new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 13

Event-based Temporally Dense Optical Flow Estimation with Sequential Neural Networks

Prior works on event-based optical flow estimation have investigated several gradient-based learning methods to train neural networks for predicting optical flow. However, they do not utilize the fast data rate of event data streams and rely on a spatio-temporal representation constructed from a collection of events over a fixed period of time (often between two grayscale frames). As a result, optical flow is only evaluated at a frequency much lower than the rate data is produced by an event-based camera, leading to a temporally sparse optical flow estimation. To predict temporally dense optical flow, we cast the problem as a sequential learning task and propose a training methodology to train sequential networks for continuous prediction on an event stream. We propose two types of networks: one focused on performance and another focused on compute efficiency. We first train long-short term memory networks (LSTMs) on the DSEC dataset and demonstrated 10x temporally dense optical flow estimation over existing flow estimation approaches. The additional benefit of having a memory to draw long temporal correlations back in time results in a 19.7% improvement in flow prediction accuracy of LSTMs over similar networks with no memory elements. We subsequently show that the inherent recurrence of spiking neural networks (SNNs) enables them to learn and estimate temporally dense optical flow with 31.8% lesser parameters than LSTM, but with a slightly increased error. This demonstrates potential for energy-efficient implementation of fast optical flow prediction using SNNs.

MPI-Flow: Learning Realistic Optical Flow with Multiplane Images

The accuracy of learning-based optical flow estimation models heavily relies on the realism of the training datasets. Current approaches for generating such datasets either employ synthetic data or generate images with limited realism. However, the domain gap of these data with real-world scenes constrains the generalization of the trained model to real-world applications. To address this issue, we investigate generating realistic optical flow datasets from real-world images. Firstly, to generate highly realistic new images, we construct a layered depth representation, known as multiplane images (MPI), from single-view images. This allows us to generate novel view images that are highly realistic. To generate optical flow maps that correspond accurately to the new image, we calculate the optical flows of each plane using the camera matrix and plane depths. We then project these layered optical flows into the output optical flow map with volume rendering. Secondly, to ensure the realism of motion, we present an independent object motion module that can separate the camera and dynamic object motion in MPI. This module addresses the deficiency in MPI-based single-view methods, where optical flow is generated only by camera motion and does not account for any object movement. We additionally devise a depth-aware inpainting module to merge new images with dynamic objects and address unnatural motion occlusions. We show the superior performance of our method through extensive experiments on real-world datasets. Moreover, our approach achieves state-of-the-art performance in both unsupervised and supervised training of learning-based models. The code will be made publicly available at: https://github.com/Sharpiless/MPI-Flow.

SplatFlow: Learning Multi-frame Optical Flow via Splatting

The occlusion problem remains a crucial challenge in optical flow estimation (OFE). Despite the recent significant progress brought about by deep learning, most existing deep learning OFE methods still struggle to handle occlusions; in particular, those based on two frames cannot correctly handle occlusions because occluded regions have no visual correspondences. However, there is still hope in multi-frame settings, which can potentially mitigate the occlusion issue in OFE. Unfortunately, multi-frame OFE (MOFE) remains underexplored, and the limited studies on it are mainly specially designed for pyramid backbones or else obtain the aligned previous frame's features, such as correlation volume and optical flow, through time-consuming backward flow calculation or non-differentiable forward warping transformation. This study proposes an efficient MOFE framework named SplatFlow to address these shortcomings. SplatFlow introduces the differentiable splatting transformation to align the previous frame's motion feature and designs a Final-to-All embedding method to input the aligned motion feature into the current frame's estimation, thus remodeling the existing two-frame backbones. The proposed SplatFlow is efficient yet more accurate, as it can handle occlusions properly. Extensive experimental evaluations show that SplatFlow substantially outperforms all published methods on the KITTI2015 and Sintel benchmarks. Especially on the Sintel benchmark, SplatFlow achieves errors of 1.12 (clean pass) and 2.07 (final pass), with surprisingly significant 19.4% and 16.2% error reductions, respectively, from the previous best results submitted. The code for SplatFlow is available at https://github.com/wwsource/SplatFlow.

Reinforcement Learning of Display Transfer Robots in Glass Flow Control Systems: A Physical Simulation-Based Approach

A flow control system is a critical concept for increasing the production capacity of manufacturing systems. To solve the scheduling optimization problem related to the flow control with the aim of improving productivity, existing methods depend on a heuristic design by domain human experts. Therefore, the methods require correction, monitoring, and verification by using real equipment. As system designs increase in complexity, the monitoring time increases, which decreases the probability of arriving at the optimal design. As an alternative approach to the heuristic design of flow control systems, the use of deep reinforcement learning to solve the scheduling optimization problem has been considered. Although the existing research on reinforcement learning has yielded excellent performance in some areas, the applicability of the results to actual FAB such as display and semiconductor manufacturing processes is not evident so far. To this end, we propose a method to implement a physical simulation environment and devise a feasible flow control system design using a transfer robot in display manufacturing through reinforcement learning. We present a model and parameter setting to build a virtual environment for different display transfer robots, and training methods of reinforcement learning on the environment to obtain an optimal scheduling of glass flow control systems. Its feasibility was verified by using different types of robots used in the actual process.

Neural Scene Flow Prior

Before the deep learning revolution, many perception algorithms were based on runtime optimization in conjunction with a strong prior/regularization penalty. A prime example of this in computer vision is optical and scene flow. Supervised learning has largely displaced the need for explicit regularization. Instead, they rely on large amounts of labeled data to capture prior statistics, which are not always readily available for many problems. Although optimization is employed to learn the neural network, the weights of this network are frozen at runtime. As a result, these learning solutions are domain-specific and do not generalize well to other statistically different scenarios. This paper revisits the scene flow problem that relies predominantly on runtime optimization and strong regularization. A central innovation here is the inclusion of a neural scene flow prior, which uses the architecture of neural networks as a new type of implicit regularizer. Unlike learning-based scene flow methods, optimization occurs at runtime, and our approach needs no offline datasets -- making it ideal for deployment in new environments such as autonomous driving. We show that an architecture based exclusively on multilayer perceptrons (MLPs) can be used as a scene flow prior. Our method attains competitive -- if not better -- results on scene flow benchmarks. Also, our neural prior's implicit and continuous scene flow representation allows us to estimate dense long-term correspondences across a sequence of point clouds. The dense motion information is represented by scene flow fields where points can be propagated through time by integrating motion vectors. We demonstrate such a capability by accumulating a sequence of lidar point clouds.

