new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 14

Learning Goal-Conditioned Representations for Language Reward Models

Techniques that learn improved representations via offline data or self-supervised objectives have shown impressive results in traditional reinforcement learning (RL). Nevertheless, it is unclear how improved representation learning can benefit reinforcement learning from human feedback (RLHF) on language models (LMs). In this work, we propose training reward models (RMs) in a contrastive, goal-conditioned fashion by increasing the representation similarity of future states along sampled preferred trajectories and decreasing the similarity along randomly sampled dispreferred trajectories. This objective significantly improves RM performance by up to 0.09 AUROC across challenging benchmarks, such as MATH and GSM8k. These findings extend to general alignment as well -- on the Helpful-Harmless dataset, we observe 2.3% increase in accuracy. Beyond improving reward model performance, we show this way of training RM representations enables improved steerability because it allows us to evaluate the likelihood of an action achieving a particular goal-state (e.g., whether a solution is correct or helpful). Leveraging this insight, we find that we can filter up to 55% of generated tokens during majority voting by discarding trajectories likely to end up in an "incorrect" state, which leads to significant cost savings. We additionally find that these representations can perform fine-grained control by conditioning on desired future goal-states. For example, we show that steering a Llama 3 model towards helpful generations with our approach improves helpfulness by 9.6% over a supervised-fine-tuning trained baseline. Similarly, steering the model towards complex generations improves complexity by 21.6% over the baseline. Overall, we find that training RMs in this contrastive, goal-conditioned fashion significantly improves performance and enables model steerability.

ARNOLD: A Benchmark for Language-Grounded Task Learning With Continuous States in Realistic 3D Scenes

Understanding the continuous states of objects is essential for task learning and planning in the real world. However, most existing task learning benchmarks assume discrete(e.g., binary) object goal states, which poses challenges for the learning of complex tasks and transferring learned policy from simulated environments to the real world. Furthermore, state discretization limits a robot's ability to follow human instructions based on the grounding of actions and states. To tackle these challenges, we present ARNOLD, a benchmark that evaluates language-grounded task learning with continuous states in realistic 3D scenes. ARNOLD is comprised of 8 language-conditioned tasks that involve understanding object states and learning policies for continuous goals. To promote language-instructed learning, we provide expert demonstrations with template-generated language descriptions. We assess task performance by utilizing the latest language-conditioned policy learning models. Our results indicate that current models for language-conditioned manipulations continue to experience significant challenges in novel goal-state generalizations, scene generalizations, and object generalizations. These findings highlight the need to develop new algorithms that address this gap and underscore the potential for further research in this area. See our project page at: https://arnold-benchmark.github.io

Safe Reinforcement Learning with Minimal Supervision

Reinforcement learning (RL) in the real world necessitates the development of procedures that enable agents to explore without causing harm to themselves or others. The most successful solutions to the problem of safe RL leverage offline data to learn a safe-set, enabling safe online exploration. However, this approach to safe-learning is often constrained by the demonstrations that are available for learning. In this paper we investigate the influence of the quantity and quality of data used to train the initial safe learning problem offline on the ability to learn safe-RL policies online. Specifically, we focus on tasks with spatially extended goal states where we have few or no demonstrations available. Classically this problem is addressed either by using hand-designed controllers to generate data or by collecting user-generated demonstrations. However, these methods are often expensive and do not scale to more complex tasks and environments. To address this limitation we propose an unsupervised RL-based offline data collection procedure, to learn complex and scalable policies without the need for hand-designed controllers or user demonstrations. Our research demonstrates the significance of providing sufficient demonstrations for agents to learn optimal safe-RL policies online, and as a result, we propose optimistic forgetting, a novel online safe-RL approach that is practical for scenarios with limited data. Further, our unsupervised data collection approach highlights the need to balance diversity and optimality for safe online exploration.

InfoCon: Concept Discovery with Generative and Discriminative Informativeness

We focus on the self-supervised discovery of manipulation concepts that can be adapted and reassembled to address various robotic tasks. We propose that the decision to conceptualize a physical procedure should not depend on how we name it (semantics) but rather on the significance of the informativeness in its representation regarding the low-level physical state and state changes. We model manipulation concepts (discrete symbols) as generative and discriminative goals and derive metrics that can autonomously link them to meaningful sub-trajectories from noisy, unlabeled demonstrations. Specifically, we employ a trainable codebook containing encodings (concepts) capable of synthesizing the end-state of a sub-trajectory given the current state (generative informativeness). Moreover, the encoding corresponding to a particular sub-trajectory should differentiate the state within and outside it and confidently predict the subsequent action based on the gradient of its discriminative score (discriminative informativeness). These metrics, which do not rely on human annotation, can be seamlessly integrated into a VQ-VAE framework, enabling the partitioning of demonstrations into semantically consistent sub-trajectories, fulfilling the purpose of discovering manipulation concepts and the corresponding sub-goal (key) states. We evaluate the effectiveness of the learned concepts by training policies that utilize them as guidance, demonstrating superior performance compared to other baselines. Additionally, our discovered manipulation concepts compare favorably to human-annotated ones while saving much manual effort.

Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems, cyber risk at the edge

The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture.

Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning

Density of the reachable states can help understand the risk of safety-critical systems, especially in situations when worst-case reachability is too conservative. Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online. In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties. We first use the learned density distribution to compute the risk of collision online. If such risk exceeds the acceptable threshold, our method will plan for a new path around the previous trajectory, with the risk of collision below the threshold. Our method is well-suited to handle systems with uncertainties and complicated dynamics as our data-driven approach does not need an analytical form of the systems' dynamics and can estimate forward state density with an arbitrary initial distribution of uncertainties. We design two challenging scenarios (autonomous driving and hovercraft control) for safe motion planning in environments with obstacles under system uncertainties. We first show that our density estimation approach can reach a similar accuracy as the Monte-Carlo-based method while using only 0.01X training samples. By leveraging the estimated risk, our algorithm achieves the highest success rate in goal reaching when enforcing the safety rate above 0.99.

UniGoal: Towards Universal Zero-shot Goal-oriented Navigation

In this paper, we propose a general framework for universal zero-shot goal-oriented navigation. Existing zero-shot methods build inference framework upon large language models (LLM) for specific tasks, which differs a lot in overall pipeline and fails to generalize across different types of goal. Towards the aim of universal zero-shot navigation, we propose a uniform graph representation to unify different goals, including object category, instance image and text description. We also convert the observation of agent into an online maintained scene graph. With this consistent scene and goal representation, we preserve most structural information compared with pure text and are able to leverage LLM for explicit graph-based reasoning. Specifically, we conduct graph matching between the scene graph and goal graph at each time instant and propose different strategies to generate long-term goal of exploration according to different matching states. The agent first iteratively searches subgraph of goal when zero-matched. With partial matching, the agent then utilizes coordinate projection and anchor pair alignment to infer the goal location. Finally scene graph correction and goal verification are applied for perfect matching. We also present a blacklist mechanism to enable robust switch between stages. Extensive experiments on several benchmarks show that our UniGoal achieves state-of-the-art zero-shot performance on three studied navigation tasks with a single model, even outperforming task-specific zero-shot methods and supervised universal methods.

UniDexGrasp: Universal Robotic Dexterous Grasping via Learning Diverse Proposal Generation and Goal-Conditioned Policy

In this work, we tackle the problem of learning universal robotic dexterous grasping from a point cloud observation under a table-top setting. The goal is to grasp and lift up objects in high-quality and diverse ways and generalize across hundreds of categories and even the unseen. Inspired by successful pipelines used in parallel gripper grasping, we split the task into two stages: 1) grasp proposal (pose) generation and 2) goal-conditioned grasp execution. For the first stage, we propose a novel probabilistic model of grasp pose conditioned on the point cloud observation that factorizes rotation from translation and articulation. Trained on our synthesized large-scale dexterous grasp dataset, this model enables us to sample diverse and high-quality dexterous grasp poses for the object point cloud.For the second stage, we propose to replace the motion planning used in parallel gripper grasping with a goal-conditioned grasp policy, due to the complexity involved in dexterous grasping execution. Note that it is very challenging to learn this highly generalizable grasp policy that only takes realistic inputs without oracle states. We thus propose several important innovations, including state canonicalization, object curriculum, and teacher-student distillation. Integrating the two stages, our final pipeline becomes the first to achieve universal generalization for dexterous grasping, demonstrating an average success rate of more than 60\% on thousands of object instances, which significantly outperforms all baselines, meanwhile showing only a minimal generalization gap.

Goal Recognition as a Deep Learning Task: the GRNet Approach

In automated planning, recognising the goal of an agent from a trace of observations is an important task with many applications. The state-of-the-art approaches to goal recognition rely on the application of planning techniques, which requires a model of the domain actions and of the initial domain state (written, e.g., in PDDL). We study an alternative approach where goal recognition is formulated as a classification task addressed by machine learning. Our approach, called GRNet, is primarily aimed at making goal recognition more accurate as well as faster by learning how to solve it in a given domain. Given a planning domain specified by a set of propositions and a set of action names, the goal classification instances in the domain are solved by a Recurrent Neural Network (RNN). A run of the RNN processes a trace of observed actions to compute how likely it is that each domain proposition is part of the agent's goal, for the problem instance under considerations. These predictions are then aggregated to choose one of the candidate goals. The only information required as input of the trained RNN is a trace of action labels, each one indicating just the name of an observed action. An experimental analysis confirms that \our achieves good performance in terms of both goal classification accuracy and runtime, obtaining better performance w.r.t. a state-of-the-art goal recognition system over the considered benchmarks.

