new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 13

Windows Agent Arena: Evaluating Multi-Modal OS Agents at Scale

Large language models (LLMs) show remarkable potential to act as computer agents, enhancing human productivity and software accessibility in multi-modal tasks that require planning and reasoning. However, measuring agent performance in realistic environments remains a challenge since: (i) most benchmarks are limited to specific modalities or domains (e.g. text-only, web navigation, Q&A, coding) and (ii) full benchmark evaluations are slow (on order of magnitude of days) given the multi-step sequential nature of tasks. To address these challenges, we introduce the Windows Agent Arena: a reproducible, general environment focusing exclusively on the Windows operating system (OS) where agents can operate freely within a real Windows OS and use the same wide range of applications, tools, and web browsers available to human users when solving tasks. We adapt the OSWorld framework (Xie et al., 2024) to create 150+ diverse Windows tasks across representative domains that require agent abilities in planning, screen understanding, and tool usage. Our benchmark is scalable and can be seamlessly parallelized in Azure for a full benchmark evaluation in as little as 20 minutes. To demonstrate Windows Agent Arena's capabilities, we also introduce a new multi-modal agent, Navi. Our agent achieves a success rate of 19.5% in the Windows domain, compared to 74.5% performance of an unassisted human. Navi also demonstrates strong performance on another popular web-based benchmark, Mind2Web. We offer extensive quantitative and qualitative analysis of Navi's performance, and provide insights into the opportunities for future research in agent development and data generation using Windows Agent Arena. Webpage: https://microsoft.github.io/WindowsAgentArena Code: https://github.com/microsoft/WindowsAgentArena

Large Action Models: From Inception to Implementation

As AI continues to advance, there is a growing demand for systems that go beyond language-based assistance and move toward intelligent agents capable of performing real-world actions. This evolution requires the transition from traditional Large Language Models (LLMs), which excel at generating textual responses, to Large Action Models (LAMs), designed for action generation and execution within dynamic environments. Enabled by agent systems, LAMs hold the potential to transform AI from passive language understanding to active task completion, marking a significant milestone in the progression toward artificial general intelligence. In this paper, we present a comprehensive framework for developing LAMs, offering a systematic approach to their creation, from inception to deployment. We begin with an overview of LAMs, highlighting their unique characteristics and delineating their differences from LLMs. Using a Windows OS-based agent as a case study, we provide a detailed, step-by-step guide on the key stages of LAM development, including data collection, model training, environment integration, grounding, and evaluation. This generalizable workflow can serve as a blueprint for creating functional LAMs in various application domains. We conclude by identifying the current limitations of LAMs and discussing directions for future research and industrial deployment, emphasizing the challenges and opportunities that lie ahead in realizing the full potential of LAMs in real-world applications. The code for the data collection process utilized in this paper is publicly available at: https://github.com/microsoft/UFO/tree/main/dataflow, and comprehensive documentation can be found at https://microsoft.github.io/UFO/dataflow/overview/.

StarCraftImage: A Dataset For Prototyping Spatial Reasoning Methods For Multi-Agent Environments

Spatial reasoning tasks in multi-agent environments such as event prediction, agent type identification, or missing data imputation are important for multiple applications (e.g., autonomous surveillance over sensor networks and subtasks for reinforcement learning (RL)). StarCraft II game replays encode intelligent (and adversarial) multi-agent behavior and could provide a testbed for these tasks; however, extracting simple and standardized representations for prototyping these tasks is laborious and hinders reproducibility. In contrast, MNIST and CIFAR10, despite their extreme simplicity, have enabled rapid prototyping and reproducibility of ML methods. Following the simplicity of these datasets, we construct a benchmark spatial reasoning dataset based on StarCraft II replays that exhibit complex multi-agent behaviors, while still being as easy to use as MNIST and CIFAR10. Specifically, we carefully summarize a window of 255 consecutive game states to create 3.6 million summary images from 60,000 replays, including all relevant metadata such as game outcome and player races. We develop three formats of decreasing complexity: Hyperspectral images that include one channel for every unit type (similar to multispectral geospatial images), RGB images that mimic CIFAR10, and grayscale images that mimic MNIST. We show how this dataset can be used for prototyping spatial reasoning methods. All datasets, code for extraction, and code for dataset loading can be found at https://starcraftdata.davidinouye.com

OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments

Autonomous agents that accomplish complex computer tasks with minimal human interventions have the potential to transform human-computer interaction, significantly enhancing accessibility and productivity. However, existing benchmarks either lack an interactive environment or are limited to environments specific to certain applications or domains, failing to reflect the diverse and complex nature of real-world computer use, thereby limiting the scope of tasks and agent scalability. To address this issue, we introduce OSWorld, the first-of-its-kind scalable, real computer environment for multimodal agents, supporting task setup, execution-based evaluation, and interactive learning across various operating systems such as Ubuntu, Windows, and macOS. OSWorld can serve as a unified, integrated computer environment for assessing open-ended computer tasks that involve arbitrary applications. Building upon OSWorld, we create a benchmark of 369 computer tasks involving real web and desktop apps in open domains, OS file I/O, and workflows spanning multiple applications. Each task example is derived from real-world computer use cases and includes a detailed initial state setup configuration and a custom execution-based evaluation script for reliable, reproducible evaluation. Extensive evaluation of state-of-the-art LLM/VLM-based agents on OSWorld reveals significant deficiencies in their ability to serve as computer assistants. While humans can accomplish over 72.36% of the tasks, the best model achieves only 12.24% success, primarily struggling with GUI grounding and operational knowledge. Comprehensive analysis using OSWorld provides valuable insights for developing multimodal generalist agents that were not possible with previous benchmarks. Our code, environment, baseline models, and data are publicly available at https://os-world.github.io.

OS-ATLAS: A Foundation Action Model for Generalist GUI Agents

Existing efforts in building GUI agents heavily rely on the availability of robust commercial Vision-Language Models (VLMs) such as GPT-4o and GeminiProVision. Practitioners are often reluctant to use open-source VLMs due to their significant performance lag compared to their closed-source counterparts, particularly in GUI grounding and Out-Of-Distribution (OOD) scenarios. To facilitate future research in this area, we developed OS-Atlas - a foundational GUI action model that excels at GUI grounding and OOD agentic tasks through innovations in both data and modeling. We have invested significant engineering effort in developing an open-source toolkit for synthesizing GUI grounding data across multiple platforms, including Windows, Linux, MacOS, Android, and the web. Leveraging this toolkit, we are releasing the largest open-source cross-platform GUI grounding corpus to date, which contains over 13 million GUI elements. This dataset, combined with innovations in model training, provides a solid foundation for OS-Atlas to understand GUI screenshots and generalize to unseen interfaces. Through extensive evaluation across six benchmarks spanning three different platforms (mobile, desktop, and web), OS-Atlas demonstrates significant performance improvements over previous state-of-the-art models. Our evaluation also uncovers valuable insights into continuously improving and scaling the agentic capabilities of open-source VLMs.

LLM as OS, Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent Ecosystem

This paper envisions a revolutionary AIOS-Agent ecosystem, where Large Language Model (LLM) serves as the (Artificial) Intelligent Operating System (IOS, or AIOS)--an operating system "with soul". Upon this foundation, a diverse range of LLM-based AI Agent Applications (Agents, or AAPs) are developed, enriching the AIOS-Agent ecosystem and signaling a paradigm shift from the traditional OS-APP ecosystem. We envision that LLM's impact will not be limited to the AI application level, instead, it will in turn revolutionize the design and implementation of computer system, architecture, software, and programming language, featured by several main concepts: LLM as OS (system-level), Agents as Applications (application-level), Natural Language as Programming Interface (user-level), and Tools as Devices/Libraries (hardware/middleware-level). We begin by introducing the architecture of traditional OS. Then we formalize a conceptual framework for AIOS through "LLM as OS (LLMOS)", drawing analogies between AIOS and traditional OS: LLM is likened to OS kernel, context window to memory, external storage to file system, hardware tools to peripheral devices, software tools to programming libraries, and user prompts to user commands. Subsequently, we introduce the new AIOS-Agent Ecosystem, where users can easily program Agent Applications (AAPs) using natural language, democratizing the development of software, which is different from the traditional OS-APP ecosystem. Following this, we explore the diverse scope of Agent Applications. We delve into both single-agent and multi-agent systems, as well as human-agent interaction. Lastly, drawing on the insights from traditional OS-APP ecosystem, we propose a roadmap for the evolution of the AIOS-Agent ecosystem. This roadmap is designed to guide the future research and development, suggesting systematic progresses of AIOS and its Agent applications.

Sliding Windows Are Not the End: Exploring Full Ranking with Long-Context Large Language Models

Large Language Models (LLMs) have shown exciting performance in listwise passage ranking. Due to the limited input length, existing methods often adopt the sliding window strategy. Such a strategy, though effective, is inefficient as it involves repetitive and serialized processing, which usually re-evaluates relevant passages multiple times. As a result, it incurs redundant API costs, which are proportional to the number of inference tokens. The development of long-context LLMs enables the full ranking of all passages within a single inference, avoiding redundant API costs. In this paper, we conduct a comprehensive study of long-context LLMs for ranking tasks in terms of efficiency and effectiveness. Surprisingly, our experiments reveal that full ranking with long-context LLMs can deliver superior performance in the supervised fine-tuning setting with a huge efficiency improvement. Furthermore, we identify two limitations of fine-tuning the full ranking model based on existing methods: (1) sliding window strategy fails to produce a full ranking list as a training label, and (2) the language modeling loss cannot emphasize top-ranked passage IDs in the label. To alleviate these issues, we propose a new complete listwise label construction approach and a novel importance-aware learning objective for full ranking. Experiments show the superior performance of our method over baselines. Our codes are available at https://github.com/8421BCD/fullrank.

Cross-Shaped Windows Transformer with Self-supervised Pretraining for Clinically Significant Prostate Cancer Detection in Bi-parametric MRI

Multiparametric magnetic resonance imaging (mpMRI) has demonstrated promising results in prostate cancer (PCa) detection using deep convolutional neural networks (CNNs). Recently, transformers have achieved competitive performance compared to CNNs in computer vision. Large-scale transformers need abundant annotated data for training, which are difficult to obtain in medical imaging. Self-supervised learning can effectively leverage unlabeled data to extract useful semantic representations without annotation and its associated costs. This can improve model performance on downstream tasks with limited labelled data and increase generalizability. We introduce a novel end-to-end Cross-Shaped windows (CSwin) transformer UNet model, CSwin UNet, to detect clinically significant prostate cancer (csPCa) in prostate bi-parametric MR imaging (bpMRI) and demonstrate the effectiveness of our proposed self-supervised pre-training framework. Using a large prostate bpMRI dataset with 1500 patients, we first pre-train CSwin transformer using multi-task self-supervised learning to improve data-efficiency and network generalizability. We then finetuned using lesion annotations to perform csPCa detection. Five-fold cross validation shows that self-supervised CSwin UNet achieves 0.888 AUC and 0.545 Average Precision (AP), significantly outperforming four state-of-the-art models (Swin UNETR, DynUNet, Attention UNet, UNet). Using a separate bpMRI dataset with 158 patients, we evaluated our model robustness to external hold-out data. Self-supervised CSwin UNet achieves 0.79 AUC and 0.45 AP, still outperforming all other comparable methods and demonstrating generalization to a dataset shift.

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at~https://github.com/microsoft/Swin-Transformer.

CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows

We present CSWin Transformer, an efficient and effective Transformer-based backbone for general-purpose vision tasks. A challenging issue in Transformer design is that global self-attention is very expensive to compute whereas local self-attention often limits the field of interactions of each token. To address this issue, we develop the Cross-Shaped Window self-attention mechanism for computing self-attention in the horizontal and vertical stripes in parallel that form a cross-shaped window, with each stripe obtained by splitting the input feature into stripes of equal width. We provide a mathematical analysis of the effect of the stripe width and vary the stripe width for different layers of the Transformer network which achieves strong modeling capability while limiting the computation cost. We also introduce Locally-enhanced Positional Encoding (LePE), which handles the local positional information better than existing encoding schemes. LePE naturally supports arbitrary input resolutions, and is thus especially effective and friendly for downstream tasks. Incorporated with these designs and a hierarchical structure, CSWin Transformer demonstrates competitive performance on common vision tasks. Specifically, it achieves 85.4\% Top-1 accuracy on ImageNet-1K without any extra training data or label, 53.9 box AP and 46.4 mask AP on the COCO detection task, and 52.2 mIOU on the ADE20K semantic segmentation task, surpassing previous state-of-the-art Swin Transformer backbone by +1.2, +2.0, +1.4, and +2.0 respectively under the similar FLOPs setting. By further pretraining on the larger dataset ImageNet-21K, we achieve 87.5% Top-1 accuracy on ImageNet-1K and high segmentation performance on ADE20K with 55.7 mIoU. The code and models are available at https://github.com/microsoft/CSWin-Transformer.