Self-Supervised Learning via Conditional Motion Propagation

Intelligent agent naturally learns from motion. Various self-supervised algorithms have leveraged motion cues to learn effective visual representations. The hurdle here is that motion is both ambiguous and complex, rendering previous works either suffer from degraded learning efficacy, or resort to strong assumptions on object motions. In this work, we design a new learning-from-motion paradigm to bridge these gaps. Instead of explicitly modeling the motion probabilities, we design the pretext task as a conditional motion propagation problem. Given an input image and several sparse flow guidance vectors on it, our framework seeks to recover the full-image motion. Compared to other alternatives, our framework has several appealing properties: (1) Using sparse flow guidance during training resolves the inherent motion ambiguity, and thus easing feature learning. (2) Solving the pretext task of conditional motion propagation encourages the emergence of kinematically-sound representations that poss greater expressive power. Extensive experiments demonstrate that our framework learns structural and coherent features; and achieves state-of-the-art self-supervision performance on several downstream tasks including semantic segmentation, instance segmentation, and human parsing. Furthermore, our framework is successfully extended to several useful applications such as semi-automatic pixel-level annotation. Project page: "http://mmlab.ie.cuhk.edu.hk/projects/CMP/".

CroCo v2: Improved Cross-view Completion Pre-training for Stereo Matching and Optical Flow

Despite impressive performance for high-level downstream tasks, self-supervised pre-training methods have not yet fully delivered on dense geometric vision tasks such as stereo matching or optical flow. The application of self-supervised concepts, such as instance discrimination or masked image modeling, to geometric tasks is an active area of research. In this work, we build on the recent cross-view completion framework, a variation of masked image modeling that leverages a second view from the same scene which makes it well suited for binocular downstream tasks. The applicability of this concept has so far been limited in at least two ways: (a) by the difficulty of collecting real-world image pairs -- in practice only synthetic data have been used -- and (b) by the lack of generalization of vanilla transformers to dense downstream tasks for which relative position is more meaningful than absolute position. We explore three avenues of improvement. First, we introduce a method to collect suitable real-world image pairs at large scale. Second, we experiment with relative positional embeddings and show that they enable vision transformers to perform substantially better. Third, we scale up vision transformer based cross-completion architectures, which is made possible by the use of large amounts of data. With these improvements, we show for the first time that state-of-the-art results on stereo matching and optical flow can be reached without using any classical task-specific techniques like correlation volume, iterative estimation, image warping or multi-scale reasoning, thus paving the way towards universal vision models.

VideoFlow: Exploiting Temporal Cues for Multi-frame Optical Flow Estimation

We introduce VideoFlow, a novel optical flow estimation framework for videos. In contrast to previous methods that learn to estimate optical flow from two frames, VideoFlow concurrently estimates bi-directional optical flows for multiple frames that are available in videos by sufficiently exploiting temporal cues. We first propose a TRi-frame Optical Flow (TROF) module that estimates bi-directional optical flows for the center frame in a three-frame manner. The information of the frame triplet is iteratively fused onto the center frame. To extend TROF for handling more frames, we further propose a MOtion Propagation (MOP) module that bridges multiple TROFs and propagates motion features between adjacent TROFs. With the iterative flow estimation refinement, the information fused in individual TROFs can be propagated into the whole sequence via MOP. By effectively exploiting video information, VideoFlow presents extraordinary performance, ranking 1st on all public benchmarks. On the Sintel benchmark, VideoFlow achieves 1.649 and 0.991 average end-point-error (AEPE) on the final and clean passes, a 15.1% and 7.6% error reduction from the best-published results (1.943 and 1.073 from FlowFormer++). On the KITTI-2015 benchmark, VideoFlow achieves an F1-all error of 3.65%, a 19.2% error reduction from the best-published result (4.52% from FlowFormer++). Code is released at https://github.com/XiaoyuShi97/VideoFlow.

SCOOP: Self-Supervised Correspondence and Optimization-Based Scene Flow

Scene flow estimation is a long-standing problem in computer vision, where the goal is to find the 3D motion of a scene from its consecutive observations. Recently, there have been efforts to compute the scene flow from 3D point clouds. A common approach is to train a regression model that consumes source and target point clouds and outputs the per-point translation vector. An alternative is to learn point matches between the point clouds concurrently with regressing a refinement of the initial correspondence flow. In both cases, the learning task is very challenging since the flow regression is done in the free 3D space, and a typical solution is to resort to a large annotated synthetic dataset. We introduce SCOOP, a new method for scene flow estimation that can be learned on a small amount of data without employing ground-truth flow supervision. In contrast to previous work, we train a pure correspondence model focused on learning point feature representation and initialize the flow as the difference between a source point and its softly corresponding target point. Then, in the run-time phase, we directly optimize a flow refinement component with a self-supervised objective, which leads to a coherent and accurate flow field between the point clouds. Experiments on widespread datasets demonstrate the performance gains achieved by our method compared to existing leading techniques while using a fraction of the training data. Our code is publicly available at https://github.com/itailang/SCOOP.

Self-supervised Spatio-temporal Representation Learning for Videos by Predicting Motion and Appearance Statistics

We address the problem of video representation learning without human-annotated labels. While previous efforts address the problem by designing novel self-supervised tasks using video data, the learned features are merely on a frame-by-frame basis, which are not applicable to many video analytic tasks where spatio-temporal features are prevailing. In this paper we propose a novel self-supervised approach to learn spatio-temporal features for video representation. Inspired by the success of two-stream approaches in video classification, we propose to learn visual features by regressing both motion and appearance statistics along spatial and temporal dimensions, given only the input video data. Specifically, we extract statistical concepts (fast-motion region and the corresponding dominant direction, spatio-temporal color diversity, dominant color, etc.) from simple patterns in both spatial and temporal domains. Unlike prior puzzles that are even hard for humans to solve, the proposed approach is consistent with human inherent visual habits and therefore easy to answer. We conduct extensive experiments with C3D to validate the effectiveness of our proposed approach. The experiments show that our approach can significantly improve the performance of C3D when applied to video classification tasks. Code is available at https://github.com/laura-wang/video_repres_mas.

Treating Motion as Option with Output Selection for Unsupervised Video Object Segmentation

Unsupervised video object segmentation (VOS) is a task that aims to detect the most salient object in a video without external guidance about the object. To leverage the property that salient objects usually have distinctive movements compared to the background, recent methods collaboratively use motion cues extracted from optical flow maps with appearance cues extracted from RGB images. However, as optical flow maps are usually very relevant to segmentation masks, the network is easy to be learned overly dependent on the motion cues during network training. As a result, such two-stream approaches are vulnerable to confusing motion cues, making their prediction unstable. To relieve this issue, we design a novel motion-as-option network by treating motion cues as optional. During network training, RGB images are randomly provided to the motion encoder instead of optical flow maps, to implicitly reduce motion dependency of the network. As the learned motion encoder can deal with both RGB images and optical flow maps, two different predictions can be generated depending on which source information is used as motion input. In order to fully exploit this property, we also propose an adaptive output selection algorithm to adopt optimal prediction result at test time. Our proposed approach affords state-of-the-art performance on all public benchmark datasets, even maintaining real-time inference speed.