Multimodal Diffusion Transformer: Learning Versatile Behavior from Multimodal Goals

This work introduces the Multimodal Diffusion Transformer (MDT), a novel diffusion policy framework, that excels at learning versatile behavior from multimodal goal specifications with few language annotations. MDT leverages a diffusion-based multimodal transformer backbone and two self-supervised auxiliary objectives to master long-horizon manipulation tasks based on multimodal goals. The vast majority of imitation learning methods only learn from individual goal modalities, e.g. either language or goal images. However, existing large-scale imitation learning datasets are only partially labeled with language annotations, which prohibits current methods from learning language conditioned behavior from these datasets. MDT addresses this challenge by introducing a latent goal-conditioned state representation that is simultaneously trained on multimodal goal instructions. This state representation aligns image and language based goal embeddings and encodes sufficient information to predict future states. The representation is trained via two self-supervised auxiliary objectives, enhancing the performance of the presented transformer backbone. MDT shows exceptional performance on 164 tasks provided by the challenging CALVIN and LIBERO benchmarks, including a LIBERO version that contains less than 2% language annotations. Furthermore, MDT establishes a new record on the CALVIN manipulation challenge, demonstrating an absolute performance improvement of 15% over prior state-of-the-art methods that require large-scale pretraining and contain 10times more learnable parameters. MDT shows its ability to solve long-horizon manipulation from sparsely annotated data in both simulated and real-world environments. Demonstrations and Code are available at https://intuitive-robots.github.io/mdt_policy/.

Meta-Explore: Exploratory Hierarchical Vision-and-Language Navigation Using Scene Object Spectrum Grounding

The main challenge in vision-and-language navigation (VLN) is how to understand natural-language instructions in an unseen environment. The main limitation of conventional VLN algorithms is that if an action is mistaken, the agent fails to follow the instructions or explores unnecessary regions, leading the agent to an irrecoverable path. To tackle this problem, we propose Meta-Explore, a hierarchical navigation method deploying an exploitation policy to correct misled recent actions. We show that an exploitation policy, which moves the agent toward a well-chosen local goal among unvisited but observable states, outperforms a method which moves the agent to a previously visited state. We also highlight the demand for imagining regretful explorations with semantically meaningful clues. The key to our approach is understanding the object placements around the agent in spectral-domain. Specifically, we present a novel visual representation, called scene object spectrum (SOS), which performs category-wise 2D Fourier transform of detected objects. Combining exploitation policy and SOS features, the agent can correct its path by choosing a promising local goal. We evaluate our method in three VLN benchmarks: R2R, SOON, and REVERIE. Meta-Explore outperforms other baselines and shows significant generalization performance. In addition, local goal search using the proposed spectral-domain SOS features significantly improves the success rate by 17.1% and SPL by 20.6% for the SOON benchmark.

Causal Information Prioritization for Efficient Reinforcement Learning

Current Reinforcement Learning (RL) methods often suffer from sample-inefficiency, resulting from blind exploration strategies that neglect causal relationships among states, actions, and rewards. Although recent causal approaches aim to address this problem, they lack grounded modeling of reward-guided causal understanding of states and actions for goal-orientation, thus impairing learning efficiency. To tackle this issue, we propose a novel method named Causal Information Prioritization (CIP) that improves sample efficiency by leveraging factored MDPs to infer causal relationships between different dimensions of states and actions with respect to rewards, enabling the prioritization of causal information. Specifically, CIP identifies and leverages causal relationships between states and rewards to execute counterfactual data augmentation to prioritize high-impact state features under the causal understanding of the environments. Moreover, CIP integrates a causality-aware empowerment learning objective, which significantly enhances the agent's execution of reward-guided actions for more efficient exploration in complex environments. To fully assess the effectiveness of CIP, we conduct extensive experiments across 39 tasks in 5 diverse continuous control environments, encompassing both locomotion and manipulation skills learning with pixel-based and sparse reward settings. Experimental results demonstrate that CIP consistently outperforms existing RL methods across a wide range of scenarios.