Enhancing Human Experience in Human-Agent Collaboration: A Human-Centered Modeling Approach Based on Positive Human Gain

Existing game AI research mainly focuses on enhancing agents' abilities to win games, but this does not inherently make humans have a better experience when collaborating with these agents. For example, agents may dominate the collaboration and exhibit unintended or detrimental behaviors, leading to poor experiences for their human partners. In other words, most game AI agents are modeled in a "self-centered" manner. In this paper, we propose a "human-centered" modeling scheme for collaborative agents that aims to enhance the experience of humans. Specifically, we model the experience of humans as the goals they expect to achieve during the task. We expect that agents should learn to enhance the extent to which humans achieve these goals while maintaining agents' original abilities (e.g., winning games). To achieve this, we propose the Reinforcement Learning from Human Gain (RLHG) approach. The RLHG approach introduces a "baseline", which corresponds to the extent to which humans primitively achieve their goals, and encourages agents to learn behaviors that can effectively enhance humans in achieving their goals better. We evaluate the RLHG agent in the popular Multi-player Online Battle Arena (MOBA) game, Honor of Kings, by conducting real-world human-agent tests. Both objective performance and subjective preference results show that the RLHG agent provides participants better gaming experience.

Automated Review Generation Method Based on Large Language Models

Literature research, vital for scientific work, faces the challenge of the surging torrent of information in the vast ocean of literature exceeding researchers' processing capabilities. To address this issue, we present an automated review generation method based on Large Language Models (LLMs), aimed at overcoming efficiency bottlenecks in literature processing and reducing cognitive load. Our statistically validated evaluation framework demonstrates that the generated reviews match or exceed manual quality, offering broad applicability across research fields due to minimal domain knowledge requirements. In a case study on propane dehydrogenation (PDH) catalysts, our method swiftly analyzed 343 articles, averaging seconds per article per LLM account, producing comprehensive reviews spanning 35 topics. Extended analysis of 1041 articles provided deep insights into catalysts' composition, structure, and performance. Recognizing LLMs' hallucinations, we implemented a multi-layered quality control strategy, effectively mitigating risks and ensuring reliability, as quantitatively demonstrated through manual verification. Expert verification confirms the accuracy and citation integrity of generated reviews, demonstrating LLM hallucination risks reduced to below 0.5\% with over 95\% confidence. Released Windows application enables one-click review generation, aiding researchers in tracking advancements and recommending literature. This approach showcases LLMs' role in enhancing scientific research productivity and sets the stage for further exploration.

VSA: Learning Varied-Size Window Attention in Vision Transformers

Attention within windows has been widely explored in vision transformers to balance the performance, computation complexity, and memory footprint. However, current models adopt a hand-crafted fixed-size window design, which restricts their capacity of modeling long-term dependencies and adapting to objects of different sizes. To address this drawback, we propose Varied-Size Window Attention (VSA) to learn adaptive window configurations from data. Specifically, based on the tokens within each default window, VSA employs a window regression module to predict the size and location of the target window, i.e., the attention area where the key and value tokens are sampled. By adopting VSA independently for each attention head, it can model long-term dependencies, capture rich context from diverse windows, and promote information exchange among overlapped windows. VSA is an easy-to-implement module that can replace the window attention in state-of-the-art representative models with minor modifications and negligible extra computational cost while improving their performance by a large margin, e.g., 1.1\% for Swin-T on ImageNet classification. In addition, the performance gain increases when using larger images for training and test. Experimental results on more downstream tasks, including object detection, instance segmentation, and semantic segmentation, further demonstrate the superiority of VSA over the vanilla window attention in dealing with objects of different sizes. The code will be released https://github.com/ViTAE-Transformer/ViTAE-VSA.

MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification

Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at https://github.com/MalwareReplayGAN/MalCLThe code will be made public upon the presentation of the paper.

"All of Me": Mining Users' Attributes from their Public Spotify Playlists

In the age of digital music streaming, playlists on platforms like Spotify have become an integral part of individuals' musical experiences. People create and publicly share their own playlists to express their musical tastes, promote the discovery of their favorite artists, and foster social connections. These publicly accessible playlists transcend the boundaries of mere musical preferences: they serve as sources of rich insights into users' attributes and identities. For example, the musical preferences of elderly individuals may lean more towards Frank Sinatra, while Billie Eilish remains a favored choice among teenagers. These playlists thus become windows into the diverse and evolving facets of one's musical identity. In this work, we investigate the relationship between Spotify users' attributes and their public playlists. In particular, we focus on identifying recurring musical characteristics associated with users' individual attributes, such as demographics, habits, or personality traits. To this end, we conducted an online survey involving 739 Spotify users, yielding a dataset of 10,286 publicly shared playlists encompassing over 200,000 unique songs and 55,000 artists. Through extensive statistical analyses, we first assess a deep connection between a user's Spotify playlists and their real-life attributes. For instance, we found individuals high in openness often create playlists featuring a diverse array of artists, while female users prefer Pop and K-pop music genres. Building upon these observed associations, we create accurate predictive models for users' attributes, presenting a novel DeepSet application that outperforms baselines in most of these users' attributes.

Nebula: Self-Attention for Dynamic Malware Analysis

Dynamic analysis enables detecting Windows malware by executing programs in a controlled environment and logging their actions. Previous work has proposed training machine learning models, i.e., convolutional and long short-term memory networks, on homogeneous input features like runtime APIs to either detect or classify malware, neglecting other relevant information coming from heterogeneous data like network and file operations. To overcome these issues, we introduce Nebula, a versatile, self-attention Transformer-based neural architecture that generalizes across different behavioral representations and formats, combining diverse information from dynamic log reports. Nebula is composed by several components needed to tokenize, filter, normalize and encode data to feed the transformer architecture. We firstly perform a comprehensive ablation study to evaluate their impact on the performance of the whole system, highlighting which components can be used as-is, and which must be enriched with specific domain knowledge. We perform extensive experiments on both malware detection and classification tasks, using three datasets acquired from different dynamic analyses platforms, show that, on average, Nebula outperforms state-of-the-art models at low false positive rates, with a peak of 12% improvement. Moreover, we showcase how self-supervised learning pre-training matches the performance of fully-supervised models with only 20% of training data, and we inspect the output of Nebula through explainable AI techniques, pinpointing how attention is focusing on specific tokens correlated to malicious activities of malware families. To foster reproducibility, we open-source our findings and models at https://github.com/dtrizna/nebula.

StreamAdapter: Efficient Test Time Adaptation from Contextual Streams

In-context learning (ICL) allows large language models (LLMs) to adapt to new tasks directly from the given demonstrations without requiring gradient updates. While recent advances have expanded context windows to accommodate more demonstrations, this approach increases inference costs without necessarily improving performance. To mitigate these issues, We propose StreamAdapter, a novel approach that directly updates model parameters from context at test time, eliminating the need for explicit in-context demonstrations. StreamAdapter employs context mapping and weight absorption mechanisms to dynamically transform ICL demonstrations into parameter updates with minimal additional parameters. By reducing reliance on numerous in-context examples, StreamAdapter significantly reduce inference costs and allows for efficient inference with constant time complexity, regardless of demonstration count. Extensive experiments across diverse tasks and model architectures demonstrate that StreamAdapter achieves comparable or superior adaptation capability to ICL while requiring significantly fewer demonstrations. The superior task adaptation and context encoding capabilities of StreamAdapter on both language understanding and generation tasks provides a new perspective for adapting LLMs at test time using context, allowing for more efficient adaptation across scenarios and more cost-effective inference

Quo Vadis: Hybrid Machine Learning Meta-Model based on Contextual and Behavioral Malware Representations

We propose a hybrid machine learning architecture that simultaneously employs multiple deep learning models analyzing contextual and behavioral characteristics of Windows portable executable, producing a final prediction based on a decision from the meta-model. The detection heuristic in contemporary machine learning Windows malware classifiers is typically based on the static properties of the sample since dynamic analysis through virtualization is challenging for vast quantities of samples. To surpass this limitation, we employ a Windows kernel emulation that allows the acquisition of behavioral patterns across large corpora with minimal temporal and computational costs. We partner with a security vendor for a collection of more than 100k int-the-wild samples that resemble the contemporary threat landscape, containing raw PE files and filepaths of applications at the moment of execution. The acquired dataset is at least ten folds larger than reported in related works on behavioral malware analysis. Files in the training dataset are labeled by a professional threat intelligence team, utilizing manual and automated reverse engineering tools. We estimate the hybrid classifier's operational utility by collecting an out-of-sample test set three months later from the acquisition of the training set. We report an improved detection rate, above the capabilities of the current state-of-the-art model, especially under low false-positive requirements. Additionally, we uncover a meta-model's ability to identify malicious activity in validation and test sets even if none of the individual models express enough confidence to mark the sample as malevolent. We conclude that the meta-model can learn patterns typical to malicious samples from representation combinations produced by different analysis techniques. We publicly release pre-trained models and anonymized dataset of emulation reports.

WebArena: A Realistic Web Environment for Building Autonomous Agents

With generative AI advances, the exciting potential for autonomous agents to manage daily tasks via natural language commands has emerged. However, cur rent agents are primarily created and tested in simplified synthetic environments, substantially limiting real-world scenario representation. In this paper, we build an environment for agent command and control that is highly realistic and reproducible. Specifically, we focus on agents that perform tasks on websites, and we create an environment with fully functional websites from four common domains: e-commerce, social forum discussions, collaborative software development, and content management. Our environment is enriched with tools (e.g., a map) and external knowledge bases (e.g., user manuals) to encourage human-like task-solving. Building upon our environment, we release a set of benchmark tasks focusing on evaluating the functional correctness of task completions. The tasks in our benchmark are diverse, long-horizon, and are designed to emulate tasks that humans routinely perform on the internet. We design and implement several autonomous agents, integrating recent techniques such as reasoning before acting. The results demonstrate that solving complex tasks is challenging: our best GPT-4-based agent only achieves an end-to-end task success rate of 10.59%. These results highlight the need for further development of robust agents, that current state-of-the-art LMs are far from perfect performance in these real-life tasks, and that WebArena can be used to measure such progress. Our code, data, environment reproduction resources, and video demonstrations are publicly available at https://webarena.dev/.

Many-Shot In-Context Learning in Multimodal Foundation Models

Large language models are well-known to be effective at few-shot in-context learning (ICL). Recent advancements in multimodal foundation models have enabled unprecedentedly long context windows, presenting an opportunity to explore their capability to perform ICL with many more demonstrating examples. In this work, we evaluate the performance of multimodal foundation models scaling from few-shot to many-shot ICL. We benchmark GPT-4o and Gemini 1.5 Pro across 10 datasets spanning multiple domains (natural imagery, medical imagery, remote sensing, and molecular imagery) and tasks (multi-class, multi-label, and fine-grained classification). We observe that many-shot ICL, including up to almost 2,000 multimodal demonstrating examples, leads to substantial improvements compared to few-shot (<100 examples) ICL across all of the datasets. Further, Gemini 1.5 Pro performance continues to improve log-linearly up to the maximum number of tested examples on many datasets. Given the high inference costs associated with the long prompts required for many-shot ICL, we also explore the impact of batching multiple queries in a single API call. We show that batching up to 50 queries can lead to performance improvements under zero-shot and many-shot ICL, with substantial gains in the zero-shot setting on multiple datasets, while drastically reducing per-query cost and latency. Finally, we measure ICL data efficiency of the models, or the rate at which the models learn from more demonstrating examples. We find that while GPT-4o and Gemini 1.5 Pro achieve similar zero-shot performance across the datasets, Gemini 1.5 Pro exhibits higher ICL data efficiency than GPT-4o on most datasets. Our results suggest that many-shot ICL could enable users to efficiently adapt multimodal foundation models to new applications and domains. Our codebase is publicly available at https://github.com/stanfordmlgroup/ManyICL .

