previous state-of-the-art approaches with up to 11% performance gains, providing a strong baseline and insights for future research on the large language model continual learning problem. Our code is available at https://github.com/which47/LLMCL.
Theory on Forgetting and Generalization of Continual Learning
Continual learning (CL), which aims to learn a sequence of tasks, has attracted significant recent attention. However, most work has focused on the experimental performance of CL, and theoretical studies of CL are still limited. In particular, there is a lack of understanding on what factors are important and how they affect "catastrophic forgetting" and generalization performance. To fill this gap, our theoretical analysis, under overparameterized linear models, provides the first-known explicit form of the expected forgetting and generalization error. Further analysis of such a key result yields a number of theoretical explanations about how overparameterization, task similarity, and task ordering affect both forgetting and generalization error of CL. More interestingly, by conducting experiments on real datasets using deep neural networks (DNNs), we show that some of these insights even go beyond the linear models and can be carried over to practical setups. In particular, we use concrete examples to show that our results not only explain some interesting empirical observations in recent studies, but also motivate better practical algorithm designs of CL.
Mimetic Initialization Helps State Space Models Learn to Recall
Recent work has shown that state space models such as Mamba are significantly worse than Transformers on recall-based tasks due to the fact that their state size is constant with respect to their input sequence length. But in practice, state space models have fairly large state sizes, and we conjecture that they should be able to perform much better at these tasks than previously reported. We investigate whether their poor copying and recall performance could be due in part to training difficulties rather than fundamental capacity constraints. Based on observations of their "attention" maps, we propose a structured initialization technique that allows state space layers to more readily mimic attention. Across a variety of architecture settings, our initialization makes it substantially easier for Mamba to learn to copy and do associative recall from scratch.
Violation of Expectation via Metacognitive Prompting Reduces Theory of Mind Prediction Error in Large Language Models
Recent research shows that Large Language Models (LLMs) exhibit a compelling level of proficiency in Theory of Mind (ToM) tasks. This ability to impute unobservable mental states to others is vital to human social cognition and may prove equally important in principal-agent relations between individual humans and Artificial Intelligences (AIs). In this paper, we explore how a mechanism studied in developmental psychology known as Violation of Expectation (VoE) can be implemented to reduce errors in LLM prediction about users by leveraging emergent ToM affordances. And we introduce a metacognitive prompting framework to apply VoE in the context of an AI tutor. By storing and retrieving facts derived in cases where LLM expectation about the user was violated, we find that LLMs are able to learn about users in ways that echo theories of human learning. Finally, we discuss latent hazards and augmentative opportunities associated with modeling user psychology and propose ways to mitigate risk along with possible directions for future inquiry.
Machine Unlearning for Image-to-Image Generative Models
Machine unlearning has emerged as a new paradigm to deliberately forget data samples from a given model in order to adhere to stringent regulations. However, existing machine unlearning methods have been primarily focused on classification models, leaving the landscape of unlearning for generative models relatively unexplored. This paper serves as a bridge, addressing the gap by providing a unifying framework of machine unlearning for image-to-image generative models. Within this framework, we propose a computationally-efficient algorithm, underpinned by rigorous theoretical analysis, that demonstrates negligible performance degradation on the retain samples, while effectively removing the information from the forget samples. Empirical studies on two large-scale datasets, ImageNet-1K and Places-365, further show that our algorithm does not rely on the availability of the retain samples, which further complies with data retention policy. To our best knowledge, this work is the first that represents systemic, theoretical, empirical explorations of machine unlearning specifically tailored for image-to-image generative models. Our code is available at https://github.com/jpmorganchase/l2l-generator-unlearning.
We-Math: Does Your Large Multimodal Model Achieve Human-like Mathematical Reasoning?