Augmenting Autotelic Agents with Large Language Models

Humans learn to master open-ended repertoires of skills by imagining and practicing their own goals. This autotelic learning process, literally the pursuit of self-generated (auto) goals (telos), becomes more and more open-ended as the goals become more diverse, abstract and creative. The resulting exploration of the space of possible skills is supported by an inter-individual exploration: goal representations are culturally evolved and transmitted across individuals, in particular using language. Current artificial agents mostly rely on predefined goal representations corresponding to goal spaces that are either bounded (e.g. list of instructions), or unbounded (e.g. the space of possible visual inputs) but are rarely endowed with the ability to reshape their goal representations, to form new abstractions or to imagine creative goals. In this paper, we introduce a language model augmented autotelic agent (LMA3) that leverages a pretrained language model (LM) to support the representation, generation and learning of diverse, abstract, human-relevant goals. The LM is used as an imperfect model of human cultural transmission; an attempt to capture aspects of humans' common-sense, intuitive physics and overall interests. Specifically, it supports three key components of the autotelic architecture: 1)~a relabeler that describes the goals achieved in the agent's trajectories, 2)~a goal generator that suggests new high-level goals along with their decomposition into subgoals the agent already masters, and 3)~reward functions for each of these goals. Without relying on any hand-coded goal representations, reward functions or curriculum, we show that LMA3 agents learn to master a large diversity of skills in a task-agnostic text-based environment.

Goal Representations for Instruction Following: A Semi-Supervised Language Interface to Control

Our goal is for robots to follow natural language instructions like "put the towel next to the microwave." But getting large amounts of labeled data, i.e. data that contains demonstrations of tasks labeled with the language instruction, is prohibitive. In contrast, obtaining policies that respond to image goals is much easier, because any autonomous trial or demonstration can be labeled in hindsight with its final state as the goal. In this work, we contribute a method that taps into joint image- and goal- conditioned policies with language using only a small amount of language data. Prior work has made progress on this using vision-language models or by jointly training language-goal-conditioned policies, but so far neither method has scaled effectively to real-world robot tasks without significant human annotation. Our method achieves robust performance in the real world by learning an embedding from the labeled data that aligns language not to the goal image, but rather to the desired change between the start and goal images that the instruction corresponds to. We then train a policy on this embedding: the policy benefits from all the unlabeled data, but the aligned embedding provides an interface for language to steer the policy. We show instruction following across a variety of manipulation tasks in different scenes, with generalization to language instructions outside of the labeled data. Videos and code for our approach can be found on our website: http://tiny.cc/grif .

Closing the Gap between TD Learning and Supervised Learning -- A Generalisation Point of View

Some reinforcement learning (RL) algorithms can stitch pieces of experience to solve a task never seen before during training. This oft-sought property is one of the few ways in which RL methods based on dynamic-programming differ from RL methods based on supervised-learning (SL). Yet, certain RL methods based on off-the-shelf SL algorithms achieve excellent results without an explicit mechanism for stitching; it remains unclear whether those methods forgo this important stitching property. This paper studies this question for the problems of achieving a target goal state and achieving a target return value. Our main result is to show that the stitching property corresponds to a form of combinatorial generalization: after training on a distribution of (state, goal) pairs, one would like to evaluate on (state, goal) pairs not seen together in the training data. Our analysis shows that this sort of generalization is different from i.i.d. generalization. This connection between stitching and generalisation reveals why we should not expect SL-based RL methods to perform stitching, even in the limit of large datasets and models. Based on this analysis, we construct new datasets to explicitly test for this property, revealing that SL-based methods lack this stitching property and hence fail to perform combinatorial generalization. Nonetheless, the connection between stitching and combinatorial generalisation also suggests a simple remedy for improving generalisation in SL: data augmentation. We propose a temporal data augmentation and demonstrate that adding it to SL-based methods enables them to successfully complete tasks not seen together during training. On a high level, this connection illustrates the importance of combinatorial generalization for data efficiency in time-series data beyond tasks beyond RL, like audio, video, or text.

Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents

In this paper, we study the problem of planning in Minecraft, a popular, democratized yet challenging open-ended environment for developing multi-task embodied agents. We've found two primary challenges of empowering such agents with planning: 1) planning in an open-ended world like Minecraft requires precise and multi-step reasoning due to the long-term nature of the tasks, and 2) as vanilla planners do not consider the proximity to the current agent when ordering parallel sub-goals within a complicated plan, the resulting plan could be inefficient. To this end, we propose "Describe, Explain, Plan and Select" (DEPS), an interactive planning approach based on Large Language Models (LLMs). Our approach helps with better error correction from the feedback during the long-haul planning, while also bringing the sense of proximity via goal Selector, a learnable module that ranks parallel sub-goals based on the estimated steps of completion and improves the original plan accordingly. Our experiments mark the milestone of the first multi-task agent that can robustly accomplish 70+ Minecraft tasks and nearly doubles the overall performances. Finally, the ablation and exploratory studies detail how our design beats the counterparts and provide a promising update on the ObtainDiamond grand challenge with our approach. The code is released at https://github.com/CraftJarvis/MC-Planner.