HiddenTables & PyQTax: A Cooperative Game and Dataset For TableQA to Ensure Scale and Data Privacy Across a Myriad of Taxonomies

A myriad of different Large Language Models (LLMs) face a common challenge in contextually analyzing table question-answering tasks. These challenges are engendered from (1) finite context windows for large tables, (2) multi-faceted discrepancies amongst tokenization patterns against cell boundaries, and (3) various limitations stemming from data confidentiality in the process of using external models such as gpt-3.5-turbo. We propose a cooperative game dubbed "HiddenTables" as a potential resolution to this challenge. In essence, "HiddenTables" is played between the code-generating LLM "Solver" and the "Oracle" which evaluates the ability of the LLM agents to solve Table QA tasks. This game is based on natural language schemas and importantly, ensures the security of the underlying data. We provide evidential experiments on a diverse set of tables that demonstrate an LLM's collective inability to generalize and perform on complex queries, handle compositional dependencies, and align natural language to programmatic commands when concrete table schemas are provided. Unlike encoder-based models, we have pushed the boundaries of "HiddenTables" to not be limited by the number of rows - therefore we exhibit improved efficiency in prompt and completion tokens. Our infrastructure has spawned a new dataset "PyQTax" that spans across 116,671 question-table-answer triplets and provides additional fine-grained breakdowns & labels for varying question taxonomies. Therefore, in tandem with our academic contributions regarding LLMs' deficiency in TableQA tasks, "HiddenTables" is a tactile manifestation of how LLMs can interact with massive datasets while ensuring data security and minimizing generation costs.

What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices

Recent advancements in large language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios. In order to achieve success in long context tasks, a large amount of work has been done to enhance the long context capabilities of the model through synthetic data. Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement. However, our preliminary experiments indicate that less than 35% of generated samples are multi-hop, and more than 40% exhibit poor quality, limiting comprehensive understanding and further research. To improve the quality of synthetic data, we propose the Multi-agent Interactive Multi-hop Generation (MIMG) framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent. This framework improves the data quality, with the proportion of high-quality, multi-hop, and diverse data exceeding 85%. Furthermore, we systematically investigate strategies for document selection, question merging, and validation techniques through extensive experiments across various models. Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human-annotated data. Our code is available at: https://github.com/WowCZ/LongMIT.

GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection

Logs play a crucial role in system monitoring and debugging by recording valuable system information, including events and states. Although various methods have been proposed to detect anomalies in log sequences, they often overlook the significance of considering relations among system components, such as services and users, which can be identified from log contents. Understanding these relations is vital for detecting anomalies and their underlying causes. To address this issue, we introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect relational anomalies in system logs. GLAD incorporates log semantics, relational patterns, and sequential patterns into a unified framework for anomaly detection. Specifically, GLAD first introduces a field extraction module that utilizes prompt-based few-shot learning to identify essential fields from log contents. Then GLAD constructs dynamic log graphs for sliding windows by interconnecting extracted fields and log events parsed from the log parser. These graphs represent events and fields as nodes and their relations as edges. Subsequently, GLAD utilizes a temporal-attentive graph edge anomaly detection model for identifying anomalous relations in these dynamic log graphs. This model employs a Graph Neural Network (GNN)-based encoder enhanced with transformers to capture content, structural and temporal features. We evaluate our proposed method on three datasets, and the results demonstrate the effectiveness of GLAD in detecting anomalies indicated by varying relational patterns.

Effective Long-Context Scaling of Foundation Models

We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens. Our model series are built through continual pretraining from Llama 2 with longer training sequences and on a dataset where long texts are upsampled. We perform extensive evaluation on language modeling, synthetic context probing tasks, and a wide range of research benchmarks. On research benchmarks, our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2. Notably, with a cost-effective instruction tuning procedure that does not require human-annotated long instruction data, the 70B variant can already surpass gpt-3.5-turbo-16k's overall performance on a suite of long-context tasks. Alongside these results, we provide an in-depth analysis on the individual components of our method. We delve into Llama's position encodings and discuss its limitation in modeling long dependencies. We also examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths -- our ablation experiments suggest that having abundant long texts in the pretrain dataset is not the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.

Soaring from 4K to 400K: Extending LLM's Context with Activation Beacon

The utilization of long contexts poses a big challenge for large language models due to their limited context window length. Although the context window can be extended through fine-tuning, it will result in a considerable cost at both training and inference time, and exert an unfavorable impact to the LLM's original capabilities. In this work, we propose Activation Beacon, which condenses LLM's raw activations into more compact forms such that it can perceive a much longer context with a limited context window. Activation Beacon is introduced as a plug-and-play module for the LLM. It fully preserves the LLM's original capability on short contexts while extending the new capability on processing longer contexts. Besides, it works with short sliding windows to process the long context, which achieves a competitive memory and time efficiency in both training and inference. Activation Beacon is learned by the auto-regression task conditioned on a mixture of beacons with diversified condensing ratios. Thanks to such a treatment, it can be efficiently trained purely with short-sequence data in just 10K steps, which consumes less than 9 hours on a single 8xA800 GPU machine. The experimental studies show that Activation Beacon is able to extend Llama-2-7B's context length by times100 times (from 4K to 400K), meanwhile achieving a superior result on both long-context generation and understanding tasks. Our model and code will be available at the BGE repository.

E^2-LLM: Efficient and Extreme Length Extension of Large Language Models

Typically, training LLMs with long context sizes is computationally expensive, requiring extensive training hours and GPU resources. Existing long-context extension methods usually need additional training procedures to support corresponding long-context windows, where the long-context training data (e.g., 32k) is needed, and high GPU training costs are assumed. To address the aforementioned issues, we propose an Efficient and Extreme length extension method for Large Language Models, called E 2 -LLM, with only one training procedure and dramatically reduced computation cost, which also removes the need to collect long-context data. Concretely, first, the training data of our E 2 -LLM only requires a short length (e.g., 4k), which reduces the tuning cost greatly. Second, the training procedure on the short training context window is performed only once time, and we can support different evaluation context windows at inference. Third, in E 2 - LLM, based on RoPE position embeddings, we introduce two different augmentation methods on the scale and position index parameters for different samples in training. It aims to make the model more robust to the different relative differences when directly interpolating the arbitrary context length at inference. Comprehensive experimental results on multiple benchmark datasets demonstrate the effectiveness of our E 2 -LLM on challenging long-context tasks.

Training LLMs over Neurally Compressed Text

In this paper, we explore the idea of training large language models (LLMs) over highly compressed text. While standard subword tokenizers compress text by a small factor, neural text compressors can achieve much higher rates of compression. If it were possible to train LLMs directly over neurally compressed text, this would confer advantages in training and serving efficiency, as well as easier handling of long text spans. The main obstacle to this goal is that strong compression tends to produce opaque outputs that are not well-suited for learning. In particular, we find that text na\"ively compressed via Arithmetic Coding is not readily learnable by LLMs. To overcome this, we propose Equal-Info Windows, a novel compression technique whereby text is segmented into blocks that each compress to the same bit length. Using this method, we demonstrate effective learning over neurally compressed text that improves with scale, and outperforms byte-level baselines by a wide margin on perplexity and inference speed benchmarks. While our method delivers worse perplexity than subword tokenizers for models trained with the same parameter count, it has the benefit of shorter sequence lengths. Shorter sequence lengths require fewer autoregressive generation steps, and reduce latency. Finally, we provide extensive analysis of the properties that contribute to learnability, and offer concrete suggestions for how to further improve the performance of high-compression tokenizers.

LongIns: A Challenging Long-context Instruction-based Exam for LLMs

The long-context capabilities of large language models (LLMs) have been a hot topic in recent years. To evaluate the performance of LLMs in different scenarios, various assessment benchmarks have emerged. However, as most of these benchmarks focus on identifying key information to answer questions, which mainly requires the retrieval ability of LLMs, these benchmarks can partially represent the reasoning performance of LLMs from large amounts of information. Meanwhile, although LLMs often claim to have context windows of 32k, 128k, 200k, or even longer, these benchmarks fail to reveal the actual supported length of these LLMs. To address these issues, we propose the LongIns benchmark dataset, a challenging long-context instruction-based exam for LLMs, which is built based on the existing instruction datasets. Specifically, in our LongIns, we introduce three evaluation settings: Global Instruction & Single Task (GIST), Local Instruction & Single Task (LIST), and Local Instruction & Multiple Tasks (LIMT). Based on LongIns, we perform comprehensive evaluations on existing LLMs and have the following important findings: (1). The top-performing GPT-4 with 128k context length performs poorly on the evaluation context window of 16k in our LongIns. (2). For the multi-hop reasoning ability of many existing LLMs, significant efforts are still needed under short context windows (less than 4k).

LongBench: A Bilingual, Multitask Benchmark for Long Context Understanding

Although large language models (LLMs) demonstrate impressive performance for many language tasks, most of them can only handle texts a few thousand tokens long, limiting their applications on longer sequence inputs, such as books, reports, and codebases. Recent works have proposed methods to improve LLMs' long context capabilities by extending context windows and more sophisticated memory mechanisms. However, comprehensive benchmarks tailored for evaluating long context understanding are lacking. In this paper, we introduce LongBench, the first bilingual, multi-task benchmark for long context understanding, enabling a more rigorous evaluation of long context understanding. LongBench comprises 21 datasets across 6 task categories in both English and Chinese, with an average length of 6,711 words (English) and 13,386 characters (Chinese). These tasks cover key long-text application areas including single-doc QA, multi-doc QA, summarization, few-shot learning, synthetic tasks, and code completion. All datasets in LongBench are standardized into a unified format, allowing for effortless automatic evaluation of LLMs. Upon comprehensive evaluation of 8 LLMs on LongBench, we find that: (1) Commercial model (GPT-3.5-Turbo-16k) outperforms other open-sourced models, but still struggles on longer contexts. (2) Scaled position embedding and fine-tuning on longer sequences lead to substantial improvement on long context understanding. (3) Context compression technique such as retrieval brings improvement for model with weak ability on long contexts, but the performance still lags behind models that have strong long context understanding capability. The code and datasets are available at https://github.com/THUDM/LongBench.

ResNLS: An Improved Model for Stock Price Forecasting

Stock prices forecasting has always been a challenging task. Although many research projects adopt machine learning and deep learning algorithms to address the problem, few of them pay attention to the varying degrees of dependencies between stock prices. In this paper we introduce a hybrid model that improves stock price prediction by emphasizing the dependencies between adjacent stock prices. The proposed model, ResNLS, is mainly composed of two neural architectures, ResNet and LSTM. ResNet serves as a feature extractor to identify dependencies between stock prices across time windows, while LSTM analyses the initial time-series data with the combination of dependencies which considered as residuals. In predicting the SSE Composite Index, our experiment reveals that when the closing price data for the previous 5 consecutive trading days is used as the input, the performance of the model (ResNLS-5) is optimal compared to those with other inputs. Furthermore, ResNLS-5 outperforms vanilla CNN, RNN, LSTM, and BiLSTM models in terms of prediction accuracy. It also demonstrates at least a 20% improvement over the current state-of-the-art baselines. To verify whether ResNLS-5 can help clients effectively avoid risks and earn profits in the stock market, we construct a quantitative trading framework for back testing. The experimental results show that the trading strategy based on predictions from ResNLS-5 can successfully mitigate losses during declining stock prices and generate profits in the periods of rising stock prices.