PowerBEV: A Powerful Yet Lightweight Framework for Instance Prediction in Bird's-Eye View

Accurately perceiving instances and predicting their future motion are key tasks for autonomous vehicles, enabling them to navigate safely in complex urban traffic. While bird's-eye view (BEV) representations are commonplace in perception for autonomous driving, their potential in a motion prediction setting is less explored. Existing approaches for BEV instance prediction from surround cameras rely on a multi-task auto-regressive setup coupled with complex post-processing to predict future instances in a spatio-temporally consistent manner. In this paper, we depart from this paradigm and propose an efficient novel end-to-end framework named POWERBEV, which differs in several design choices aimed at reducing the inherent redundancy in previous methods. First, rather than predicting the future in an auto-regressive fashion, POWERBEV uses a parallel, multi-scale module built from lightweight 2D convolutional networks. Second, we show that segmentation and centripetal backward flow are sufficient for prediction, simplifying previous multi-task objectives by eliminating redundant output modalities. Building on this output representation, we propose a simple, flow warping-based post-processing approach which produces more stable instance associations across time. Through this lightweight yet powerful design, POWERBEV outperforms state-of-the-art baselines on the NuScenes Dataset and poses an alternative paradigm for BEV instance prediction. We made our code publicly available at: https://github.com/EdwardLeeLPZ/PowerBEV.

CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion

Masked Image Modeling (MIM) has recently been established as a potent pre-training paradigm. A pretext task is constructed by masking patches in an input image, and this masked content is then predicted by a neural network using visible patches as sole input. This pre-training leads to state-of-the-art performance when finetuned for high-level semantic tasks, e.g. image classification and object detection. In this paper we instead seek to learn representations that transfer well to a wide variety of 3D vision and lower-level geometric downstream tasks, such as depth prediction or optical flow estimation. Inspired by MIM, we propose an unsupervised representation learning task trained from pairs of images showing the same scene from different viewpoints. More precisely, we propose the pretext task of cross-view completion where the first input image is partially masked, and this masked content has to be reconstructed from the visible content and the second image. In single-view MIM, the masked content often cannot be inferred precisely from the visible portion only, so the model learns to act as a prior influenced by high-level semantics. In contrast, this ambiguity can be resolved with cross-view completion from the second unmasked image, on the condition that the model is able to understand the spatial relationship between the two images. Our experiments show that our pretext task leads to significantly improved performance for monocular 3D vision downstream tasks such as depth estimation. In addition, our model can be directly applied to binocular downstream tasks like optical flow or relative camera pose estimation, for which we obtain competitive results without bells and whistles, i.e., using a generic architecture without any task-specific design.

MonoNeRF: Learning a Generalizable Dynamic Radiance Field from Monocular Videos

In this paper, we target at the problem of learning a generalizable dynamic radiance field from monocular videos. Different from most existing NeRF methods that are based on multiple views, monocular videos only contain one view at each timestamp, thereby suffering from ambiguity along the view direction in estimating point features and scene flows. Previous studies such as DynNeRF disambiguate point features by positional encoding, which is not transferable and severely limits the generalization ability. As a result, these methods have to train one independent model for each scene and suffer from heavy computational costs when applying to increasing monocular videos in real-world applications. To address this, We propose MonoNeRF to simultaneously learn point features and scene flows with point trajectory and feature correspondence constraints across frames. More specifically, we learn an implicit velocity field to estimate point trajectory from temporal features with Neural ODE, which is followed by a flow-based feature aggregation module to obtain spatial features along the point trajectory. We jointly optimize temporal and spatial features in an end-to-end manner. Experiments show that our MonoNeRF is able to learn from multiple scenes and support new applications such as scene editing, unseen frame synthesis, and fast novel scene adaptation. Codes are available at https://github.com/tianfr/MonoNeRF.

SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation

We propose a novel scene flow estimation approach to capture and infer 3D motions from point clouds. Estimating 3D motions for point clouds is challenging, since a point cloud is unordered and its density is significantly non-uniform. Such unstructured data poses difficulties in matching corresponding points between point clouds, leading to inaccurate flow estimation. We propose a novel architecture named Sparse Convolution-Transformer Network (SCTN) that equips the sparse convolution with the transformer. Specifically, by leveraging the sparse convolution, SCTN transfers irregular point cloud into locally consistent flow features for estimating continuous and consistent motions within an object/local object part. We further propose to explicitly learn point relations using a point transformer module, different from exiting methods. We show that the learned relation-based contextual information is rich and helpful for matching corresponding points, benefiting scene flow estimation. In addition, a novel loss function is proposed to adaptively encourage flow consistency according to feature similarity. Extensive experiments demonstrate that our proposed approach achieves a new state of the art in scene flow estimation. Our approach achieves an error of 0.038 and 0.037 (EPE3D) on FlyingThings3D and KITTI Scene Flow respectively, which significantly outperforms previous methods by large margins.

Through-The-Mask: Mask-based Motion Trajectories for Image-to-Video Generation

We consider the task of Image-to-Video (I2V) generation, which involves transforming static images into realistic video sequences based on a textual description. While recent advancements produce photorealistic outputs, they frequently struggle to create videos with accurate and consistent object motion, especially in multi-object scenarios. To address these limitations, we propose a two-stage compositional framework that decomposes I2V generation into: (i) An explicit intermediate representation generation stage, followed by (ii) A video generation stage that is conditioned on this representation. Our key innovation is the introduction of a mask-based motion trajectory as an intermediate representation, that captures both semantic object information and motion, enabling an expressive but compact representation of motion and semantics. To incorporate the learned representation in the second stage, we utilize object-level attention objectives. Specifically, we consider a spatial, per-object, masked-cross attention objective, integrating object-specific prompts into corresponding latent space regions and a masked spatio-temporal self-attention objective, ensuring frame-to-frame consistency for each object. We evaluate our method on challenging benchmarks with multi-object and high-motion scenarios and empirically demonstrate that the proposed method achieves state-of-the-art results in temporal coherence, motion realism, and text-prompt faithfulness. Additionally, we introduce \benchmark, a new challenging benchmark for single-object and multi-object I2V generation, and demonstrate our method's superiority on this benchmark. Project page is available at https://guyyariv.github.io/TTM/.