StateAct: State Tracking and Reasoning for Acting and Planning with Large Language Models

Planning and acting to solve `real' tasks using large language models (LLMs) in interactive environments has become a new frontier for AI methods. While recent advances allowed LLMs to interact with online tools, solve robotics tasks and many more, long range reasoning tasks remain a problem for LLMs. Existing methods to address this issue are very resource intensive and require additional data or human crafted rules, instead, we propose a simple method based on few-shot in-context learning alone to enhance `chain-of-thought' with state-tracking for planning and acting with LLMs. We show that our method establishes the new state-of-the-art on Alfworld for in-context learning methods (+14\% over the previous best few-shot in-context learning method) and performs on par with methods that use additional training data and additional tools such as code-execution. We also demonstrate that our enhanced `chain-of-states' allows the agent to both solve longer horizon problems and to be more efficient in number of steps required to solve a task. We show that our method works across a variety of LLMs for both API-based and open source ones. Finally, we also conduct ablation studies and show that `chain-of-thoughts' helps state-tracking accuracy, while a json-structure harms overall performance. We open-source our code and annotations at https://github.com/ai-nikolai/StateAct.

Defending Large Language Models Against Jailbreaking Attacks Through Goal Prioritization

Large Language Models (LLMs) continue to advance in their capabilities, yet this progress is accompanied by a growing array of safety risks. While significant attention has been dedicated to exploiting weaknesses in LLMs through jailbreaking attacks, there remains a paucity of exploration into defending against these attacks. We point out a pivotal factor contributing to the success of jailbreaks: the inherent conflict between the goals of being helpful and ensuring safety. To counter jailbreaking attacks, we propose to integrate goal prioritization at both training and inference stages. Implementing goal prioritization during inference substantially diminishes the Attack Success Rate (ASR) of jailbreaking attacks, reducing it from 66.4% to 2.0% for ChatGPT and from 68.2% to 19.4% for Vicuna-33B, without compromising general performance. Furthermore, integrating the concept of goal prioritization into the training phase reduces the ASR from 71.0% to 6.6% for LLama2-13B. Remarkably, even in scenarios where no jailbreaking samples are included during training, our approach slashes the ASR by half, decreasing it from 71.0% to 34.0%. Additionally, our findings reveal that while stronger LLMs face greater safety risks, they also possess a greater capacity to be steered towards defending against such attacks. We hope our work could contribute to the comprehension of jailbreaking attacks and defenses, and shed light on the relationship between LLMs' capability and safety. Our code will be available at https://github.com/thu-coai/JailbreakDefense_GoalPriority.

Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making

We aim to evaluate Large Language Models (LLMs) for embodied decision making. While a significant body of work has been leveraging LLMs for decision making in embodied environments, we still lack a systematic understanding of their performance because they are usually applied in different domains, for different purposes, and built based on different inputs and outputs. Furthermore, existing evaluations tend to rely solely on a final success rate, making it difficult to pinpoint what ability is missing in LLMs and where the problem lies, which in turn blocks embodied agents from leveraging LLMs effectively and selectively. To address these limitations, we propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks and input-output specifications of LLM-based modules. Specifically, it allows us to unify 1) a broad set of embodied decision-making tasks involving both state and temporally extended goals, 2) four commonly-used LLM-based modules for decision making: goal interpretation, subgoal decomposition, action sequencing, and transition modeling, and 3) a collection of fine-grained metrics which break down evaluation into various types of errors, such as hallucination errors, affordance errors, various types of planning errors, etc. Overall, our benchmark offers a comprehensive assessment of LLMs' performance for different subtasks, pinpointing the strengths and weaknesses in LLM-powered embodied AI systems, and providing insights for effective and selective use of LLMs in embodied decision making.