MOAT: Alternating Mobile Convolution and Attention Brings Strong Vision Models

This paper presents MOAT, a family of neural networks that build on top of MObile convolution (i.e., inverted residual blocks) and ATtention. Unlike the current works that stack separate mobile convolution and transformer blocks, we effectively merge them into a MOAT block. Starting with a standard Transformer block, we replace its multi-layer perceptron with a mobile convolution block, and further reorder it before the self-attention operation. The mobile convolution block not only enhances the network representation capacity, but also produces better downsampled features. Our conceptually simple MOAT networks are surprisingly effective, achieving 89.1% / 81.5% top-1 accuracy on ImageNet-1K / ImageNet-1K-V2 with ImageNet22K pretraining. Additionally, MOAT can be seamlessly applied to downstream tasks that require large resolution inputs by simply converting the global attention to window attention. Thanks to the mobile convolution that effectively exchanges local information between pixels (and thus cross-windows), MOAT does not need the extra window-shifting mechanism. As a result, on COCO object detection, MOAT achieves 59.2% box AP with 227M model parameters (single-scale inference, and hard NMS), and on ADE20K semantic segmentation, MOAT attains 57.6% mIoU with 496M model parameters (single-scale inference). Finally, the tiny-MOAT family, obtained by simply reducing the channel sizes, also surprisingly outperforms several mobile-specific transformer-based models on ImageNet. The tiny-MOAT family is also benchmarked on downstream tasks, serving as a baseline for the community. We hope our simple yet effective MOAT will inspire more seamless integration of convolution and self-attention. Code is publicly available.

Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images

Semantic segmentation of brain tumors is a fundamental medical image analysis task involving multiple MRI imaging modalities that can assist clinicians in diagnosing the patient and successively studying the progression of the malignant entity. In recent years, Fully Convolutional Neural Networks (FCNNs) approaches have become the de facto standard for 3D medical image segmentation. The popular "U-shaped" network architecture has achieved state-of-the-art performance benchmarks on different 2D and 3D semantic segmentation tasks and across various imaging modalities. However, due to the limited kernel size of convolution layers in FCNNs, their performance of modeling long-range information is sub-optimal, and this can lead to deficiencies in the segmentation of tumors with variable sizes. On the other hand, transformer models have demonstrated excellent capabilities in capturing such long-range information in multiple domains, including natural language processing and computer vision. Inspired by the success of vision transformers and their variants, we propose a novel segmentation model termed Swin UNEt TRansformers (Swin UNETR). Specifically, the task of 3D brain tumor semantic segmentation is reformulated as a sequence to sequence prediction problem wherein multi-modal input data is projected into a 1D sequence of embedding and used as an input to a hierarchical Swin transformer as the encoder. The swin transformer encoder extracts features at five different resolutions by utilizing shifted windows for computing self-attention and is connected to an FCNN-based decoder at each resolution via skip connections. We have participated in BraTS 2021 segmentation challenge, and our proposed model ranks among the top-performing approaches in the validation phase. Code: https://monai.io/research/swin-unetr

Context Clues: Evaluating Long Context Models for Clinical Prediction Tasks on EHRs

Foundation Models (FMs) trained on Electronic Health Records (EHRs) have achieved state-of-the-art results on numerous clinical prediction tasks. However, most existing EHR FMs have context windows of <1k tokens. This prevents them from modeling full patient EHRs which can exceed 10k's of events. Recent advancements in subquadratic long-context architectures (e.g., Mamba) offer a promising solution. However, their application to EHR data has not been well-studied. We address this gap by presenting the first systematic evaluation of the effect of context length on modeling EHR data. We find that longer context models improve predictive performance -- our Mamba-based model surpasses the prior state-of-the-art on 9/14 tasks on the EHRSHOT prediction benchmark. For clinical applications, however, model performance alone is insufficient -- robustness to the unique properties of EHR is crucial. Thus, we also evaluate models across three previously underexplored properties of EHR data: (1) the prevalence of "copy-forwarded" diagnoses which creates artificial repetition of tokens within EHR sequences; (2) the irregular time intervals between EHR events which can lead to a wide range of timespans within a context window; and (3) the natural increase in disease complexity over time which makes later tokens in the EHR harder to predict than earlier ones. Stratifying our EHRSHOT results, we find that higher levels of each property correlate negatively with model performance, but that longer context models are more robust to more extreme levels of these properties. Our work highlights the potential for using long-context architectures to model EHR data, and offers a case study for identifying new challenges in modeling sequential data motivated by domains outside of natural language. We release our models and code at: https://github.com/som-shahlab/long_context_clues

Pictures Of MIDI: Controlled Music Generation via Graphical Prompts for Image-Based Diffusion Inpainting

Recent years have witnessed significant progress in generative models for music, featuring diverse architectures that balance output quality, diversity, speed, and user control. This study explores a user-friendly graphical interface enabling the drawing of masked regions for inpainting by an Hourglass Diffusion Transformer (HDiT) model trained on MIDI piano roll images. To enhance note generation in specified areas, masked regions can be "repainted" with extra noise. The non-latent HDiTs linear scaling with pixel count allows efficient generation in pixel space, providing intuitive and interpretable controls such as masking throughout the network and removing the need to operate in compressed latent spaces such as those provided by pretrained autoencoders. We demonstrate that, in addition to inpainting of melodies, accompaniment, and continuations, the use of repainting can help increase note density yielding musical structures closely matching user specifications such as rising, falling, or diverging melody and/or accompaniment, even when these lie outside the typical training data distribution. We achieve performance on par with prior results while operating at longer context windows, with no autoencoder, and can enable complex geometries for inpainting masks, increasing the options for machine-assisted composers to control the generated music.

Assemblage: Automatic Binary Dataset Construction for Machine Learning

Binary code is pervasive, and binary analysis is a key task in reverse engineering, malware classification, and vulnerability discovery. Unfortunately, while there exist large corpuses of malicious binaries, obtaining high-quality corpuses of benign binaries for modern systems has proven challenging (e.g., due to licensing issues). Consequently, machine learning based pipelines for binary analysis utilize either costly commercial corpuses (e.g., VirusTotal) or open-source binaries (e.g., coreutils) available in limited quantities. To address these issues, we present Assemblage: an extensible cloud-based distributed system that crawls, configures, and builds Windows PE binaries to obtain high-quality binary corpuses suitable for training state-of-the-art models in binary analysis. We have run Assemblage on AWS over the past year, producing 890k Windows PE and 428k Linux ELF binaries across 29 configurations. Assemblage is designed to be both reproducible and extensible, enabling users to publish "recipes" for their datasets, and facilitating the extraction of a wide array of features. We evaluated Assemblage by using its data to train modern learning-based pipelines for compiler provenance and binary function similarity. Our results illustrate the practical need for robust corpuses of high-quality Windows PE binaries in training modern learning-based binary analyses. Assemblage can be downloaded from https://assemblage-dataset.net

Multi-Scale Representations by Varying Window Attention for Semantic Segmentation

Multi-scale learning is central to semantic segmentation. We visualize the effective receptive field (ERF) of canonical multi-scale representations and point out two risks in learning them: scale inadequacy and field inactivation. A novel multi-scale learner, varying window attention (VWA), is presented to address these issues. VWA leverages the local window attention (LWA) and disentangles LWA into the query window and context window, allowing the context's scale to vary for the query to learn representations at multiple scales. However, varying the context to large-scale windows (enlarging ratio R) can significantly increase the memory footprint and computation cost (R^2 times larger than LWA). We propose a simple but professional re-scaling strategy to zero the extra induced cost without compromising performance. Consequently, VWA uses the same cost as LWA to overcome the receptive limitation of the local window. Furthermore, depending on VWA and employing various MLPs, we introduce a multi-scale decoder (MSD), VWFormer, to improve multi-scale representations for semantic segmentation. VWFormer achieves efficiency competitive with the most compute-friendly MSDs, like FPN and MLP decoder, but performs much better than any MSDs. For instance, using nearly half of UPerNet's computation, VWFormer outperforms it by 1.0%-2.5% mIoU on ADE20K. With little extra overhead, ~10G FLOPs, Mask2Former armed with VWFormer improves by 1.0%-1.3%. The code and models are available at https://github.com/yan-hao-tian/vw

Adaptive Window Pruning for Efficient Local Motion Deblurring

Local motion blur commonly occurs in real-world photography due to the mixing between moving objects and stationary backgrounds during exposure. Existing image deblurring methods predominantly focus on global deblurring, inadvertently affecting the sharpness of backgrounds in locally blurred images and wasting unnecessary computation on sharp pixels, especially for high-resolution images. This paper aims to adaptively and efficiently restore high-resolution locally blurred images. We propose a local motion deblurring vision Transformer (LMD-ViT) built on adaptive window pruning Transformer blocks (AdaWPT). To focus deblurring on local regions and reduce computation, AdaWPT prunes unnecessary windows, only allowing the active windows to be involved in the deblurring processes. The pruning operation relies on the blurriness confidence predicted by a confidence predictor that is trained end-to-end using a reconstruction loss with Gumbel-Softmax re-parameterization and a pruning loss guided by annotated blur masks. Our method removes local motion blur effectively without distorting sharp regions, demonstrated by its exceptional perceptual and quantitative improvements compared to state-of-the-art methods. In addition, our approach substantially reduces FLOPs by 66% and achieves more than a twofold increase in inference speed compared to Transformer-based deblurring methods. We will make our code and annotated blur masks publicly available.

Efficient Content-Based Sparse Attention with Routing Transformers

Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic compute and memory requirements with respect to sequence length. Successful approaches to reduce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: it combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows self-attention with a sparse routing module based on online k-means while reducing the overall complexity of attention to Oleft(n^{1.5}dright) from Oleft(n^2dright) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity) as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192.

Visual Context Window Extension: A New Perspective for Long Video Understanding

Large Multimodal Models (LMMs) have demonstrated impressive performance in short video understanding tasks but face great challenges when applied to long video understanding. In contrast, Large Language Models (LLMs) exhibit outstanding capabilities in modeling long texts. Existing work attempts to address this issue by introducing long video-text pairs during training. However, these approaches require substantial computational and data resources. In this paper, we tackle the challenge of long video understanding from the perspective of context windows, aiming to apply LMMs to long video tasks without retraining on long video datasets. We first conduct an in-depth analysis of why pretrained LMMs struggle to understand lengthy video content, identifying that discrepancies between visual and language modalities lead to different context windows for visual and language tokens, making it difficult to directly extend the visual tokens to match the language context window. Based on this, we propose to adapt LMMs for long video understanding tasks by extending the visual context window, eliminating the need for retraining on large scalelong video datasets. To further mitigate the significant memory consumption caused by long sequences, we introduce a progressive pooling inference strategy that selectively adjusts the spatial resolution of frame embeddings, reducing the number of visual tokens while retaining important spatial information. Across multiple long video understanding benchmarks, our method consistently improves the performance as the number of video frames increases. On the MLVU benchmark, our method outperforms GPT-4o, even though our model size is only 7B. Additionally, in the 256-frame setting, our method reduces memory usage by approximately 45% compared to the baseline, without introducing any performance loss.

KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization

LLMs are seeing growing use for applications such as document analysis and summarization which require large context windows, and with these large context windows KV cache activations surface as the dominant contributor to memory consumption during inference. Quantization is a promising approach for compressing KV cache activations; however, existing solutions fail to represent activations accurately in ultra-low precisions, such as sub-4-bit. In this work, we present KVQuant, which addresses this problem by incorporating novel methods for quantizing cached KV activations, including: (i) Per-Channel Key Quantization, where we adjust the dimension along which we quantize the Key activations to better match the distribution; (ii) Pre-RoPE Key Quantization, where we quantize Key activations before the rotary positional embedding to mitigate its impact on quantization; (iii) Non-Uniform KV Cache Quantization, where we derive per-layer sensitivity-weighted non-uniform datatypes that better represent the distributions; (iv) Per-Vector Dense-and-Sparse Quantization, where we isolate outliers separately for each vector to minimize skews in quantization ranges; and (v) Q-Norm, where we normalize quantization centroids in order to mitigate distribution shift, providing additional benefits for 2-bit quantization. By applying our method to the LLaMA, LLaMA-2, and Mistral models, we achieve <0.1 perplexity degradation with 3-bit quantization on both Wikitext-2 and C4, outperforming existing approaches. Our method enables serving the LLaMA-7B model with a context length of up to 1 million on a single A100-80GB GPU and up to 10 million on an 8-GPU system.