EMR-MSF: Self-Supervised Recurrent Monocular Scene Flow Exploiting Ego-Motion Rigidity

Self-supervised monocular scene flow estimation, aiming to understand both 3D structures and 3D motions from two temporally consecutive monocular images, has received increasing attention for its simple and economical sensor setup. However, the accuracy of current methods suffers from the bottleneck of less-efficient network architecture and lack of motion rigidity for regularization. In this paper, we propose a superior model named EMR-MSF by borrowing the advantages of network architecture design under the scope of supervised learning. We further impose explicit and robust geometric constraints with an elaborately constructed ego-motion aggregation module where a rigidity soft mask is proposed to filter out dynamic regions for stable ego-motion estimation using static regions. Moreover, we propose a motion consistency loss along with a mask regularization loss to fully exploit static regions. Several efficient training strategies are integrated including a gradient detachment technique and an enhanced view synthesis process for better performance. Our proposed method outperforms the previous self-supervised works by a large margin and catches up to the performance of supervised methods. On the KITTI scene flow benchmark, our approach improves the SF-all metric of the state-of-the-art self-supervised monocular method by 44% and demonstrates superior performance across sub-tasks including depth and visual odometry, amongst other self-supervised single-task or multi-task methods.

VideoJAM: Joint Appearance-Motion Representations for Enhanced Motion Generation in Video Models

Despite tremendous recent progress, generative video models still struggle to capture real-world motion, dynamics, and physics. We show that this limitation arises from the conventional pixel reconstruction objective, which biases models toward appearance fidelity at the expense of motion coherence. To address this, we introduce VideoJAM, a novel framework that instills an effective motion prior to video generators, by encouraging the model to learn a joint appearance-motion representation. VideoJAM is composed of two complementary units. During training, we extend the objective to predict both the generated pixels and their corresponding motion from a single learned representation. During inference, we introduce Inner-Guidance, a mechanism that steers the generation toward coherent motion by leveraging the model's own evolving motion prediction as a dynamic guidance signal. Notably, our framework can be applied to any video model with minimal adaptations, requiring no modifications to the training data or scaling of the model. VideoJAM achieves state-of-the-art performance in motion coherence, surpassing highly competitive proprietary models while also enhancing the perceived visual quality of the generations. These findings emphasize that appearance and motion can be complementary and, when effectively integrated, enhance both the visual quality and the coherence of video generation. Project website: https://hila-chefer.github.io/videojam-paper.github.io/

Reenact Anything: Semantic Video Motion Transfer Using Motion-Textual Inversion

Recent years have seen a tremendous improvement in the quality of video generation and editing approaches. While several techniques focus on editing appearance, few address motion. Current approaches using text, trajectories, or bounding boxes are limited to simple motions, so we specify motions with a single motion reference video instead. We further propose to use a pre-trained image-to-video model rather than a text-to-video model. This approach allows us to preserve the exact appearance and position of a target object or scene and helps disentangle appearance from motion. Our method, called motion-textual inversion, leverages our observation that image-to-video models extract appearance mainly from the (latent) image input, while the text/image embedding injected via cross-attention predominantly controls motion. We thus represent motion using text/image embedding tokens. By operating on an inflated motion-text embedding containing multiple text/image embedding tokens per frame, we achieve a high temporal motion granularity. Once optimized on the motion reference video, this embedding can be applied to various target images to generate videos with semantically similar motions. Our approach does not require spatial alignment between the motion reference video and target image, generalizes across various domains, and can be applied to various tasks such as full-body and face reenactment, as well as controlling the motion of inanimate objects and the camera. We empirically demonstrate the effectiveness of our method in the semantic video motion transfer task, significantly outperforming existing methods in this context.

FloAt: Flow Warping of Self-Attention for Clothing Animation Generation

We propose a diffusion model-based approach, FloAtControlNet to generate cinemagraphs composed of animations of human clothing. We focus on human clothing like dresses, skirts and pants. The input to our model is a text prompt depicting the type of clothing and the texture of clothing like leopard, striped, or plain, and a sequence of normal maps that capture the underlying animation that we desire in the output. The backbone of our method is a normal-map conditioned ControlNet which is operated in a training-free regime. The key observation is that the underlying animation is embedded in the flow of the normal maps. We utilize the flow thus obtained to manipulate the self-attention maps of appropriate layers. Specifically, the self-attention maps of a particular layer and frame are recomputed as a linear combination of itself and the self-attention maps of the same layer and the previous frame, warped by the flow on the normal maps of the two frames. We show that manipulating the self-attention maps greatly enhances the quality of the clothing animation, making it look more natural as well as suppressing the background artifacts. Through extensive experiments, we show that the method proposed beats all baselines both qualitatively in terms of visual results and user study. Specifically, our method is able to alleviate the background flickering that exists in other diffusion model-based baselines that we consider. In addition, we show that our method beats all baselines in terms of RMSE and PSNR computed using the input normal map sequences and the normal map sequences obtained from the output RGB frames. Further, we show that well-established evaluation metrics like LPIPS, SSIM, and CLIP scores that are generally for visual quality are not necessarily suitable for capturing the subtle motions in human clothing animations.

EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via Self-Supervision

We present EmerNeRF, a simple yet powerful approach for learning spatial-temporal representations of dynamic driving scenes. Grounded in neural fields, EmerNeRF simultaneously captures scene geometry, appearance, motion, and semantics via self-bootstrapping. EmerNeRF hinges upon two core components: First, it stratifies scenes into static and dynamic fields. This decomposition emerges purely from self-supervision, enabling our model to learn from general, in-the-wild data sources. Second, EmerNeRF parameterizes an induced flow field from the dynamic field and uses this flow field to further aggregate multi-frame features, amplifying the rendering precision of dynamic objects. Coupling these three fields (static, dynamic, and flow) enables EmerNeRF to represent highly-dynamic scenes self-sufficiently, without relying on ground truth object annotations or pre-trained models for dynamic object segmentation or optical flow estimation. Our method achieves state-of-the-art performance in sensor simulation, significantly outperforming previous methods when reconstructing static (+2.93 PSNR) and dynamic (+3.70 PSNR) scenes. In addition, to bolster EmerNeRF's semantic generalization, we lift 2D visual foundation model features into 4D space-time and address a general positional bias in modern Transformers, significantly boosting 3D perception performance (e.g., 37.50% relative improvement in occupancy prediction accuracy on average). Finally, we construct a diverse and challenging 120-sequence dataset to benchmark neural fields under extreme and highly-dynamic settings.

RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning

We study unsupervised video representation learning that seeks to learn both motion and appearance features from unlabeled video only, which can be reused for downstream tasks such as action recognition. This task, however, is extremely challenging due to 1) the highly complex spatial-temporal information in videos; and 2) the lack of labeled data for training. Unlike the representation learning for static images, it is difficult to construct a suitable self-supervised task to well model both motion and appearance features. More recently, several attempts have been made to learn video representation through video playback speed prediction. However, it is non-trivial to obtain precise speed labels for the videos. More critically, the learnt models may tend to focus on motion pattern and thus may not learn appearance features well. In this paper, we observe that the relative playback speed is more consistent with motion pattern, and thus provide more effective and stable supervision for representation learning. Therefore, we propose a new way to perceive the playback speed and exploit the relative speed between two video clips as labels. In this way, we are able to well perceive speed and learn better motion features. Moreover, to ensure the learning of appearance features, we further propose an appearance-focused task, where we enforce the model to perceive the appearance difference between two video clips. We show that optimizing the two tasks jointly consistently improves the performance on two downstream tasks, namely action recognition and video retrieval. Remarkably, for action recognition on UCF101 dataset, we achieve 93.7% accuracy without the use of labeled data for pre-training, which outperforms the ImageNet supervised pre-trained model. Code and pre-trained models can be found at https://github.com/PeihaoChen/RSPNet.

Transfer of Representations to Video Label Propagation: Implementation Factors Matter

This work studies feature representations for dense label propagation in video, with a focus on recently proposed methods that learn video correspondence using self-supervised signals such as colorization or temporal cycle consistency. In the literature, these methods have been evaluated with an array of inconsistent settings, making it difficult to discern trends or compare performance fairly. Starting with a unified formulation of the label propagation algorithm that encompasses most existing variations, we systematically study the impact of important implementation factors in feature extraction and label propagation. Along the way, we report the accuracies of properly tuned supervised and unsupervised still image baselines, which are higher than those found in previous works. We also demonstrate that augmenting video-based correspondence cues with still-image-based ones can further improve performance. We then attempt a fair comparison of recent video-based methods on the DAVIS benchmark, showing convergence of best methods to performance levels near our strong ImageNet baseline, despite the usage of a variety of specialized video-based losses and training particulars. Additional comparisons on JHMDB and VIP datasets confirm the similar performance of current methods. We hope that this study will help to improve evaluation practices and better inform future research directions in temporal correspondence.

Exploring the Common Appearance-Boundary Adaptation for Nighttime Optical Flow

We investigate a challenging task of nighttime optical flow, which suffers from weakened texture and amplified noise. These degradations weaken discriminative visual features, thus causing invalid motion feature matching. Typically, existing methods employ domain adaptation to transfer knowledge from auxiliary domain to nighttime domain in either input visual space or output motion space. However, this direct adaptation is ineffective, since there exists a large domain gap due to the intrinsic heterogeneous nature of the feature representations between auxiliary and nighttime domains. To overcome this issue, we explore a common-latent space as the intermediate bridge to reinforce the feature alignment between auxiliary and nighttime domains. In this work, we exploit two auxiliary daytime and event domains, and propose a novel common appearance-boundary adaptation framework for nighttime optical flow. In appearance adaptation, we employ the intrinsic image decomposition to embed the auxiliary daytime image and the nighttime image into a reflectance-aligned common space. We discover that motion distributions of the two reflectance maps are very similar, benefiting us to consistently transfer motion appearance knowledge from daytime to nighttime domain. In boundary adaptation, we theoretically derive the motion correlation formula between nighttime image and accumulated events within a spatiotemporal gradient-aligned common space. We figure out that the correlation of the two spatiotemporal gradient maps shares significant discrepancy, benefitting us to contrastively transfer boundary knowledge from event to nighttime domain. Moreover, appearance adaptation and boundary adaptation are complementary to each other, since they could jointly transfer global motion and local boundary knowledge to the nighttime domain.

GFlow: Recovering 4D World from Monocular Video

Reconstructing 4D scenes from video inputs is a crucial yet challenging task. Conventional methods usually rely on the assumptions of multi-view video inputs, known camera parameters, or static scenes, all of which are typically absent under in-the-wild scenarios. In this paper, we relax all these constraints and tackle a highly ambitious but practical task, which we termed as AnyV4D: we assume only one monocular video is available without any camera parameters as input, and we aim to recover the dynamic 4D world alongside the camera poses. To this end, we introduce GFlow, a new framework that utilizes only 2D priors (depth and optical flow) to lift a video (3D) to a 4D explicit representation, entailing a flow of Gaussian splatting through space and time. GFlow first clusters the scene into still and moving parts, then applies a sequential optimization process that optimizes camera poses and the dynamics of 3D Gaussian points based on 2D priors and scene clustering, ensuring fidelity among neighboring points and smooth movement across frames. Since dynamic scenes always introduce new content, we also propose a new pixel-wise densification strategy for Gaussian points to integrate new visual content. Moreover, GFlow transcends the boundaries of mere 4D reconstruction; it also enables tracking of any points across frames without the need for prior training and segments moving objects from the scene in an unsupervised way. Additionally, the camera poses of each frame can be derived from GFlow, allowing for rendering novel views of a video scene through changing camera pose. By employing the explicit representation, we may readily conduct scene-level or object-level editing as desired, underscoring its versatility and power. Visit our project website at: https://littlepure2333.github.io/GFlow

What Matters in Detecting AI-Generated Videos like Sora?

Recent advancements in diffusion-based video generation have showcased remarkable results, yet the gap between synthetic and real-world videos remains under-explored. In this study, we examine this gap from three fundamental perspectives: appearance, motion, and geometry, comparing real-world videos with those generated by a state-of-the-art AI model, Stable Video Diffusion. To achieve this, we train three classifiers using 3D convolutional networks, each targeting distinct aspects: vision foundation model features for appearance, optical flow for motion, and monocular depth for geometry. Each classifier exhibits strong performance in fake video detection, both qualitatively and quantitatively. This indicates that AI-generated videos are still easily detectable, and a significant gap between real and fake videos persists. Furthermore, utilizing the Grad-CAM, we pinpoint systematic failures of AI-generated videos in appearance, motion, and geometry. Finally, we propose an Ensemble-of-Experts model that integrates appearance, optical flow, and depth information for fake video detection, resulting in enhanced robustness and generalization ability. Our model is capable of detecting videos generated by Sora with high accuracy, even without exposure to any Sora videos during training. This suggests that the gap between real and fake videos can be generalized across various video generative models. Project page: https://justin-crchang.github.io/3DCNNDetection.github.io/

Machine Learning Modeling for Multi-order Human Visual Motion Processing

Our research aims to develop machines that learn to perceive visual motion as do humans. While recent advances in computer vision (CV) have enabled DNN-based models to accurately estimate optical flow in naturalistic images, a significant disparity remains between CV models and the biological visual system in both architecture and behavior. This disparity includes humans' ability to perceive the motion of higher-order image features (second-order motion), which many CV models fail to capture because of their reliance on the intensity conservation law. Our model architecture mimics the cortical V1-MT motion processing pathway, utilizing a trainable motion energy sensor bank and a recurrent graph network. Supervised learning employing diverse naturalistic videos allows the model to replicate psychophysical and physiological findings about first-order (luminance-based) motion perception. For second-order motion, inspired by neuroscientific findings, the model includes an additional sensing pathway with nonlinear preprocessing before motion energy sensing, implemented using a simple multilayer 3D CNN block. When exploring how the brain acquired the ability to perceive second-order motion in natural environments, in which pure second-order signals are rare, we hypothesized that second-order mechanisms were critical when estimating robust object motion amidst optical fluctuations, such as highlights on glossy surfaces. We trained our dual-pathway model on novel motion datasets with varying material properties of moving objects. We found that training to estimate object motion from non-Lambertian materials naturally endowed the model with the capacity to perceive second-order motion, as can humans. The resulting model effectively aligns with biological systems while generalizing to both first- and second-order motion phenomena in natural scenes.