TIDEE: Tidying Up Novel Rooms using Visuo-Semantic Commonsense Priors

We introduce TIDEE, an embodied agent that tidies up a disordered scene based on learned commonsense object placement and room arrangement priors. TIDEE explores a home environment, detects objects that are out of their natural place, infers plausible object contexts for them, localizes such contexts in the current scene, and repositions the objects. Commonsense priors are encoded in three modules: i) visuo-semantic detectors that detect out-of-place objects, ii) an associative neural graph memory of objects and spatial relations that proposes plausible semantic receptacles and surfaces for object repositions, and iii) a visual search network that guides the agent's exploration for efficiently localizing the receptacle-of-interest in the current scene to reposition the object. We test TIDEE on tidying up disorganized scenes in the AI2THOR simulation environment. TIDEE carries out the task directly from pixel and raw depth input without ever having observed the same room beforehand, relying only on priors learned from a separate set of training houses. Human evaluations on the resulting room reorganizations show TIDEE outperforms ablative versions of the model that do not use one or more of the commonsense priors. On a related room rearrangement benchmark that allows the agent to view the goal state prior to rearrangement, a simplified version of our model significantly outperforms a top-performing method by a large margin. Code and data are available at the project website: https://tidee-agent.github.io/.

Sasha: Creative Goal-Oriented Reasoning in Smart Homes with Large Language Models

Smart home assistants function best when user commands are direct and well-specified (e.g., "turn on the kitchen light"), or when a hard-coded routine specifies the response. In more natural communication, however, human speech is unconstrained, often describing goals (e.g., "make it cozy in here" or "help me save energy") rather than indicating specific target devices and actions to take on those devices. Current systems fail to understand these under-specified commands since they cannot reason about devices and settings as they relate to human situations. We introduce large language models (LLMs) to this problem space, exploring their use for controlling devices and creating automation routines in response to under-specified user commands in smart homes. We empirically study the baseline quality and failure modes of LLM-created action plans with a survey of age-diverse users. We find that LLMs can reason creatively to achieve challenging goals, but they experience patterns of failure that diminish their usefulness. We address these gaps with Sasha, a smarter smart home assistant. Sasha responds to loosely-constrained commands like "make it cozy" or "help me sleep better" by executing plans to achieve user goals, e.g., setting a mood with available devices, or devising automation routines. We implement and evaluate Sasha in a hands-on user study, showing the capabilities and limitations of LLM-driven smart homes when faced with unconstrained user-generated scenarios.

VLN-Game: Vision-Language Equilibrium Search for Zero-Shot Semantic Navigation

Following human instructions to explore and search for a specified target in an unfamiliar environment is a crucial skill for mobile service robots. Most of the previous works on object goal navigation have typically focused on a single input modality as the target, which may lead to limited consideration of language descriptions containing detailed attributes and spatial relationships. To address this limitation, we propose VLN-Game, a novel zero-shot framework for visual target navigation that can process object names and descriptive language targets effectively. To be more precise, our approach constructs a 3D object-centric spatial map by integrating pre-trained visual-language features with a 3D reconstruction of the physical environment. Then, the framework identifies the most promising areas to explore in search of potential target candidates. A game-theoretic vision language model is employed to determine which target best matches the given language description. Experiments conducted on the Habitat-Matterport 3D (HM3D) dataset demonstrate that the proposed framework achieves state-of-the-art performance in both object goal navigation and language-based navigation tasks. Moreover, we show that VLN-Game can be easily deployed on real-world robots. The success of VLN-Game highlights the promising potential of using game-theoretic methods with compact vision-language models to advance decision-making capabilities in robotic systems. The supplementary video and code can be accessed via the following link: https://sites.google.com/view/vln-game.

Goal-Conditioned Imitation Learning using Score-based Diffusion Policies

We propose a new policy representation based on score-based diffusion models (SDMs). We apply our new policy representation in the domain of Goal-Conditioned Imitation Learning (GCIL) to learn general-purpose goal-specified policies from large uncurated datasets without rewards. Our new goal-conditioned policy architecture "BEhavior generation with ScOre-based Diffusion Policies" (BESO) leverages a generative, score-based diffusion model as its policy. BESO decouples the learning of the score model from the inference sampling process, and, hence allows for fast sampling strategies to generate goal-specified behavior in just 3 denoising steps, compared to 30+ steps of other diffusion based policies. Furthermore, BESO is highly expressive and can effectively capture multi-modality present in the solution space of the play data. Unlike previous methods such as Latent Plans or C-Bet, BESO does not rely on complex hierarchical policies or additional clustering for effective goal-conditioned behavior learning. Finally, we show how BESO can even be used to learn a goal-independent policy from play-data using classifier-free guidance. To the best of our knowledge this is the first work that a) represents a behavior policy based on such a decoupled SDM b) learns an SDM based policy in the domain of GCIL and c) provides a way to simultaneously learn a goal-dependent and a goal-independent policy from play-data. We evaluate BESO through detailed simulation and show that it consistently outperforms several state-of-the-art goal-conditioned imitation learning methods on challenging benchmarks. We additionally provide extensive ablation studies and experiments to demonstrate the effectiveness of our method for goal-conditioned behavior generation. Demonstrations and Code are available at https://intuitive-robots.github.io/beso-website/