InfLLM: Unveiling the Intrinsic Capacity of LLMs for Understanding Extremely Long Sequences with Training-Free Memory

Large language models (LLMs) have emerged as a cornerstone in real-world applications with lengthy streaming inputs, such as LLM-driven agents. However, existing LLMs, pre-trained on sequences with restricted maximum length, cannot generalize to longer sequences due to the out-of-domain and distraction issues. To alleviate these issues, existing efforts employ sliding attention windows and discard distant tokens to achieve the processing of extremely long sequences. Unfortunately, these approaches inevitably fail to capture long-distance dependencies within sequences to deeply understand semantics. This paper introduces a training-free memory-based method, InfLLM, to unveil the intrinsic ability of LLMs to process streaming long sequences. Specifically, InfLLM stores distant contexts into additional memory units and employs an efficient mechanism to lookup token-relevant units for attention computation. Thereby, InfLLM allows LLMs to efficiently process long sequences while maintaining the ability to capture long-distance dependencies. Without any training, InfLLM enables LLMs pre-trained on sequences of a few thousand tokens to achieve superior performance than competitive baselines continually training these LLMs on long sequences. Even when the sequence length is scaled to 1,024K, InfLLM still effectively captures long-distance dependencies.

HiDiffusion: Unlocking High-Resolution Creativity and Efficiency in Low-Resolution Trained Diffusion Models

We introduce HiDiffusion, a tuning-free framework comprised of Resolution-Aware U-Net (RAU-Net) and Modified Shifted Window Multi-head Self-Attention (MSW-MSA) to enable pretrained large text-to-image diffusion models to efficiently generate high-resolution images (e.g. 1024times1024) that surpass the training image resolution. Pretrained diffusion models encounter unreasonable object duplication in generating images beyond the training image resolution. We attribute it to the mismatch between the feature map size of high-resolution images and the receptive field of U-Net's convolution. To address this issue, we propose a simple yet scalable method named RAU-Net. RAU-Net dynamically adjusts the feature map size to match the convolution's receptive field in the deep block of U-Net. Another obstacle in high-resolution synthesis is the slow inference speed of U-Net. Our observations reveal that the global self-attention in the top block, which exhibits locality, however, consumes the majority of computational resources. To tackle this issue, we propose MSW-MSA. Unlike previous window attention mechanisms, our method uses a much larger window size and dynamically shifts windows to better accommodate diffusion models. Extensive experiments demonstrate that our HiDiffusion can scale diffusion models to generate 1024times1024, 2048times2048, or even 4096times4096 resolution images, while simultaneously reducing inference time by 40\%-60\%, achieving state-of-the-art performance on high-resolution image synthesis. The most significant revelation of our work is that a pretrained diffusion model on low-resolution images is scalable for high-resolution generation without further tuning. We hope this revelation can provide insights for future research on the scalability of diffusion models.

MAFormer: A Transformer Network with Multi-scale Attention Fusion for Visual Recognition

Vision Transformer and its variants have demonstrated great potential in various computer vision tasks. But conventional vision transformers often focus on global dependency at a coarse level, which suffer from a learning challenge on global relationships and fine-grained representation at a token level. In this paper, we introduce Multi-scale Attention Fusion into transformer (MAFormer), which explores local aggregation and global feature extraction in a dual-stream framework for visual recognition. We develop a simple but effective module to explore the full potential of transformers for visual representation by learning fine-grained and coarse-grained features at a token level and dynamically fusing them. Our Multi-scale Attention Fusion (MAF) block consists of: i) a local window attention branch that learns short-range interactions within windows, aggregating fine-grained local features; ii) global feature extraction through a novel Global Learning with Down-sampling (GLD) operation to efficiently capture long-range context information within the whole image; iii) a fusion module that self-explores the integration of both features via attention. Our MAFormer achieves state-of-the-art performance on common vision tasks. In particular, MAFormer-L achieves 85.9% Top-1 accuracy on ImageNet, surpassing CSWin-B and LV-ViT-L by 1.7% and 0.6% respectively. On MSCOCO, MAFormer outperforms the prior art CSWin by 1.7% mAPs on object detection and 1.4% on instance segmentation with similar-sized parameters, demonstrating the potential to be a general backbone network.

VideoFactory: Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation

We present VideoFactory, an innovative framework for generating high-quality open-domain videos. VideoFactory excels in producing high-definition (1376x768), widescreen (16:9) videos without watermarks, creating an engaging user experience. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. To fully unlock model capabilities for high-quality video generation, we curate a large-scale video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. Objective metrics and user studies demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.

Visual Decoding and Reconstruction via EEG Embeddings with Guided Diffusion

How to decode human vision through neural signals has attracted a long-standing interest in neuroscience and machine learning. Modern contrastive learning and generative models improved the performance of fMRI-based visual decoding and reconstruction. However, the high cost and low temporal resolution of fMRI limit their applications in brain-computer interfaces (BCIs), prompting a high need for EEG-based visual reconstruction. In this study, we present an EEG-based visual reconstruction framework. It consists of a plug-and-play EEG encoder called the Adaptive Thinking Mapper (ATM), which is aligned with image embeddings, and a two-stage EEG guidance image generator that first transforms EEG features into image priors and then reconstructs the visual stimuli with a pre-trained image generator. Our approach allows EEG embeddings to achieve superior performance in image classification and retrieval tasks. Our two-stage image generation strategy vividly reconstructs images seen by humans. Furthermore, we analyzed the impact of signals from different time windows and brain regions on decoding and reconstruction. The versatility of our framework is demonstrated in the magnetoencephalogram (MEG) data modality. We report that EEG-based visual decoding achieves SOTA performance, highlighting the portability, low cost, and high temporal resolution of EEG, enabling a wide range of BCI applications. The code of ATM is available at https://github.com/dongyangli-del/EEG_Image_decode.

iTransformer: Inverted Transformers Are Effective for Time Series Forecasting

The recent boom of linear forecasting models questions the ongoing passion for architectural modifications of Transformer-based forecasters. These forecasters leverage Transformers to model the global dependencies over temporal tokens of time series, with each token formed by multiple variates of the same timestamp. However, Transformers are challenged in forecasting series with larger lookback windows due to performance degradation and computation explosion. Besides, the embedding for each temporal token fuses multiple variates that represent potential delayed events and distinct physical measurements, which may fail in learning variate-centric representations and result in meaningless attention maps. In this work, we reflect on the competent duties of Transformer components and repurpose the Transformer architecture without any modification to the basic components. We propose iTransformer that simply applies the attention and feed-forward network on the inverted dimensions. Specifically, the time points of individual series are embedded into variate tokens which are utilized by the attention mechanism to capture multivariate correlations; meanwhile, the feed-forward network is applied for each variate token to learn nonlinear representations. The iTransformer model achieves state-of-the-art on challenging real-world datasets, which further empowers the Transformer family with promoted performance, generalization ability across different variates, and better utilization of arbitrary lookback windows, making it a nice alternative as the fundamental backbone of time series forecasting. Code is available at this repository: https://github.com/thuml/iTransformer.

FlatFormer: Flattened Window Attention for Efficient Point Cloud Transformer

Transformer, as an alternative to CNN, has been proven effective in many modalities (e.g., texts and images). For 3D point cloud transformers, existing efforts focus primarily on pushing their accuracy to the state-of-the-art level. However, their latency lags behind sparse convolution-based models (3x slower), hindering their usage in resource-constrained, latency-sensitive applications (such as autonomous driving). This inefficiency comes from point clouds' sparse and irregular nature, whereas transformers are designed for dense, regular workloads. This paper presents FlatFormer to close this latency gap by trading spatial proximity for better computational regularity. We first flatten the point cloud with window-based sorting and partition points into groups of equal sizes rather than windows of equal shapes. This effectively avoids expensive structuring and padding overheads. We then apply self-attention within groups to extract local features, alternate sorting axis to gather features from different directions, and shift windows to exchange features across groups. FlatFormer delivers state-of-the-art accuracy on Waymo Open Dataset with 4.6x speedup over (transformer-based) SST and 1.4x speedup over (sparse convolutional) CenterPoint. This is the first point cloud transformer that achieves real-time performance on edge GPUs and is faster than sparse convolutional methods while achieving on-par or even superior accuracy on large-scale benchmarks.

Magentic-One: A Generalist Multi-Agent System for Solving Complex Tasks

Modern AI agents, driven by advances in large foundation models, promise to enhance our productivity and transform our lives by augmenting our knowledge and capabilities. To achieve this vision, AI agents must effectively plan, perform multi-step reasoning and actions, respond to novel observations, and recover from errors, to successfully complete complex tasks across a wide range of scenarios. In this work, we introduce Magentic-One, a high-performing open-source agentic system for solving such tasks. Magentic-One uses a multi-agent architecture where a lead agent, the Orchestrator, plans, tracks progress, and re-plans to recover from errors. Throughout task execution, the Orchestrator directs other specialized agents to perform tasks as needed, such as operating a web browser, navigating local files, or writing and executing Python code. We show that Magentic-One achieves statistically competitive performance to the state-of-the-art on three diverse and challenging agentic benchmarks: GAIA, AssistantBench, and WebArena. Magentic-One achieves these results without modification to core agent capabilities or to how they collaborate, demonstrating progress towards generalist agentic systems. Moreover, Magentic-One's modular design allows agents to be added or removed from the team without additional prompt tuning or training, easing development and making it extensible to future scenarios. We provide an open-source implementation of Magentic-One, and we include AutoGenBench, a standalone tool for agentic evaluation. AutoGenBench provides built-in controls for repetition and isolation to run agentic benchmarks in a rigorous and contained manner -- which is important when agents' actions have side-effects. Magentic-One, AutoGenBench and detailed empirical performance evaluations of Magentic-One, including ablations and error analysis are available at https://aka.ms/magentic-one

AgentStore: Scalable Integration of Heterogeneous Agents As Specialized Generalist Computer Assistant

Digital agents capable of automating complex computer tasks have attracted considerable attention due to their immense potential to enhance human-computer interaction. However, existing agent methods exhibit deficiencies in their generalization and specialization capabilities, especially in handling open-ended computer tasks in real-world environments. Inspired by the rich functionality of the App store, we present AgentStore, a scalable platform designed to dynamically integrate heterogeneous agents for automating computer tasks. AgentStore empowers users to integrate third-party agents, allowing the system to continuously enrich its capabilities and adapt to rapidly evolving operating systems. Additionally, we propose a novel core MetaAgent with the AgentToken strategy to efficiently manage diverse agents and utilize their specialized and generalist abilities for both domain-specific and system-wide tasks. Extensive experiments on three challenging benchmarks demonstrate that AgentStore surpasses the limitations of previous systems with narrow capabilities, particularly achieving a significant improvement from 11.21\% to 23.85\% on the OSWorld benchmark, more than doubling the previous results. Comprehensive quantitative and qualitative results further demonstrate AgentStore's ability to enhance agent systems in both generalization and specialization, underscoring its potential for developing the specialized generalist computer assistant. All our codes will be made publicly available in https://chengyou-jia.github.io/AgentStore-Home.

WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling

Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer.

Denoising Task Routing for Diffusion Models

Diffusion models generate highly realistic images through learning a multi-step denoising process, naturally embodying the principles of multi-task learning (MTL). Despite the inherent connection between diffusion models and MTL, there remains an unexplored area in designing neural architectures that explicitly incorporate MTL into the framework of diffusion models. In this paper, we present Denoising Task Routing (DTR), a simple add-on strategy for existing diffusion model architectures to establish distinct information pathways for individual tasks within a single architecture by selectively activating subsets of channels in the model. What makes DTR particularly compelling is its seamless integration of prior knowledge of denoising tasks into the framework: (1) Task Affinity: DTR activates similar channels for tasks at adjacent timesteps and shifts activated channels as sliding windows through timesteps, capitalizing on the inherent strong affinity between tasks at adjacent timesteps. (2) Task Weights: During the early stages (higher timesteps) of the denoising process, DTR assigns a greater number of task-specific channels, leveraging the insight that diffusion models prioritize reconstructing global structure and perceptually rich contents in earlier stages, and focus on simple noise removal in later stages. Our experiments demonstrate that DTR consistently enhances the performance of diffusion models across various evaluation protocols, all without introducing additional parameters. Furthermore, DTR contributes to accelerating convergence during training. Finally, we show the complementarity between our architectural approach and existing MTL optimization techniques, providing a more complete view of MTL within the context of diffusion training.