Visual mathematical reasoning, as a fundamental visual reasoning ability, has received widespread attention from the Large Multimodal Models (LMMs) community. Existing benchmarks, such as MathVista and MathVerse, focus more on the result-oriented performance but neglect the underlying principles in knowledge acquisition and generalization. Inspired by human-like mathematical reasoning, we introduce WE-MATH, the first benchmark specifically designed to explore the problem-solving principles beyond end-to-end performance. We meticulously collect and categorize 6.5K visual math problems, spanning 67 hierarchical knowledge concepts and five layers of knowledge granularity. We decompose composite problems into sub-problems according to the required knowledge concepts and introduce a novel four-dimensional metric, namely Insufficient Knowledge (IK), Inadequate Generalization (IG), Complete Mastery (CM), and Rote Memorization (RM), to hierarchically assess inherent issues in LMMs' reasoning process. With WE-MATH, we conduct a thorough evaluation of existing LMMs in visual mathematical reasoning and reveal a negative correlation between solving steps and problem-specific performance. We confirm the IK issue of LMMs can be effectively improved via knowledge augmentation strategies. More notably, the primary challenge of GPT-4o has significantly transitioned from IK to IG, establishing it as the first LMM advancing towards the knowledge generalization stage. In contrast, other LMMs exhibit a marked inclination towards Rote Memorization - they correctly solve composite problems involving multiple knowledge concepts yet fail to answer sub-problems. We anticipate that WE-MATH will open new pathways for advancements in visual mathematical reasoning for LMMs. The WE-MATH data and evaluation code are available at https://github.com/We-Math/We-Math.
The Tensor Brain: Semantic Decoding for Perception and Memory
We analyse perception and memory, using mathematical models for knowledge graphs and tensors, to gain insights into the corresponding functionalities of the human mind. Our discussion is based on the concept of propositional sentences consisting of subject-predicate-object (SPO) triples for expressing elementary facts. SPO sentences are the basis for most natural languages but might also be important for explicit perception and declarative memories, as well as intra-brain communication and the ability to argue and reason. A set of SPO sentences can be described as a knowledge graph, which can be transformed into an adjacency tensor. We introduce tensor models, where concepts have dual representations as indices and associated embeddings, two constructs we believe are essential for the understanding of implicit and explicit perception and memory in the brain. We argue that a biological realization of perception and memory imposes constraints on information processing. In particular, we propose that explicit perception and declarative memories require a semantic decoder, which, in a simple realization, is based on four layers: First, a sensory memory layer, as a buffer for sensory input, second, an index layer representing concepts, third, a memoryless representation layer for the broadcasting of information ---the "blackboard", or the "canvas" of the brain--- and fourth, a working memory layer as a processing center and data buffer. We discuss the operations of the four layers and relate them to the global workspace theory. In a Bayesian brain interpretation, semantic memory defines the prior for observable triple statements. We propose that ---in evolution and during development--- semantic memory, episodic memory, and natural language evolved as emergent properties in agents' process to gain a deeper understanding of sensory information.
Alphazero-like Tree-Search can Guide Large Language Model Decoding and Training
Large language models (LLMs) typically employ sampling or beam search, accompanied by prompts such as Chain-of-Thought (CoT), to boost reasoning and decoding ability. Recent work like Tree-of-Thought (ToT) and Reasoning via Planning (RAP) aim to augment the reasoning capabilities of LLMs by utilizing tree-search algorithms to guide multi-step reasoning. These methods mainly focus on LLMs' reasoning ability during inference and heavily rely on human-designed prompts to activate LLM as a value function, which lacks general applicability and scalability. To address these limitations, we present an AlphaZero-like tree-search framework for LLMs (termed TS-LLM), systematically illustrating how tree-search with a learned value function can guide LLMs' decoding ability. TS-LLM distinguishes itself in two key ways: (1) Leveraging a learned value function, our approach can be generally applied to different tasks beyond reasoning (such as RLHF alignment), and LLMs of any size, without prompting advanced, large-scale models. (2) It can guide LLM's decoding during both inference and training. Empirical evaluations across reasoning, planning, and RLHF alignment tasks validate the effectiveness of TS-LLM, even on trees with a depth of 64.