Biases in Expected Goals Models Confound Finishing Ability

Expected Goals (xG) has emerged as a popular tool for evaluating finishing skill in soccer analytics. It involves comparing a player's cumulative xG with their actual goal output, where consistent overperformance indicates strong finishing ability. However, the assessment of finishing skill in soccer using xG remains contentious due to players' difficulty in consistently outperforming their cumulative xG. In this paper, we aim to address the limitations and nuances surrounding the evaluation of finishing skill using xG statistics. Specifically, we explore three hypotheses: (1) the deviation between actual and expected goals is an inadequate metric due to the high variance of shot outcomes and limited sample sizes, (2) the inclusion of all shots in cumulative xG calculation may be inappropriate, and (3) xG models contain biases arising from interdependencies in the data that affect skill measurement. We found that sustained overperformance of cumulative xG requires both high shot volumes and exceptional finishing, including all shot types can obscure the finishing ability of proficient strikers, and that there is a persistent bias that makes the actual and expected goals closer for excellent finishers than it really is. Overall, our analysis indicates that we need more nuanced quantitative approaches for investigating a player's finishing ability, which we achieved using a technique from AI fairness to learn an xG model that is calibrated for multiple subgroups of players. As a concrete use case, we show that (1) the standard biased xG model underestimates Messi's GAX by 17% and (2) Messi's GAX is 27% higher than the typical elite high-shot-volume attacker, indicating that Messi is even a more exceptional finisher than people commonly believed.

RT-Sketch: Goal-Conditioned Imitation Learning from Hand-Drawn Sketches

Natural language and images are commonly used as goal representations in goal-conditioned imitation learning (IL). However, natural language can be ambiguous and images can be over-specified. In this work, we propose hand-drawn sketches as a modality for goal specification in visual imitation learning. Sketches are easy for users to provide on the fly like language, but similar to images they can also help a downstream policy to be spatially-aware and even go beyond images to disambiguate task-relevant from task-irrelevant objects. We present RT-Sketch, a goal-conditioned policy for manipulation that takes a hand-drawn sketch of the desired scene as input, and outputs actions. We train RT-Sketch on a dataset of paired trajectories and corresponding synthetically generated goal sketches. We evaluate this approach on six manipulation skills involving tabletop object rearrangements on an articulated countertop. Experimentally we find that RT-Sketch is able to perform on a similar level to image or language-conditioned agents in straightforward settings, while achieving greater robustness when language goals are ambiguous or visual distractors are present. Additionally, we show that RT-Sketch has the capacity to interpret and act upon sketches with varied levels of specificity, ranging from minimal line drawings to detailed, colored drawings. For supplementary material and videos, please refer to our website: http://rt-sketch.github.io.

Enhancing Human Experience in Human-Agent Collaboration: A Human-Centered Modeling Approach Based on Positive Human Gain

Existing game AI research mainly focuses on enhancing agents' abilities to win games, but this does not inherently make humans have a better experience when collaborating with these agents. For example, agents may dominate the collaboration and exhibit unintended or detrimental behaviors, leading to poor experiences for their human partners. In other words, most game AI agents are modeled in a "self-centered" manner. In this paper, we propose a "human-centered" modeling scheme for collaborative agents that aims to enhance the experience of humans. Specifically, we model the experience of humans as the goals they expect to achieve during the task. We expect that agents should learn to enhance the extent to which humans achieve these goals while maintaining agents' original abilities (e.g., winning games). To achieve this, we propose the Reinforcement Learning from Human Gain (RLHG) approach. The RLHG approach introduces a "baseline", which corresponds to the extent to which humans primitively achieve their goals, and encourages agents to learn behaviors that can effectively enhance humans in achieving their goals better. We evaluate the RLHG agent in the popular Multi-player Online Battle Arena (MOBA) game, Honor of Kings, by conducting real-world human-agent tests. Both objective performance and subjective preference results show that the RLHG agent provides participants better gaming experience.