How to Train Long-Context Language Models (Effectively)

We study continued training and supervised fine-tuning (SFT) of a language model (LM) to make effective use of long-context information. We first establish a reliable evaluation protocol to guide model development -- Instead of perplexity or simple needle-in-a-haystack (NIAH) tests, we use a broad set of long-context tasks, and we evaluate models after SFT with instruction data as this better reveals long-context abilities. Supported by our robust evaluations, we run thorough experiments to decide the data mix for continued pre-training, the instruction tuning dataset, and many other design choices. We find that (1) code repositories and books are excellent sources of long data, but it is crucial to combine them with high-quality short data; (2) training with a sequence length beyond the evaluation length boosts long-context performance; (3) for SFT, using only short instruction datasets yields strong performance on long-context tasks. Our final model, ProLong-8B, which is initialized from Llama-3 and trained on 40B tokens, demonstrates state-of-the-art long-context performance among similarly sized models at a length of 128K. ProLong outperforms Llama-3.18B-Instruct on the majority of long-context tasks despite having seen only 5% as many tokens during long-context training. Additionally, ProLong can effectively process up to 512K tokens, one of the longest context windows of publicly available LMs.

Before It's Too Late: A State Space Model for the Early Prediction of Misinformation and Disinformation Engagement

In today's digital age, conspiracies and information campaigns can emerge rapidly and erode social and democratic cohesion. While recent deep learning approaches have made progress in modeling engagement through language and propagation models, they struggle with irregularly sampled data and early trajectory assessment. We present IC-Mamba, a novel state space model that forecasts social media engagement by modeling interval-censored data with integrated temporal embeddings. Our model excels at predicting engagement patterns within the crucial first 15-30 minutes of posting (RMSE 0.118-0.143), enabling rapid assessment of content reach. By incorporating interval-censored modeling into the state space framework, IC-Mamba captures fine-grained temporal dynamics of engagement growth, achieving a 4.72% improvement over state-of-the-art across multiple engagement metrics (likes, shares, comments, and emojis). Our experiments demonstrate IC-Mamba's effectiveness in forecasting both post-level dynamics and broader narrative patterns (F1 0.508-0.751 for narrative-level predictions). The model maintains strong predictive performance across extended time horizons, successfully forecasting opinion-level engagement up to 28 days ahead using observation windows of 3-10 days. These capabilities enable earlier identification of potentially problematic content, providing crucial lead time for designing and implementing countermeasures. Code is available at: https://github.com/ltian678/ic-mamba. An interactive dashboard demonstrating our results is available at: https://ic-mamba.behavioral-ds.science.

UrbanCAD: Towards Highly Controllable and Photorealistic 3D Vehicles for Urban Scene Simulation

Photorealistic 3D vehicle models with high controllability are essential for autonomous driving simulation and data augmentation. While handcrafted CAD models provide flexible controllability, free CAD libraries often lack the high-quality materials necessary for photorealistic rendering. Conversely, reconstructed 3D models offer high-fidelity rendering but lack controllability. In this work, we introduce UrbanCAD, a framework that pushes the frontier of the photorealism-controllability trade-off by generating highly controllable and photorealistic 3D vehicle digital twins from a single urban image and a collection of free 3D CAD models and handcrafted materials. These digital twins enable realistic 360-degree rendering, vehicle insertion, material transfer, relighting, and component manipulation such as opening doors and rolling down windows, supporting the construction of long-tail scenarios. To achieve this, we propose a novel pipeline that operates in a retrieval-optimization manner, adapting to observational data while preserving flexible controllability and fine-grained handcrafted details. Furthermore, given multi-view background perspective and fisheye images, we approximate environment lighting using fisheye images and reconstruct the background with 3DGS, enabling the photorealistic insertion of optimized CAD models into rendered novel view backgrounds. Experimental results demonstrate that UrbanCAD outperforms baselines based on reconstruction and retrieval in terms of photorealism. Additionally, we show that various perception models maintain their accuracy when evaluated on UrbanCAD with in-distribution configurations but degrade when applied to realistic out-of-distribution data generated by our method. This suggests that UrbanCAD is a significant advancement in creating photorealistic, safety-critical driving scenarios for downstream applications.

Factorization Vision Transformer: Modeling Long Range Dependency with Local Window Cost

Transformers have astounding representational power but typically consume considerable computation which is quadratic with image resolution. The prevailing Swin transformer reduces computational costs through a local window strategy. However, this strategy inevitably causes two drawbacks: (1) the local window-based self-attention hinders global dependency modeling capability; (2) recent studies point out that local windows impair robustness. To overcome these challenges, we pursue a preferable trade-off between computational cost and performance. Accordingly, we propose a novel factorization self-attention mechanism (FaSA) that enjoys both the advantages of local window cost and long-range dependency modeling capability. By factorizing the conventional attention matrix into sparse sub-attention matrices, FaSA captures long-range dependencies while aggregating mixed-grained information at a computational cost equivalent to the local window-based self-attention. Leveraging FaSA, we present the factorization vision transformer (FaViT) with a hierarchical structure. FaViT achieves high performance and robustness, with linear computational complexity concerning input image spatial resolution. Extensive experiments have shown FaViT's advanced performance in classification and downstream tasks. Furthermore, it also exhibits strong model robustness to corrupted and biased data and hence demonstrates benefits in favor of practical applications. In comparison to the baseline model Swin-T, our FaViT-B2 significantly improves classification accuracy by 1% and robustness by 7%, while reducing model parameters by 14%. Our code will soon be publicly available at https://github.com/q2479036243/FaViT.

LOVECon: Text-driven Training-Free Long Video Editing with ControlNet

Leveraging pre-trained conditional diffusion models for video editing without further tuning has gained increasing attention due to its promise in film production, advertising, etc. Yet, seminal works in this line fall short in generation length, temporal coherence, or fidelity to the source video. This paper aims to bridge the gap, establishing a simple and effective baseline for training-free diffusion model-based long video editing. As suggested by prior arts, we build the pipeline upon ControlNet, which excels at various image editing tasks based on text prompts. To break down the length constraints caused by limited computational memory, we split the long video into consecutive windows and develop a novel cross-window attention mechanism to ensure the consistency of global style and maximize the smoothness among windows. To achieve more accurate control, we extract the information from the source video via DDIM inversion and integrate the outcomes into the latent states of the generations. We also incorporate a video frame interpolation model to mitigate the frame-level flickering issue. Extensive empirical studies verify the superior efficacy of our method over competing baselines across scenarios, including the replacement of the attributes of foreground objects, style transfer, and background replacement. In particular, our method manages to edit videos with up to 128 frames according to user requirements. Code is available at https://github.com/zhijie-group/LOVECon.

SVDC: Consistent Direct Time-of-Flight Video Depth Completion with Frequency Selective Fusion

Lightweight direct Time-of-Flight (dToF) sensors are ideal for 3D sensing on mobile devices. However, due to the manufacturing constraints of compact devices and the inherent physical principles of imaging, dToF depth maps are sparse and noisy. In this paper, we propose a novel video depth completion method, called SVDC, by fusing the sparse dToF data with the corresponding RGB guidance. Our method employs a multi-frame fusion scheme to mitigate the spatial ambiguity resulting from the sparse dToF imaging. Misalignment between consecutive frames during multi-frame fusion could cause blending between object edges and the background, which results in a loss of detail. To address this, we introduce an adaptive frequency selective fusion (AFSF) module, which automatically selects convolution kernel sizes to fuse multi-frame features. Our AFSF utilizes a channel-spatial enhancement attention (CSEA) module to enhance features and generates an attention map as fusion weights. The AFSF ensures edge detail recovery while suppressing high-frequency noise in smooth regions. To further enhance temporal consistency, We propose a cross-window consistency loss to ensure consistent predictions across different windows, effectively reducing flickering. Our proposed SVDC achieves optimal accuracy and consistency on the TartanAir and Dynamic Replica datasets. Code is available at https://github.com/Lan1eve/SVDC.

HiRes-LLaVA: Restoring Fragmentation Input in High-Resolution Large Vision-Language Models

High-resolution inputs enable Large Vision-Language Models (LVLMs) to discern finer visual details, enhancing their comprehension capabilities. To reduce the training and computation costs caused by high-resolution input, one promising direction is to use sliding windows to slice the input into uniform patches, each matching the input size of the well-trained vision encoder. Although efficient, this slicing strategy leads to the fragmentation of original input, i.e., the continuity of contextual information and spatial geometry is lost across patches, adversely affecting performance in cross-patch context perception and position-specific tasks. To overcome these shortcomings, we introduce HiRes-LLaVA, a novel framework designed to efficiently process any size of high-resolution input without altering the original contextual and geometric information. HiRes-LLaVA comprises two innovative components: (i) a SliceRestore adapter that reconstructs sliced patches into their original form, efficiently extracting both global and local features via down-up-sampling and convolution layers, and (ii) a Self-Mining Sampler to compresses the vision tokens based on themselves, preserving the original context and positional information while reducing training overhead. To assess the ability of handling context fragmentation, we construct a new benchmark, EntityGrid-QA, consisting of edge-related and position-related tasks. Our comprehensive experiments demonstrate the superiority of HiRes-LLaVA on both existing public benchmarks and on EntityGrid-QA, particularly on document-oriented tasks, establishing new standards for handling high-resolution inputs.

Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming

Proof-oriented programs mix computational content with proofs of program correctness. However, the human effort involved in programming and proving is still substantial, despite the use of Satisfiability Modulo Theories (SMT) solvers to automate proofs in languages such as F*. Seeking to spur research on using AI to automate the construction of proof-oriented programs, we curate a dataset of 600K lines of open-source F* programs and proofs, including software used in production systems ranging from Windows and Linux, to Python and Firefox. Our dataset includes around 32K top-level F* definitions, each representing a type-directed program and proof synthesis problem -- producing a definition given a formal specification expressed as an F* type. We provide a program-fragment checker that queries F* to check the correctness of candidate solutions. We believe this is the largest corpus of SMT-assisted program proofs coupled with a reproducible program-fragment checker. Grounded in this dataset, we investigate the use of AI to synthesize programs and their proofs in F*, with promising results. Our main finding in that the performance of fine-tuned smaller language models (such as Phi-2 or StarCoder) compare favorably with large language models (such as GPT-4), at a much lower computational cost. We also identify various type-based retrieval augmentation techniques and find that they boost performance significantly. With detailed error analysis and case studies, we identify potential strengths and weaknesses of models and techniques and suggest directions for future improvements.

Fuxi-DA: A Generalized Deep Learning Data Assimilation Framework for Assimilating Satellite Observations

Data assimilation (DA), as an indispensable component within contemporary Numerical Weather Prediction (NWP) systems, plays a crucial role in generating the analysis that significantly impacts forecast performance. Nevertheless, the development of an efficient DA system poses significant challenges, particularly in establishing intricate relationships between the background data and the vast amount of multi-source observation data within limited time windows in operational settings. To address these challenges, researchers design complex pre-processing methods for each observation type, leveraging approximate modeling and the power of super-computing clusters to expedite solutions. The emergence of deep learning (DL) models has been a game-changer, offering unified multi-modal modeling, enhanced nonlinear representation capabilities, and superior parallelization. These advantages have spurred efforts to integrate DL models into various domains of weather modeling. Remarkably, DL models have shown promise in matching, even surpassing, the forecast accuracy of leading operational NWP models worldwide. This success motivates the exploration of DL-based DA frameworks tailored for weather forecasting models. In this study, we introduces FuxiDA, a generalized DL-based DA framework for assimilating satellite observations. By assimilating data from Advanced Geosynchronous Radiation Imager (AGRI) aboard Fengyun-4B, FuXi-DA consistently mitigates analysis errors and significantly improves forecast performance. Furthermore, through a series of single-observation experiments, Fuxi-DA has been validated against established atmospheric physics, demonstrating its consistency and reliability.

