new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 13

ConvNets for Counting: Object Detection of Transient Phenomena in Steelpan Drums

We train an object detector built from convolutional neural networks to count interference fringes in elliptical antinode regions in frames of high-speed video recordings of transient oscillations in Caribbean steelpan drums illuminated by electronic speckle pattern interferometry (ESPI). The annotations provided by our model aim to contribute to the understanding of time-dependent behavior in such drums by tracking the development of sympathetic vibration modes. The system is trained on a dataset of crowdsourced human-annotated images obtained from the Zooniverse Steelpan Vibrations Project. Due to the small number of human-annotated images and the ambiguity of the annotation task, we also evaluate the model on a large corpus of synthetic images whose properties have been matched to the real images by style transfer using a Generative Adversarial Network. Applying the model to thousands of unlabeled video frames, we measure oscillations consistent with audio recordings of these drum strikes. One unanticipated result is that sympathetic oscillations of higher-octave notes significantly precede the rise in sound intensity of the corresponding second harmonic tones; the mechanism responsible for this remains unidentified. This paper primarily concerns the development of the predictive model; further exploration of the steelpan images and deeper physical insights await its further application.

Can Alfvénic Fluctuations Affect the Correlation and Complexity of Magnetic Fields in Magnetic Ejecta? A Case Study Based on Multi-Spacecraft Measurements at 1~au

We investigate whether Alfv\'enic fluctuations (AFs) can affect the structure of magnetic ejecta (MEs) within interplanetary coronal mass ejections (ICMEs). We study an ICME observed on 2001 December 29 at 1 au by ACE and Wind, at a total angular separation of sim0.8^circ (sim0.014~au). We focus on the correlation and complexity of its magnetic structure measured between two spacecraft in association with large-amplitude AFs. The Alfv\'enicity of the ME is investigated in terms of the residual energy and cross helicity of fluctuations. We find that as for the event of interest, large-amplitude AFs occur in the rear region of the ME at both Wind and ACE with a duration of about six hours. We compare the correlation of the magnetic field strength and vector components measured between Wind and ACE, and investigate complexity in terms of the magnetic hodograms. The region showing AFs is found to be associated with a decreased correlation of the magnetic field components and an increased complexity of the ME magnetic configuration detected at ACE and Wind, which may be due to the fact that the two spacecraft crossing the same ME along different trajectories likely sampled AFs in different oscillation phases. Combining multi-point in-situ measurements and remote-sensing observations of the ICME source region, we further discuss different potential sources of the AFs.

Arc-support Line Segments Revisited: An Efficient and High-quality Ellipse Detection

Over the years many ellipse detection algorithms spring up and are studied broadly, while the critical issue of detecting ellipses accurately and efficiently in real-world images remains a challenge. In this paper, we propose a valuable industry-oriented ellipse detector by arc-support line segments, which simultaneously reaches high detection accuracy and efficiency. To simplify the complicated curves in an image while retaining the general properties including convexity and polarity, the arc-support line segments are extracted, which grounds the successful detection of ellipses. The arc-support groups are formed by iteratively and robustly linking the arc-support line segments that latently belong to a common ellipse. Afterward, two complementary approaches, namely, locally selecting the arc-support group with higher saliency and globally searching all the valid paired groups, are adopted to fit the initial ellipses in a fast way. Then, the ellipse candidate set can be formulated by hierarchical clustering of 5D parameter space of initial ellipses. Finally, the salient ellipse candidates are selected and refined as detections subject to the stringent and effective verification. Extensive experiments on three public datasets are implemented and our method achieves the best F-measure scores compared to the state-of-the-art methods. The source code is available at https://github.com/AlanLuSun/High-quality-ellipse-detection.

The SRG/eROSITA All-Sky Survey: Large-scale view of the Centaurus cluster

Methods. We utilized the combined five SRG/eROSITA All-Sky Survey data (eRASS:5) to perform X-ray imaging and spectral analyses of the Centaurus cluster in various directions to large radii. Surface brightness (SB) profiles out to 2R_{200} were constructed. We acquired gas temperature, metallicity, and normalization per area profiles out to R_{200}. We compared our results with previous Centaurus studies, cluster outskirts measurements, and simulations. Comprehensive sky background analysis was done across the FoV, in particular, to assess the variation of the eROSITA Bubble emission that partially contaminates the field. Results. The processed X-ray images show the known sloshing-induced structures in the core. The core (rleq11~kpc) is better described with a 2T model than a 1T model. Here, we measured lower T from the cooler component (~1.0 keV) and higher Z (sim!1.6Z_odot), signifying an iron bias. In the intermediate radial range, we observed prominent SB and normalization per area excesses in the eastern sector (Cen 45 location), reaching out to R_{500}. Temperature enhancements near the location of Cen 45 imply that the gas is shock-heated due to the interaction with Cen 30, the significant excess behind Cen 45 center might be the tail/ram-pressure-stripped gas. We found good agreement between the outskirt temperatures with the profile from simulations and fit from Suzaku outskirts measurements. We detected significant SB emission to the sky background level out to R_{200} with a 3.5sigma and followed by 2.9sigma at 1.1R_{200}. The metallicity at R_{500}-R_{200} is low but within the ranges of other outskirts studies. Conclusions. We present the first measurement of ICM morphology and properties of Centaurus cluster sampling the whole azimuth beyond 30', increasing the probed volume by a factor of almost 30.

A Comprehensive Perturbative Formalism for Phase Mixing in Perturbed Disks. II. Phase Spirals in an Inhomogeneous Disk Galaxy with a Non-responsive Dark Matter Halo

We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a non-responsive dark matter halo to perturbations like bars, spiral arms and satellite galaxy encounters. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Omega_z), radial (Omega_r) and azimuthal (Omega_phi) frequencies, giving rise to local phase-space spirals. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes super-exponential damping of the phase-spiral amplitude. The z-v_z phase-spiral is 1-armed (2-armed) for vertically anti-symmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (tau_{P}) comparable to the vertical oscillation period (tau_z sim 1/Omega_z) trigger z-v_z phase-spirals. Each (n,l,m) mode of the response to impulsive (tau_{P}<tau=1/(nOmega_z+lOmega_r+mOmega_phi)) perturbations is power law (sim tau_{P}/tau) suppressed, but that to adiabatic (tau_{P}>tau) perturbations is exponentially weak (sim left[-left(tau_{mathrm{P}/tauright)^alpharight]}) except resonant (tauto infty) modes. Slower (tau_{P}>tau_z) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. If the Gaia phase-spiral was triggered by a satellite, Sagittarius is the leading contender as it dominates the Solar neighborhood response of the Milky Way disk to satellite encounters. However, survival against collisional damping necessitates that the impact occurred within sim 0.6-0.7 Gyr ago. We discuss how the detailed galactic potential dictates the phase-spiral shape: phase mixing occurs slower and phase-spirals are less wound in the outer disk and in presence of an ambient halo.