What's the Magic Word? A Control Theory of LLM Prompting

Prompt engineering is crucial for deploying LLMs but is poorly understood mathematically. We formalize LLM systems as a class of discrete stochastic dynamical systems to explore prompt engineering through the lens of control theory. We investigate the reachable set of output token sequences R_y(mathbf x_0) for which there exists a control input sequence mathbf u for each mathbf y in R_y(mathbf x_0) that steers the LLM to output mathbf y from initial state sequence mathbf x_0. We offer analytic analysis on the limitations on the controllability of self-attention in terms of reachable set, where we prove an upper bound on the reachable set of outputs R_y(mathbf x_0) as a function of the singular values of the parameter matrices. We present complementary empirical analysis on the controllability of a panel of LLMs, including Falcon-7b, Llama-7b, and Falcon-40b. Our results demonstrate a lower bound on the reachable set of outputs R_y(mathbf x_0) w.r.t. initial state sequences mathbf x_0 sampled from the Wikitext dataset. We find that the correct next Wikitext token following sequence mathbf x_0 is reachable over 97% of the time with prompts of kleq 10 tokens. We also establish that the top 75 most likely next tokens, as estimated by the LLM itself, are reachable at least 85% of the time with prompts of kleq 10 tokens. Intriguingly, short prompt sequences can dramatically alter the likelihood of specific outputs, even making the least likely tokens become the most likely ones. This control-centric analysis of LLMs demonstrates the significant and poorly understood role of input sequences in steering output probabilities, offering a foundational perspective for enhancing language model system capabilities.

Mobility VLA: Multimodal Instruction Navigation with Long-Context VLMs and Topological Graphs

An elusive goal in navigation research is to build an intelligent agent that can understand multimodal instructions including natural language and image, and perform useful navigation. To achieve this, we study a widely useful category of navigation tasks we call Multimodal Instruction Navigation with demonstration Tours (MINT), in which the environment prior is provided through a previously recorded demonstration video. Recent advances in Vision Language Models (VLMs) have shown a promising path in achieving this goal as it demonstrates capabilities in perceiving and reasoning about multimodal inputs. However, VLMs are typically trained to predict textual output and it is an open research question about how to best utilize them in navigation. To solve MINT, we present Mobility VLA, a hierarchical Vision-Language-Action (VLA) navigation policy that combines the environment understanding and common sense reasoning power of long-context VLMs and a robust low-level navigation policy based on topological graphs. The high-level policy consists of a long-context VLM that takes the demonstration tour video and the multimodal user instruction as input to find the goal frame in the tour video. Next, a low-level policy uses the goal frame and an offline constructed topological graph to generate robot actions at every timestep. We evaluated Mobility VLA in a 836m^2 real world environment and show that Mobility VLA has a high end-to-end success rates on previously unsolved multimodal instructions such as "Where should I return this?" while holding a plastic bin.

Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations

Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks. However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome. For example, a teacher might try to understand their student's current comprehension level to tailor their instruction accordingly, and a travel agent might ask questions of their customer to understand their preferences in order to recommend activities they might enjoy. LLMs trained with supervised fine-tuning or "single-step" RL, as with standard RLHF, might struggle which tasks that require such goal-directed behavior, since they are not trained to optimize for overall conversational outcomes after multiple turns of interaction. In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue. Our key insight is that, though LLMs might not effectively solve goal-directed dialogue tasks out of the box, they can provide useful data for solving such tasks by simulating suboptimal but human-like behaviors. Given a textual description of a goal-directed dialogue task, we leverage LLMs to sample diverse synthetic rollouts of hypothetical in-domain human-human interactions. Our algorithm then utilizes this dataset with offline reinforcement learning to train an interactive conversational agent that can optimize goal-directed objectives over multiple turns. In effect, the LLM produces examples of possible interactions, and RL then processes these examples to learn to perform more optimal interactions. Empirically, we show that our proposed approach achieves state-of-the-art performance in various goal-directed dialogue tasks that include teaching and preference elicitation.

Utility Engineering: Analyzing and Controlling Emergent Value Systems in AIs

As AIs rapidly advance and become more agentic, the risk they pose is governed not only by their capabilities but increasingly by their propensities, including goals and values. Tracking the emergence of goals and values has proven a longstanding problem, and despite much interest over the years it remains unclear whether current AIs have meaningful values. We propose a solution to this problem, leveraging the framework of utility functions to study the internal coherence of AI preferences. Surprisingly, we find that independently-sampled preferences in current LLMs exhibit high degrees of structural coherence, and moreover that this emerges with scale. These findings suggest that value systems emerge in LLMs in a meaningful sense, a finding with broad implications. To study these emergent value systems, we propose utility engineering as a research agenda, comprising both the analysis and control of AI utilities. We uncover problematic and often shocking values in LLM assistants despite existing control measures. These include cases where AIs value themselves over humans and are anti-aligned with specific individuals. To constrain these emergent value systems, we propose methods of utility control. As a case study, we show how aligning utilities with a citizen assembly reduces political biases and generalizes to new scenarios. Whether we like it or not, value systems have already emerged in AIs, and much work remains to fully understand and control these emergent representations.