Symbol as Points: Panoptic Symbol Spotting via Point-based Representation

This work studies the problem of panoptic symbol spotting, which is to spot and parse both countable object instances (windows, doors, tables, etc.) and uncountable stuff (wall, railing, etc.) from computer-aided design (CAD) drawings. Existing methods typically involve either rasterizing the vector graphics into images and using image-based methods for symbol spotting, or directly building graphs and using graph neural networks for symbol recognition. In this paper, we take a different approach, which treats graphic primitives as a set of 2D points that are locally connected and use point cloud segmentation methods to tackle it. Specifically, we utilize a point transformer to extract the primitive features and append a mask2former-like spotting head to predict the final output. To better use the local connection information of primitives and enhance their discriminability, we further propose the attention with connection module (ACM) and contrastive connection learning scheme (CCL). Finally, we propose a KNN interpolation mechanism for the mask attention module of the spotting head to better handle primitive mask downsampling, which is primitive-level in contrast to pixel-level for the image. Our approach, named SymPoint, is simple yet effective, outperforming recent state-of-the-art method GAT-CADNet by an absolute increase of 9.6% PQ and 10.4% RQ on the FloorPlanCAD dataset. The source code and models will be available at https://github.com/nicehuster/SymPoint.

ScatterFormer: Efficient Voxel Transformer with Scattered Linear Attention

Window-based transformers excel in large-scale point cloud understanding by capturing context-aware representations with affordable attention computation in a more localized manner. However, the sparse nature of point clouds leads to a significant variance in the number of voxels per window. Existing methods group the voxels in each window into fixed-length sequences through extensive sorting and padding operations, resulting in a non-negligible computational and memory overhead. In this paper, we introduce ScatterFormer, which to the best of our knowledge, is the first to directly apply attention to voxels across different windows as a single sequence. The key of ScatterFormer is a Scattered Linear Attention (SLA) module, which leverages the pre-computation of key-value pairs in linear attention to enable parallel computation on the variable-length voxel sequences divided by windows. Leveraging the hierarchical structure of GPUs and shared memory, we propose a chunk-wise algorithm that reduces the SLA module's latency to less than 1 millisecond on moderate GPUs. Furthermore, we develop a cross-window interaction module that improves the locality and connectivity of voxel features across different windows, eliminating the need for extensive window shifting. Our proposed ScatterFormer demonstrates 73.8 mAP (L2) on the Waymo Open Dataset and 72.4 NDS on the NuScenes dataset, running at an outstanding detection rate of 23 FPS.The code is available at https://github.com/skyhehe123/ScatterFormer{https://github.com/skyhehe123/ScatterFormer}.

BiFormer: Vision Transformer with Bi-Level Routing Attention

As the core building block of vision transformers, attention is a powerful tool to capture long-range dependency. However, such power comes at a cost: it incurs a huge computation burden and heavy memory footprint as pairwise token interaction across all spatial locations is computed. A series of works attempt to alleviate this problem by introducing handcrafted and content-agnostic sparsity into attention, such as restricting the attention operation to be inside local windows, axial stripes, or dilated windows. In contrast to these approaches, we propose a novel dynamic sparse attention via bi-level routing to enable a more flexible allocation of computations with content awareness. Specifically, for a query, irrelevant key-value pairs are first filtered out at a coarse region level, and then fine-grained token-to-token attention is applied in the union of remaining candidate regions (\ie, routed regions). We provide a simple yet effective implementation of the proposed bi-level routing attention, which utilizes the sparsity to save both computation and memory while involving only GPU-friendly dense matrix multiplications. Built with the proposed bi-level routing attention, a new general vision transformer, named BiFormer, is then presented. As BiFormer attends to a small subset of relevant tokens in a query adaptive manner without distraction from other irrelevant ones, it enjoys both good performance and high computational efficiency, especially in dense prediction tasks. Empirical results across several computer vision tasks such as image classification, object detection, and semantic segmentation verify the effectiveness of our design. Code is available at https://github.com/rayleizhu/BiFormer.

GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild

Most in-the-wild images are stored in Low Dynamic Range (LDR) form, serving as a partial observation of the High Dynamic Range (HDR) visual world. Despite limited dynamic range, these LDR images are often captured with different exposures, implicitly containing information about the underlying HDR image distribution. Inspired by this intuition, in this work we present, to the best of our knowledge, the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner. The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images. The projection from HDR to LDR is achieved via a camera model that captures the stochasticity in exposure and camera response function. Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows, where previous supervised generative models produce overexposed images. We further demonstrate the new application of unsupervised inverse tone mapping (ITM) enabled by GlowGAN. Our ITM method does not need HDR images or paired multi-exposure images for training, yet it reconstructs more plausible information for overexposed regions than state-of-the-art supervised learning models trained on such data.

Global Context Vision Transformers

We propose global context vision transformer (GC ViT), a novel architecture that enhances parameter and compute utilization for computer vision tasks. The core of the novel model are global context self-attention modules, joint with standard local self-attention, to effectively yet efficiently model both long and short-range spatial interactions, as an alternative to complex operations such as an attention masks or local windows shifting. While the local self-attention modules are responsible for modeling short-range information, the global query tokens are shared across all global self-attention modules to interact with local key and values. In addition, we address the lack of inductive bias in ViTs and improve the modeling of inter-channel dependencies by proposing a novel downsampler which leverages a parameter-efficient fused inverted residual block. The proposed GC ViT achieves new state-of-the-art performance across image classification, object detection and semantic segmentation tasks. On ImageNet-1K dataset for classification, GC ViT models with 51M, 90M and 201M parameters achieve 84.3%, 84.9% and 85.6% Top-1 accuracy, respectively, surpassing comparably-sized prior art such as CNN-based ConvNeXt and ViT-based Swin Transformer. Pre-trained GC ViT backbones in downstream tasks of object detection, instance segmentation, and semantic segmentation on MS COCO and ADE20K datasets outperform prior work consistently, sometimes by large margins.

StyleSwin: Transformer-based GAN for High-resolution Image Generation

Despite the tantalizing success in a broad of vision tasks, transformers have not yet demonstrated on-par ability as ConvNets in high-resolution image generative modeling. In this paper, we seek to explore using pure transformers to build a generative adversarial network for high-resolution image synthesis. To this end, we believe that local attention is crucial to strike the balance between computational efficiency and modeling capacity. Hence, the proposed generator adopts Swin transformer in a style-based architecture. To achieve a larger receptive field, we propose double attention which simultaneously leverages the context of the local and the shifted windows, leading to improved generation quality. Moreover, we show that offering the knowledge of the absolute position that has been lost in window-based transformers greatly benefits the generation quality. The proposed StyleSwin is scalable to high resolutions, with both the coarse geometry and fine structures benefit from the strong expressivity of transformers. However, blocking artifacts occur during high-resolution synthesis because performing the local attention in a block-wise manner may break the spatial coherency. To solve this, we empirically investigate various solutions, among which we find that employing a wavelet discriminator to examine the spectral discrepancy effectively suppresses the artifacts. Extensive experiments show the superiority over prior transformer-based GANs, especially on high resolutions, e.g., 1024x1024. The StyleSwin, without complex training strategies, excels over StyleGAN on CelebA-HQ 1024, and achieves on-par performance on FFHQ-1024, proving the promise of using transformers for high-resolution image generation. The code and models will be available at https://github.com/microsoft/StyleSwin.

MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels

Malware family classification is a significant issue with public safety and research implications that has been hindered by the high cost of expert labels. The vast majority of corpora use noisy labeling approaches that obstruct definitive quantification of results and study of deeper interactions. In order to provide the data needed to advance further, we have created the Malware Open-source Threat Intelligence Family (MOTIF) dataset. MOTIF contains 3,095 malware samples from 454 families, making it the largest and most diverse public malware dataset with ground truth family labels to date, nearly 3x larger than any prior expert-labeled corpus and 36x larger than the prior Windows malware corpus. MOTIF also comes with a mapping from malware samples to threat reports published by reputable industry sources, which both validates the labels and opens new research opportunities in connecting opaque malware samples to human-readable descriptions. This enables important evaluations that are normally infeasible due to non-standardized reporting in industry. For example, we provide aliases of the different names used to describe the same malware family, allowing us to benchmark for the first time accuracy of existing tools when names are obtained from differing sources. Evaluation results obtained using the MOTIF dataset indicate that existing tasks have significant room for improvement, with accuracy of antivirus majority voting measured at only 62.10% and the well-known AVClass tool having just 46.78% accuracy. Our findings indicate that malware family classification suffers a type of labeling noise unlike that studied in most ML literature, due to the large open set of classes that may not be known from the sample under consideration

More than Encoder: Introducing Transformer Decoder to Upsample

Medical image segmentation methods downsample images for feature extraction and then upsample them to restore resolution for pixel-level predictions. In such a schema, upsample technique is vital in restoring information for better performance. However, existing upsample techniques leverage little information from downsampling paths. The local and detailed feature from the shallower layer such as boundary and tissue texture is particularly more important in medical segmentation compared with natural image segmentation. To this end, we propose a novel upsample approach for medical image segmentation, Window Attention Upsample (WAU), which upsamples features conditioned on local and detailed features from downsampling path in local windows by introducing attention decoders of Transformer. WAU could serve as a general upsample method and be incorporated into any segmentation model that possesses lateral connections. We first propose the Attention Upsample which consists of Attention Decoder (AD) and bilinear upsample. AD leverages pixel-level attention to model long-range dependency and global information for a better upsample. Bilinear upsample is introduced as the residual connection to complement the upsampled features. Moreover, considering the extensive memory and computation cost of pixel-level attention, we further design a window attention scheme to restrict attention computation in local windows instead of the global range. We evaluate our method (WAU) on classic U-Net structure with lateral connections and achieve state-of-the-art performance on Synapse multi-organ segmentation, Medical Segmentation Decathlon (MSD) Brain, and Automatic Cardiac Diagnosis Challenge (ACDC) datasets. We also validate the effectiveness of our method on multiple classic architectures and achieve consistent improvement.

GIRAFFE: Design Choices for Extending the Context Length of Visual Language Models

Visual Language Models (VLMs) demonstrate impressive capabilities in processing multimodal inputs, yet applications such as visual agents, which require handling multiple images and high-resolution videos, demand enhanced long-range modeling. Moreover, existing open-source VLMs lack systematic exploration into extending their context length, and commercial models often provide limited details. To tackle this, we aim to establish an effective solution that enhances long context performance of VLMs while preserving their capacities in short context scenarios. Towards this goal, we make the best design choice through extensive experiment settings from data curation to context window extending and utilizing: (1) we analyze data sources and length distributions to construct ETVLM - a data recipe to balance the performance across scenarios; (2) we examine existing position extending methods, identify their limitations and propose M-RoPE++ as an enhanced approach; we also choose to solely instruction-tune the backbone with mixed-source data; (3) we discuss how to better utilize extended context windows and propose hybrid-resolution training. Built on the Qwen-VL series model, we propose Giraffe, which is effectively extended to 128K lengths. Evaluated on extensive long context VLM benchmarks such as VideoMME and Viusal Haystacks, our Giraffe achieves state-of-the-art performance among similarly sized open-source long VLMs and is competitive with commercial model GPT-4V. We will open-source the code, data, and models.

Window-Based Early-Exit Cascades for Uncertainty Estimation: When Deep Ensembles are More Efficient than Single Models

Deep Ensembles are a simple, reliable, and effective method of improving both the predictive performance and uncertainty estimates of deep learning approaches. However, they are widely criticised as being computationally expensive, due to the need to deploy multiple independent models. Recent work has challenged this view, showing that for predictive accuracy, ensembles can be more computationally efficient (at inference) than scaling single models within an architecture family. This is achieved by cascading ensemble members via an early-exit approach. In this work, we investigate extending these efficiency gains to tasks related to uncertainty estimation. As many such tasks, e.g. selective classification, are binary classification, our key novel insight is to only pass samples within a window close to the binary decision boundary to later cascade stages. Experiments on ImageNet-scale data across a number of network architectures and uncertainty tasks show that the proposed window-based early-exit approach is able to achieve a superior uncertainty-computation trade-off compared to scaling single models. For example, a cascaded EfficientNet-B2 ensemble is able to achieve similar coverage at 5% risk as a single EfficientNet-B4 with <30% the number of MACs. We also find that cascades/ensembles give more reliable improvements on OOD data vs scaling models up. Code for this work is available at: https://github.com/Guoxoug/window-early-exit.