Improving Video Generation with Human Feedback

Video generation has achieved significant advances through rectified flow techniques, but issues like unsmooth motion and misalignment between videos and prompts persist. In this work, we develop a systematic pipeline that harnesses human feedback to mitigate these problems and refine the video generation model. Specifically, we begin by constructing a large-scale human preference dataset focused on modern video generation models, incorporating pairwise annotations across multi-dimensions. We then introduce VideoReward, a multi-dimensional video reward model, and examine how annotations and various design choices impact its rewarding efficacy. From a unified reinforcement learning perspective aimed at maximizing reward with KL regularization, we introduce three alignment algorithms for flow-based models by extending those from diffusion models. These include two training-time strategies: direct preference optimization for flow (Flow-DPO) and reward weighted regression for flow (Flow-RWR), and an inference-time technique, Flow-NRG, which applies reward guidance directly to noisy videos. Experimental results indicate that VideoReward significantly outperforms existing reward models, and Flow-DPO demonstrates superior performance compared to both Flow-RWR and standard supervised fine-tuning methods. Additionally, Flow-NRG lets users assign custom weights to multiple objectives during inference, meeting personalized video quality needs. Project page: https://gongyeliu.github.io/videoalign.

Modelling Human Visual Motion Processing with Trainable Motion Energy Sensing and a Self-attention Network

Visual motion processing is essential for humans to perceive and interact with dynamic environments. Despite extensive research in cognitive neuroscience, image-computable models that can extract informative motion flow from natural scenes in a manner consistent with human visual processing have yet to be established. Meanwhile, recent advancements in computer vision (CV), propelled by deep learning, have led to significant progress in optical flow estimation, a task closely related to motion perception. Here we propose an image-computable model of human motion perception by bridging the gap between biological and CV models. Specifically, we introduce a novel two-stages approach that combines trainable motion energy sensing with a recurrent self-attention network for adaptive motion integration and segregation. This model architecture aims to capture the computations in V1-MT, the core structure for motion perception in the biological visual system, while providing the ability to derive informative motion flow for a wide range of stimuli, including complex natural scenes. In silico neurophysiology reveals that our model's unit responses are similar to mammalian neural recordings regarding motion pooling and speed tuning. The proposed model can also replicate human responses to a range of stimuli examined in past psychophysical studies. The experimental results on the Sintel benchmark demonstrate that our model predicts human responses better than the ground truth, whereas the state-of-the-art CV models show the opposite. Our study provides a computational architecture consistent with human visual motion processing, although the physiological correspondence may not be exact.

StreamFlow: Streamlined Multi-Frame Optical Flow Estimation for Video Sequences

Occlusions between consecutive frames have long posed a significant challenge in optical flow estimation. The inherent ambiguity introduced by occlusions directly violates the brightness constancy constraint and considerably hinders pixel-to-pixel matching. To address this issue, multi-frame optical flow methods leverage adjacent frames to mitigate the local ambiguity. Nevertheless, prior multi-frame methods predominantly adopt recursive flow estimation, resulting in a considerable computational overlap. In contrast, we propose a streamlined in-batch framework that eliminates the need for extensive redundant recursive computations while concurrently developing effective spatio-temporal modeling approaches under in-batch estimation constraints. Specifically, we present a Streamlined In-batch Multi-frame (SIM) pipeline tailored to video input, attaining a similar level of time efficiency to two-frame networks. Furthermore, we introduce an efficient Integrative Spatio-temporal Coherence (ISC) modeling method for effective spatio-temporal modeling during the encoding phase, which introduces no additional parameter overhead. Additionally, we devise a Global Temporal Regressor (GTR) that effectively explores temporal relations during decoding. Benefiting from the efficient SIM pipeline and effective modules, StreamFlow not only excels in terms of performance on the challenging KITTI and Sintel datasets, with particular improvement in occluded areas but also attains a remarkable 63.82% enhancement in speed compared with previous multi-frame methods. The code will be available soon at https://github.com/littlespray/StreamFlow.

Flow Matching in Latent Space

Flow matching is a recent framework to train generative models that exhibits impressive empirical performance while being relatively easier to train compared with diffusion-based models. Despite its advantageous properties, prior methods still face the challenges of expensive computing and a large number of function evaluations of off-the-shelf solvers in the pixel space. Furthermore, although latent-based generative methods have shown great success in recent years, this particular model type remains underexplored in this area. In this work, we propose to apply flow matching in the latent spaces of pretrained autoencoders, which offers improved computational efficiency and scalability for high-resolution image synthesis. This enables flow-matching training on constrained computational resources while maintaining their quality and flexibility. Additionally, our work stands as a pioneering contribution in the integration of various conditions into flow matching for conditional generation tasks, including label-conditioned image generation, image inpainting, and semantic-to-image generation. Through extensive experiments, our approach demonstrates its effectiveness in both quantitative and qualitative results on various datasets, such as CelebA-HQ, FFHQ, LSUN Church & Bedroom, and ImageNet. We also provide a theoretical control of the Wasserstein-2 distance between the reconstructed latent flow distribution and true data distribution, showing it is upper-bounded by the latent flow matching objective. Our code will be available at https://github.com/VinAIResearch/LFM.git.

Self-supervised Learning of Motion Capture

Current state-of-the-art solutions for motion capture from a single camera are optimization driven: they optimize the parameters of a 3D human model so that its re-projection matches measurements in the video (e.g. person segmentation, optical flow, keypoint detections etc.). Optimization models are susceptible to local minima. This has been the bottleneck that forced using clean green-screen like backgrounds at capture time, manual initialization, or switching to multiple cameras as input resource. In this work, we propose a learning based motion capture model for single camera input. Instead of optimizing mesh and skeleton parameters directly, our model optimizes neural network weights that predict 3D shape and skeleton configurations given a monocular RGB video. Our model is trained using a combination of strong supervision from synthetic data, and self-supervision from differentiable rendering of (a) skeletal keypoints, (b) dense 3D mesh motion, and (c) human-background segmentation, in an end-to-end framework. Empirically we show our model combines the best of both worlds of supervised learning and test-time optimization: supervised learning initializes the model parameters in the right regime, ensuring good pose and surface initialization at test time, without manual effort. Self-supervision by back-propagating through differentiable rendering allows (unsupervised) adaptation of the model to the test data, and offers much tighter fit than a pretrained fixed model. We show that the proposed model improves with experience and converges to low-error solutions where previous optimization methods fail.

StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation

For recent diffusion-based generative models, maintaining consistent content across a series of generated images, especially those containing subjects and complex details, presents a significant challenge. In this paper, we propose a new way of self-attention calculation, termed Consistent Self-Attention, that significantly boosts the consistency between the generated images and augments prevalent pretrained diffusion-based text-to-image models in a zero-shot manner. To extend our method to long-range video generation, we further introduce a novel semantic space temporal motion prediction module, named Semantic Motion Predictor. It is trained to estimate the motion conditions between two provided images in the semantic spaces. This module converts the generated sequence of images into videos with smooth transitions and consistent subjects that are significantly more stable than the modules based on latent spaces only, especially in the context of long video generation. By merging these two novel components, our framework, referred to as StoryDiffusion, can describe a text-based story with consistent images or videos encompassing a rich variety of contents. The proposed StoryDiffusion encompasses pioneering explorations in visual story generation with the presentation of images and videos, which we hope could inspire more research from the aspect of architectural modifications. Our code is made publicly available at https://github.com/HVision-NKU/StoryDiffusion.

MeViS: A Large-scale Benchmark for Video Segmentation with Motion Expressions

This paper strives for motion expressions guided video segmentation, which focuses on segmenting objects in video content based on a sentence describing the motion of the objects. Existing referring video object datasets typically focus on salient objects and use language expressions that contain excessive static attributes that could potentially enable the target object to be identified in a single frame. These datasets downplay the importance of motion in video content for language-guided video object segmentation. To investigate the feasibility of using motion expressions to ground and segment objects in videos, we propose a large-scale dataset called MeViS, which contains numerous motion expressions to indicate target objects in complex environments. We benchmarked 5 existing referring video object segmentation (RVOS) methods and conducted a comprehensive comparison on the MeViS dataset. The results show that current RVOS methods cannot effectively address motion expression-guided video segmentation. We further analyze the challenges and propose a baseline approach for the proposed MeViS dataset. The goal of our benchmark is to provide a platform that enables the development of effective language-guided video segmentation algorithms that leverage motion expressions as a primary cue for object segmentation in complex video scenes. The proposed MeViS dataset has been released at https://henghuiding.github.io/MeViS.

ARTcdotV: Auto-Regressive Text-to-Video Generation with Diffusion Models

We present ARTcdotV, an efficient framework for auto-regressive video generation with diffusion models. Unlike existing methods that generate entire videos in one-shot, ARTcdotV generates a single frame at a time, conditioned on the previous ones. The framework offers three distinct advantages. First, it only learns simple continual motions between adjacent frames, therefore avoiding modeling complex long-range motions that require huge training data. Second, it preserves the high-fidelity generation ability of the pre-trained image diffusion models by making only minimal network modifications. Third, it can generate arbitrarily long videos conditioned on a variety of prompts such as text, image or their combinations, making it highly versatile and flexible. To combat the common drifting issue in AR models, we propose masked diffusion model which implicitly learns which information can be drawn from reference images rather than network predictions, in order to reduce the risk of generating inconsistent appearances that cause drifting. Moreover, we further enhance generation coherence by conditioning it on the initial frame, which typically contains minimal noise. This is particularly useful for long video generation. When trained for only two weeks on four GPUs, ARTcdotV already can generate videos with natural motions, rich details and a high level of aesthetic quality. Besides, it enables various appealing applications, e.g., composing a long video from multiple text prompts.

Neural Representations of Dynamic Visual Stimuli

Humans experience the world through constantly changing visual stimuli, where scenes can shift and move, change in appearance, and vary in distance. The dynamic nature of visual perception is a fundamental aspect of our daily lives, yet the large majority of research on object and scene processing, particularly using fMRI, has focused on static stimuli. While studies of static image perception are attractive due to their computational simplicity, they impose a strong non-naturalistic constraint on our investigation of human vision. In contrast, dynamic visual stimuli offer a more ecologically-valid approach but present new challenges due to the interplay between spatial and temporal information, making it difficult to disentangle the representations of stable image features and motion. To overcome this limitation -- given dynamic inputs, we explicitly decouple the modeling of static image representations and motion representations in the human brain. Three results demonstrate the feasibility of this approach. First, we show that visual motion information as optical flow can be predicted (or decoded) from brain activity as measured by fMRI. Second, we show that this predicted motion can be used to realistically animate static images using a motion-conditioned video diffusion model (where the motion is driven by fMRI brain activity). Third, we show prediction in the reverse direction: existing video encoders can be fine-tuned to predict fMRI brain activity from video imagery, and can do so more effectively than image encoders. This foundational work offers a novel, extensible framework for interpreting how the human brain processes dynamic visual information.

Compositional Scene Representation Learning via Reconstruction: A Survey

Visual scenes are composed of visual concepts and have the property of combinatorial explosion. An important reason for humans to efficiently learn from diverse visual scenes is the ability of compositional perception, and it is desirable for artificial intelligence to have similar abilities. Compositional scene representation learning is a task that enables such abilities. In recent years, various methods have been proposed to apply deep neural networks, which have been proven to be advantageous in representation learning, to learn compositional scene representations via reconstruction, advancing this research direction into the deep learning era. Learning via reconstruction is advantageous because it may utilize massive unlabeled data and avoid costly and laborious data annotation. In this survey, we first outline the current progress on reconstruction-based compositional scene representation learning with deep neural networks, including development history and categorizations of existing methods from the perspectives of the modeling of visual scenes and the inference of scene representations; then provide benchmarks, including an open source toolbox to reproduce the benchmark experiments, of representative methods that consider the most extensively studied problem setting and form the foundation for other methods; and finally discuss the limitations of existing methods and future directions of this research topic.

