1 OmniQuery: Contextually Augmenting Captured Multimodal Memory to Enable Personal Question Answering People often capture memories through photos, screenshots, and videos. While existing AI-based tools enable querying this data using natural language, they mostly only support retrieving individual pieces of information like certain objects in photos and struggle with answering more complex queries that involve interpreting interconnected memories like event sequences. We conducted a one-month diary study to collect realistic user queries and generated a taxonomy of necessary contextual information for integrating with captured memories. We then introduce OmniQuery, a novel system that is able to answer complex personal memory-related questions that require extracting and inferring contextual information. OmniQuery augments single captured memories through integrating scattered contextual information from multiple interconnected memories, retrieves relevant memories, and uses a large language model (LLM) to comprehensive answers. In human evaluations, we show the effectiveness of OmniQuery with an accuracy of 71.5%, and it outperformed a conventional RAG system, winning or tying in 74.5% of the time. 3 authors · Sep 12, 2024
10 "I Want It That Way": Enabling Interactive Decision Support Using Large Language Models and Constraint Programming A critical factor in the success of decision support systems is the accurate modeling of user preferences. Psychology research has demonstrated that users often develop their preferences during the elicitation process, highlighting the pivotal role of system-user interaction in developing personalized systems. This paper introduces a novel approach, combining Large Language Models (LLMs) with Constraint Programming to facilitate interactive decision support. We study this hybrid framework through the lens of meeting scheduling, a time-consuming daily activity faced by a multitude of information workers. We conduct three studies to evaluate the novel framework, including a diary study (n=64) to characterize contextual scheduling preferences, a quantitative evaluation of the system's performance, and a user study (n=10) with a prototype system. Our work highlights the potential for a hybrid LLM and optimization approach for iterative preference elicitation and design considerations for building systems that support human-system collaborative decision-making processes. 8 authors · Dec 11, 2023 1
- Transfer Learning across Several Centuries: Machine and Historian Integrated Method to Decipher Royal Secretary's Diary A named entity recognition and classification plays the first and foremost important role in capturing semantics in data and anchoring in translation as well as downstream study for history. However, NER in historical text has faced challenges such as scarcity of annotated corpus, multilanguage variety, various noise, and different convention far different from the contemporary language model. This paper introduces Korean historical corpus (Diary of Royal secretary which is named SeungJeongWon) recorded over several centuries and recently added with named entity information as well as phrase markers which historians carefully annotated. We fined-tuned the language model on history corpus, conducted extensive comparative experiments using our language model and pretrained muti-language models. We set up the hypothesis of combination of time and annotation information and tested it based on statistical t test. Our finding shows that phrase markers clearly improve the performance of NER model in predicting unseen entity in documents written far different time period. It also shows that each of phrase marker and corpus-specific trained model does not improve the performance. We discuss the future research directions and practical strategies to decipher the history document. 5 authors · Jun 26, 2023
- Integrating Wearable Sensor Data and Self-reported Diaries for Personalized Affect Forecasting Emotional states, as indicators of affect, are pivotal to overall health, making their accurate prediction before onset crucial. Current studies are primarily centered on immediate short-term affect detection using data from wearable and mobile devices. These studies typically focus on objective sensory measures, often neglecting other forms of self-reported information like diaries and notes. In this paper, we propose a multimodal deep learning model for affect status forecasting. This model combines a transformer encoder with a pre-trained language model, facilitating the integrated analysis of objective metrics and self-reported diaries. To validate our model, we conduct a longitudinal study, enrolling college students and monitoring them over a year, to collect an extensive dataset including physiological, environmental, sleep, metabolic, and physical activity parameters, alongside open-ended textual diaries provided by the participants. Our results demonstrate that the proposed model achieves predictive accuracy of 82.50% for positive affect and 82.76% for negative affect, a full week in advance. The effectiveness of our model is further elevated by its explainability. 9 authors · Mar 16, 2024
- Automated Chronotyping from a Daily Calendar using Machine Learning Chronotype compares individuals' circadian phase to others. It contextualizes mental health risk assessments and detection of social jet lag, which can hamper mental health and cognitive performance. Existing ways of determining chronotypes, such as Dim Light Melatonin Onset (DLMO) or the Morningness-Eveningness Questionnaire (MEQ), are limited by being discrete in time and time-intensive to update, meaning they rarely capture real-world variability across time. Chronotyping users based on a daily planner app might augment existing methods to enable assessment continuously and at scale. This paper reports the construction of a supervised binary classifier that attempts to demonstrate the feasibility of this approach. 1,460 registered users from the Owaves app opted in by filling out the MEQ survey between July 14, 2022, and May 1, 2023. 142 met the eligibility criteria. We used multimodal app data from individuals identified as morning and evening types from MEQ data, basing the classifier on app time series data. This included daily timing for 8 main lifestyle activity types: exercise, sleep, social interactions, meal times, relaxation, work, play, and miscellaneous, as defined in the app. The timing of activities showed substantial change across time, as well as heterogeneity by activity type. Our novel chronotyping classifier was able to predict the morningness and eveningness of its users with an ROC AUC of 0.70. Our findings demonstrate the feasibility of chronotype classification from multimodal, real-world app data, while highlighting fundamental challenges to applying discrete and fixed labels to complex, dynamic, multimodal behaviors. Our findings suggest a potential for real-time monitoring of shifts in chronotype specific to different causes (i.e. types of activity), which could feasibly be used to support future, prospective mental health support research. 7 authors · Jul 8, 2024
1 Automatic Scoring of Dream Reports' Emotional Content with Large Language Models In the field of dream research, the study of dream content typically relies on the analysis of verbal reports provided by dreamers upon awakening from their sleep. This task is classically performed through manual scoring provided by trained annotators, at a great time expense. While a consistent body of work suggests that natural language processing (NLP) tools can support the automatic analysis of dream reports, proposed methods lacked the ability to reason over a report's full context and required extensive data pre-processing. Furthermore, in most cases, these methods were not validated against standard manual scoring approaches. In this work, we address these limitations by adopting large language models (LLMs) to study and replicate the manual annotation of dream reports, using a mixture of off-the-shelf and bespoke approaches, with a focus on references to reports' emotions. Our results show that the off-the-shelf method achieves a low performance probably in light of inherent linguistic differences between reports collected in different (groups of) individuals. On the other hand, the proposed bespoke text classification method achieves a high performance, which is robust against potential biases. Overall, these observations indicate that our approach could find application in the analysis of large dream datasets and may favour reproducibility and comparability of results across studies. 5 authors · Feb 28, 2023
11 NoTeeline: Supporting Real-Time Notetaking from Keypoints with Large Language Models Video has become a popular media form for information sharing and consumption. However, taking notes while watching a video requires significant time and effort. To address this, we propose a novel interactive system, NoTeeline, for taking real-time, personalized notes. NoTeeline lets users quickly jot down keypoints (micronotes), which are automatically expanded into full-fledged notes that capture the content of the user's micronotes and are consistent with the user's writing style. In a within-subjects study (N=12), we found that NoTeeline helps users create high-quality notes that capture the essence of their micronotes with a higher factual correctness (93.2%) while accurately reflecting their writing style. While using NoTeeline, participants experienced significantly reduced mental effort, captured satisfactory notes while writing 47% less text, and completed notetaking with 43.9% less time compared to a manual notetaking baseline. 5 authors · Sep 24, 2024 2