Extending LLMs' Context Window with 100 Samples

Large Language Models (LLMs) are known to have limited extrapolation ability beyond their pre-trained context window, constraining their application in downstream tasks with lengthy inputs. Recent studies have sought to extend LLMs' context window by modifying rotary position embedding (RoPE), a popular position encoding method adopted by well-known LLMs such as LLaMA, PaLM, and GPT-NeoX. However, prior works like Position Interpolation (PI) and YaRN are resource-intensive and lack comparative experiments to assess their applicability. In this work, we identify the inherent need for LLMs' attention entropy (i.e. the information entropy of attention scores) to maintain stability and introduce a novel extension to RoPE which combines adjusting RoPE's base frequency and scaling the attention logits to help LLMs efficiently adapt to a larger context window. We validate the superiority of our method in both fine-tuning performance and robustness across different context window sizes on various context-demanding tasks. Notably, our method extends the context window of LLaMA-2-7B-Chat to 16,384 with only 100 samples and 6 training steps, showcasing extraordinary efficiency. Finally, we also explore how data compositions and training curricula affect context window extension for specific downstream tasks, suggesting fine-tuning LLMs with lengthy conversations as a good starting point. We release our code and SFT data at https://github.com/GAIR-NLP/Entropy-ABF.

Two are better than one: Context window extension with multi-grained self-injection

The limited context window of contemporary large language models (LLMs) remains a huge barrier to their broader application across various domains. While continual pre-training on long-context data is a straightforward and effective solution, it incurs substantial costs in terms of data acquisition and computational resources. To alleviate this issue, we propose SharedLLM, a novel approach grounded in the design philosophy of multi-grained context compression and query-aware information retrieval. SharedLLM is composed of two short-context LLMs such as LLaMA-2, termed upper model and lower model. The lower model functions as a compressor while the upper model acts as a decoder. The upper model receives compressed, multi-grained context information from the lower model and performs context-aware modeling on the running text. Information transfer between the compressor and decoder occurs only at the lowest layers to refrain from long forward paths in the lower model and redundant cross-attention modules in the upper model. Based on this architecture, we introduce a specialized tree-style data structure to efficiently encode, store and retrieve multi-grained contextual information for text chunks. This structure, combined with a search algorithm, enables rapid encoding and retrieval of relevant information from various levels of the tree based on the input query. This entire process, wherein the sender and receiver are derived from the same LLM layer, is referred to as self-injection.

Extending Context Window of Large Language Models from a Distributional Perspective

Scaling the rotary position embedding (RoPE) has become a common method for extending the context window of RoPE-based large language models (LLMs). However, existing scaling methods often rely on empirical approaches and lack a profound understanding of the internal distribution within RoPE, resulting in suboptimal performance in extending the context window length. In this paper, we propose to optimize the context window extending task from the view of rotary angle distribution. Specifically, we first estimate the distribution of the rotary angles within the model and analyze the extent to which length extension perturbs this distribution. Then, we present a novel extension strategy that minimizes the disturbance between rotary angle distributions to maintain consistency with the pre-training phase, enhancing the model's capability to generalize to longer sequences. Experimental results compared to the strong baseline methods demonstrate that our approach reduces by up to 72% of the distributional disturbance when extending LLaMA2's context window to 8k, and reduces by up to 32% when extending to 16k. On the LongBench-E benchmark, our method achieves an average improvement of up to 4.33% over existing state-of-the-art methods. Furthermore, Our method maintains the model's performance on the Hugging Face Open LLM benchmark after context window extension, with only an average performance fluctuation ranging from -0.12 to +0.22.

Agent-SafetyBench: Evaluating the Safety of LLM Agents

As large language models (LLMs) are increasingly deployed as agents, their integration into interactive environments and tool use introduce new safety challenges beyond those associated with the models themselves. However, the absence of comprehensive benchmarks for evaluating agent safety presents a significant barrier to effective assessment and further improvement. In this paper, we introduce Agent-SafetyBench, a comprehensive benchmark designed to evaluate the safety of LLM agents. Agent-SafetyBench encompasses 349 interaction environments and 2,000 test cases, evaluating 8 categories of safety risks and covering 10 common failure modes frequently encountered in unsafe interactions. Our evaluation of 16 popular LLM agents reveals a concerning result: none of the agents achieves a safety score above 60%. This highlights significant safety challenges in LLM agents and underscores the considerable need for improvement. Through quantitative analysis, we identify critical failure modes and summarize two fundamental safety detects in current LLM agents: lack of robustness and lack of risk awareness. Furthermore, our findings suggest that reliance on defense prompts alone is insufficient to address these safety issues, emphasizing the need for more advanced and robust strategies. We release Agent-SafetyBench at https://github.com/thu-coai/Agent-SafetyBench to facilitate further research and innovation in agent safety evaluation and improvement.

AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents

Autonomy via agents using large language models (LLMs) for personalized, standardized tasks boosts human efficiency. Automating web tasks (like booking hotels within a budget) is increasingly sought after. Fulfilling practical needs, the web agent also serves as an important proof-of-concept example for various agent grounding scenarios, with its success promising advancements in many future applications. Prior research often handcrafts web agent strategies (e.g., prompting templates, multi-agent systems, search methods, etc.) and the corresponding in-context examples, which may not generalize well across all real-world scenarios. On the other hand, there has been limited study on the misalignment between a web agent's observation/action representation and the pre-training data of the LLM it's based on. This discrepancy is especially notable when LLMs are primarily trained for language completion rather than tasks involving embodied navigation actions and symbolic web elements. Our study enhances an LLM-based web agent by simply refining its observation and action space to better align with the LLM's capabilities. This approach enables our base agent to significantly outperform previous methods on a wide variety of web tasks. Specifically, on WebArena, a benchmark featuring general-purpose web interaction tasks, our agent AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively, and boosts the success rate by 26.6 points (+161%) over similar plain web agents with its observation and action space alignment. We achieve this without using in-context examples, new agent roles, online feedback or search strategies. AgentOccam's simple design highlights LLMs' impressive zero-shot performance on web tasks, and underlines the critical role of carefully tuning observation and action spaces for LLM-based agents.

NeedleBench: Can LLMs Do Retrieval and Reasoning in 1 Million Context Window?

In evaluating the long-context capabilities of large language models (LLMs), identifying content relevant to a user's query from original long documents is a crucial prerequisite for any LLM to answer questions based on long text. We present NeedleBench, a framework consisting of a series of progressively more challenging tasks for assessing bilingual long-context capabilities, spanning multiple length intervals (4k, 8k, 32k, 128k, 200k, 1000k, and beyond) and different depth ranges, allowing the strategic insertion of critical data points in different text depth zones to rigorously test the retrieval and reasoning capabilities of models in diverse contexts. We use the NeedleBench framework to assess how well the leading open-source models can identify key information relevant to the question and apply that information to reasoning in bilingual long texts. Furthermore, we propose the Ancestral Trace Challenge (ATC) to mimic the complexity of logical reasoning challenges that are likely to be present in real-world long-context tasks, providing a simple method for evaluating LLMs in dealing with complex long-context situations. Our results suggest that current LLMs have significant room for improvement in practical long-context applications, as they struggle with the complexity of logical reasoning challenges that are likely to be present in real-world long-context tasks. All codes and resources are available at OpenCompass: https://github.com/open-compass/opencompass.

On the limits of agency in agent-based models

Agent-based modeling (ABM) seeks to understand the behavior of complex systems by simulating a collection of agents that act and interact within an environment. Their practical utility requires capturing realistic environment dynamics and adaptive agent behavior while efficiently simulating million-size populations. Recent advancements in large language models (LLMs) present an opportunity to enhance ABMs by using LLMs as agents with further potential to capture adaptive behavior. However, the computational infeasibility of using LLMs for large populations has hindered their widespread adoption. In this paper, we introduce AgentTorch -- a framework that scales ABMs to millions of agents while capturing high-resolution agent behavior using LLMs. We benchmark the utility of LLMs as ABM agents, exploring the trade-off between simulation scale and individual agency. Using the COVID-19 pandemic as a case study, we demonstrate how AgentTorch can simulate 8.4 million agents representing New York City, capturing the impact of isolation and employment behavior on health and economic outcomes. We compare the performance of different agent architectures based on heuristic and LLM agents in predicting disease waves and unemployment rates. Furthermore, we showcase AgentTorch's capabilities for retrospective, counterfactual, and prospective analyses, highlighting how adaptive agent behavior can help overcome the limitations of historical data in policy design. AgentTorch is an open-source project actively being used for policy-making and scientific discovery around the world. The framework is available here: github.com/AgentTorch/AgentTorch.

Open-Ended Learning Leads to Generally Capable Agents

In this work we create agents that can perform well beyond a single, individual task, that exhibit much wider generalisation of behaviour to a massive, rich space of challenges. We define a universe of tasks within an environment domain and demonstrate the ability to train agents that are generally capable across this vast space and beyond. The environment is natively multi-agent, spanning the continuum of competitive, cooperative, and independent games, which are situated within procedurally generated physical 3D worlds. The resulting space is exceptionally diverse in terms of the challenges posed to agents, and as such, even measuring the learning progress of an agent is an open research problem. We propose an iterative notion of improvement between successive generations of agents, rather than seeking to maximise a singular objective, allowing us to quantify progress despite tasks being incomparable in terms of achievable rewards. We show that through constructing an open-ended learning process, which dynamically changes the training task distributions and training objectives such that the agent never stops learning, we achieve consistent learning of new behaviours. The resulting agent is able to score reward in every one of our humanly solvable evaluation levels, with behaviour generalising to many held-out points in the universe of tasks. Examples of this zero-shot generalisation include good performance on Hide and Seek, Capture the Flag, and Tag. Through analysis and hand-authored probe tasks we characterise the behaviour of our agent, and find interesting emergent heuristic behaviours such as trial-and-error experimentation, simple tool use, option switching, and cooperation. Finally, we demonstrate that the general capabilities of this agent could unlock larger scale transfer of behaviour through cheap finetuning.

FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

Recent advances in reinforcement learning (RL) heavily rely on a variety of well-designed benchmarks, which provide environmental platforms and consistent criteria to evaluate existing and novel algorithms. Specifically, in multi-agent RL (MARL), a plethora of benchmarks based on cooperative games have spurred the development of algorithms that improve the scalability of cooperative multi-agent systems. However, for the competitive setting, a lightweight and open-sourced benchmark with challenging gaming dynamics and visual inputs has not yet been established. In this work, we present FightLadder, a real-time fighting game platform, to empower competitive MARL research. Along with the platform, we provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics to characterize the performance and exploitability of agents. We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode, and expose the difficulty of training a non-exploitable agent without human knowledge and demonstrations in two-player mode. FightLadder provides meticulously designed environments to address critical challenges in competitive MARL research, aiming to catalyze a new era of discovery and advancement in the field. Videos and code at https://sites.google.com/view/fightladder/home.

Dynamic LLM-Agent Network: An LLM-agent Collaboration Framework with Agent Team Optimization

Large language model (LLM) agents have been shown effective on a wide range of tasks, and by ensembling multiple LLM agents, their performances could be further improved. Existing approaches employ a fixed set of agents to interact with each other in a static architecture, which limits their generalizability to various tasks and requires strong human prior in designing these agents. In this work, we propose to construct a strategic team of agents communicating in a dynamic interaction architecture based on the task query. Specifically, we build a framework named Dynamic LLM-Agent Network (DyLAN) for LLM-agent collaboration on complicated tasks like reasoning and code generation. DyLAN enables agents to interact for multiple rounds in a dynamic architecture with inference-time agent selection and an early-stopping mechanism to improve performance and efficiency. We further design an automatic agent team optimization algorithm based on an unsupervised metric termed Agent Importance Score, enabling the selection of best agents based on the contribution each agent makes. Empirically, we demonstrate that DyLAN performs well in both reasoning and code generation tasks with reasonable computational cost. DyLAN achieves 13.0% and 13.3% improvement on MATH and HumanEval, respectively, compared to a single execution on GPT-35-turbo. On specific subjects of MMLU, agent team optimization in DyLAN increases accuracy by up to 25.0%.