Exploring Pre-trained Text-to-Video Diffusion Models for Referring Video Object Segmentation

In this paper, we explore the visual representations produced from a pre-trained text-to-video (T2V) diffusion model for video understanding tasks. We hypothesize that the latent representation learned from a pretrained generative T2V model encapsulates rich semantics and coherent temporal correspondences, thereby naturally facilitating video understanding. Our hypothesis is validated through the classic referring video object segmentation (R-VOS) task. We introduce a novel framework, termed "VD-IT", tailored with dedicatedly designed components built upon a fixed pretrained T2V model. Specifically, VD-IT uses textual information as a conditional input, ensuring semantic consistency across time for precise temporal instance matching. It further incorporates image tokens as supplementary textual inputs, enriching the feature set to generate detailed and nuanced masks. Besides, instead of using the standard Gaussian noise, we propose to predict the video-specific noise with an extra noise prediction module, which can help preserve the feature fidelity and elevates segmentation quality. Through extensive experiments, we surprisingly observe that fixed generative T2V diffusion models, unlike commonly used video backbones (e.g., Video Swin Transformer) pretrained with discriminative image/video pre-tasks, exhibit better potential to maintain semantic alignment and temporal consistency. On existing standard benchmarks, our VD-IT achieves highly competitive results, surpassing many existing state-of-the-art methods. The code is available at https://github.com/buxiangzhiren/VD-IT.

Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion

One significant factor we expect the video representation learning to capture, especially in contrast with the image representation learning, is the object motion. However, we found that in the current mainstream video datasets, some action categories are highly related with the scene where the action happens, making the model tend to degrade to a solution where only the scene information is encoded. For example, a trained model may predict a video as playing football simply because it sees the field, neglecting that the subject is dancing as a cheerleader on the field. This is against our original intention towards the video representation learning and may bring scene bias on different dataset that can not be ignored. In order to tackle this problem, we propose to decouple the scene and the motion (DSM) with two simple operations, so that the model attention towards the motion information is better paid. Specifically, we construct a positive clip and a negative clip for each video. Compared to the original video, the positive/negative is motion-untouched/broken but scene-broken/untouched by Spatial Local Disturbance and Temporal Local Disturbance. Our objective is to pull the positive closer while pushing the negative farther to the original clip in the latent space. In this way, the impact of the scene is weakened while the temporal sensitivity of the network is further enhanced. We conduct experiments on two tasks with various backbones and different pre-training datasets, and find that our method surpass the SOTA methods with a remarkable 8.1% and 8.8% improvement towards action recognition task on the UCF101 and HMDB51 datasets respectively using the same backbone.

Equivariant Spatio-Temporal Self-Supervision for LiDAR Object Detection

Popular representation learning methods encourage feature invariance under transformations applied at the input. However, in 3D perception tasks like object localization and segmentation, outputs are naturally equivariant to some transformations, such as rotation. Using pre-training loss functions that encourage equivariance of features under certain transformations provides a strong self-supervision signal while also retaining information of geometric relationships between transformed feature representations. This can enable improved performance in downstream tasks that are equivariant to such transformations. In this paper, we propose a spatio-temporal equivariant learning framework by considering both spatial and temporal augmentations jointly. Our experiments show that the best performance arises with a pre-training approach that encourages equivariance to translation, scaling, and flip, rotation and scene flow. For spatial augmentations, we find that depending on the transformation, either a contrastive objective or an equivariance-by-classification objective yields best results. To leverage real-world object deformations and motion, we consider sequential LiDAR scene pairs and develop a novel 3D scene flow-based equivariance objective that leads to improved performance overall. We show our pre-training method for 3D object detection which outperforms existing equivariant and invariant approaches in many settings.

Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection to Image-Text Pre-Training

The correlation between the vision and text is essential for video moment retrieval (VMR), however, existing methods heavily rely on separate pre-training feature extractors for visual and textual understanding. Without sufficient temporal boundary annotations, it is non-trivial to learn universal video-text alignments. In this work, we explore multi-modal correlations derived from large-scale image-text data to facilitate generalisable VMR. To address the limitations of image-text pre-training models on capturing the video changes, we propose a generic method, referred to as Visual-Dynamic Injection (VDI), to empower the model's understanding of video moments. Whilst existing VMR methods are focusing on building temporal-aware video features, being aware of the text descriptions about the temporal changes is also critical but originally overlooked in pre-training by matching static images with sentences. Therefore, we extract visual context and spatial dynamic information from video frames and explicitly enforce their alignments with the phrases describing video changes (e.g. verb). By doing so, the potentially relevant visual and motion patterns in videos are encoded in the corresponding text embeddings (injected) so to enable more accurate video-text alignments. We conduct extensive experiments on two VMR benchmark datasets (Charades-STA and ActivityNet-Captions) and achieve state-of-the-art performances. Especially, VDI yields notable advantages when being tested on the out-of-distribution splits where the testing samples involve novel scenes and vocabulary.

Free Video-LLM: Prompt-guided Visual Perception for Efficient Training-free Video LLMs

Vision-language large models have achieved remarkable success in various multi-modal tasks, yet applying them to video understanding remains challenging due to the inherent complexity and computational demands of video data. While training-based video-LLMs deliver high performance, they often require substantial resources for training and inference. Conversely, training-free approaches offer a more efficient alternative by adapting pre-trained image-LLMs models for video tasks without additional training, but they face inference efficiency bottlenecks due to the large number of visual tokens generated from video frames. In this work, we present a novel prompt-guided visual perception framework (abbreviated as Free Video-LLM) for efficient inference of training-free video LLMs. The proposed framework decouples spatial-temporal dimension and performs temporal frame sampling and spatial RoI cropping respectively based on task-specific prompts. Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks. Extensive experiments demonstrate that our approach achieves competitive results with significantly fewer tokens, offering an optimal trade-off between accuracy and computational efficiency compared to state-of-the-art video LLMs. The code will be available at https://github.com/contrastive/FreeVideoLLM.

Flowing from Words to Pixels: A Framework for Cross-Modality Evolution

Diffusion models, and their generalization, flow matching, have had a remarkable impact on the field of media generation. Here, the conventional approach is to learn the complex mapping from a simple source distribution of Gaussian noise to the target media distribution. For cross-modal tasks such as text-to-image generation, this same mapping from noise to image is learnt whilst including a conditioning mechanism in the model. One key and thus far relatively unexplored feature of flow matching is that, unlike Diffusion models, they are not constrained for the source distribution to be noise. Hence, in this paper, we propose a paradigm shift, and ask the question of whether we can instead train flow matching models to learn a direct mapping from the distribution of one modality to the distribution of another, thus obviating the need for both the noise distribution and conditioning mechanism. We present a general and simple framework, CrossFlow, for cross-modal flow matching. We show the importance of applying Variational Encoders to the input data, and introduce a method to enable Classifier-free guidance. Surprisingly, for text-to-image, CrossFlow with a vanilla transformer without cross attention slightly outperforms standard flow matching, and we show that it scales better with training steps and model size, while also allowing for interesting latent arithmetic which results in semantically meaningful edits in the output space. To demonstrate the generalizability of our approach, we also show that CrossFlow is on par with or outperforms the state-of-the-art for various cross-modal / intra-modal mapping tasks, viz. image captioning, depth estimation, and image super-resolution. We hope this paper contributes to accelerating progress in cross-modal media generation.