- Neural Hybrid Automata: Learning Dynamics with Multiple Modes and Stochastic Transitions Effective control and prediction of dynamical systems often require appropriate handling of continuous-time and discrete, event-triggered processes. Stochastic hybrid systems (SHSs), common across engineering domains, provide a formalism for dynamical systems subject to discrete, possibly stochastic, state jumps and multi-modal continuous-time flows. Despite the versatility and importance of SHSs across applications, a general procedure for the explicit learning of both discrete events and multi-mode continuous dynamics remains an open problem. This work introduces Neural Hybrid Automata (NHAs), a recipe for learning SHS dynamics without a priori knowledge on the number of modes and inter-modal transition dynamics. NHAs provide a systematic inference method based on normalizing flows, neural differential equations and self-supervision. We showcase NHAs on several tasks, including mode recovery and flow learning in systems with stochastic transitions, and end-to-end learning of hierarchical robot controllers. 9 authors · Jun 8, 2021
- Black-Box Autoregressive Density Estimation for State-Space Models State-space models (SSMs) provide a flexible framework for modelling time-series data. Consequently, SSMs are ubiquitously applied in areas such as engineering, econometrics and epidemiology. In this paper we provide a fast approach for approximate Bayesian inference in SSMs using the tools of deep learning and variational inference. 4 authors · Nov 20, 2018
- Design principles for a hybrid intelligence decision support system for business model validation One of the most critical tasks for startups is to validate their business model. Therefore, entrepreneurs try to collect information such as feedback from other actors to assess the validity of their assumptions and make decisions. However, previous work on decisional guidance for business model validation provides no solution for the highly uncertain and complex context of earlystage startups. The purpose of this paper is, thus, to develop design principles for a Hybrid Intelligence decision support system (HI-DSS) that combines the complementary capabilities of human and machine intelligence. We follow a design science research approach to design a prototype artifact and a set of design principles. Our study provides prescriptive knowledge for HI-DSS and contributes to previous work on decision support for business models, the applications of complementary strengths of humans and machines for making decisions, and support systems for extremely uncertain decision-making problems. 4 authors · May 7, 2021
- How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections Linear time-invariant state space models (SSM) are a classical model from engineering and statistics, that have recently been shown to be very promising in machine learning through the Structured State Space sequence model (S4). A core component of S4 involves initializing the SSM state matrix to a particular matrix called a HiPPO matrix, which was empirically important for S4's ability to handle long sequences. However, the specific matrix that S4 uses was actually derived in previous work for a particular time-varying dynamical system, and the use of this matrix as a time-invariant SSM had no known mathematical interpretation. Consequently, the theoretical mechanism by which S4 models long-range dependencies actually remains unexplained. We derive a more general and intuitive formulation of the HiPPO framework, which provides a simple mathematical interpretation of S4 as a decomposition onto exponentially-warped Legendre polynomials, explaining its ability to capture long dependencies. Our generalization introduces a theoretically rich class of SSMs that also lets us derive more intuitive S4 variants for other bases such as the Fourier basis, and explains other aspects of training S4, such as how to initialize the important timescale parameter. These insights improve S4's performance to 86% on the Long Range Arena benchmark, with 96% on the most difficult Path-X task. 5 authors · Jun 23, 2022
- Graph Switching Dynamical Systems Dynamical systems with complex behaviours, e.g. immune system cells interacting with a pathogen, are commonly modelled by splitting the behaviour into different regimes, or modes, each with simpler dynamics, and then learning the switching behaviour from one mode to another. Switching Dynamical Systems (SDS) are a powerful tool that automatically discovers these modes and mode-switching behaviour from time series data. While effective, these methods focus on independent objects, where the modes of one object are independent of the modes of the other objects. In this paper, we focus on the more general interacting object setting for switching dynamical systems, where the per-object dynamics also depends on an unknown and dynamically changing subset of other objects and their modes. To this end, we propose a novel graph-based approach for switching dynamical systems, GRAph Switching dynamical Systems (GRASS), in which we use a dynamic graph to characterize interactions between objects and learn both intra-object and inter-object mode-switching behaviour. We introduce two new datasets for this setting, a synthesized ODE-driven particles dataset and a real-world Salsa Couple Dancing dataset. Experiments show that GRASS can consistently outperforms previous state-of-the-art methods. 4 authors · Jun 1, 2023
1 Simplified State Space Layers for Sequence Modeling Models using structured state space sequence (S4) layers have achieved state-of-the-art performance on long-range sequence modeling tasks. An S4 layer combines linear state space models (SSMs), the HiPPO framework, and deep learning to achieve high performance. We build on the design of the S4 layer and introduce a new state space layer, the S5 layer. Whereas an S4 layer uses many independent single-input, single-output SSMs, the S5 layer uses one multi-input, multi-output SSM. We establish a connection between S5 and S4, and use this to develop the initialization and parameterization used by the S5 model. The result is a state space layer that can leverage efficient and widely implemented parallel scans, allowing S5 to match the computational efficiency of S4, while also achieving state-of-the-art performance on several long-range sequence modeling tasks. S5 averages 87.4% on the long range arena benchmark, and 98.5% on the most difficult Path-X task. 3 authors · Aug 9, 2022
- Deep Learning-based Approaches for State Space Models: A Selective Review State-space models (SSMs) offer a powerful framework for dynamical system analysis, wherein the temporal dynamics of the system are assumed to be captured through the evolution of the latent states, which govern the values of the observations. This paper provides a selective review of recent advancements in deep neural network-based approaches for SSMs, and presents a unified perspective for discrete time deep state space models and continuous time ones such as latent neural Ordinary Differential and Stochastic Differential Equations. It starts with an overview of the classical maximum likelihood based approach for learning SSMs, reviews variational autoencoder as a general learning pipeline for neural network-based approaches in the presence of latent variables, and discusses in detail representative deep learning models that fall under the SSM framework. Very recent developments, where SSMs are used as standalone architectural modules for improving efficiency in sequence modeling, are also examined. Finally, examples involving mixed frequency and irregularly-spaced time series data are presented to demonstrate the advantage of SSMs in these settings. 2 authors · Dec 15, 2024
- Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler State space models (SSM) have been widely applied for the analysis and visualization of large sequential datasets. Sequential Monte Carlo (SMC) is a very popular particle-based method to sample latent states from intractable posteriors. However, SSM is significantly influenced by the choice of the proposal. Recently Hamiltonian Monte Carlo (HMC) sampling has shown success in many practical problems. In this paper, we propose an SMC augmented by HMC (HSMC) for inference and model learning of nonlinear SSM, which can exempt us from learning proposals and reduce the model complexity significantly. Based on the measure preserving property of HMC, the particles directly generated by transition function can approximate the posterior of latent states arbitrarily well. In order to better adapt to the local geometry of latent space, the HMC is conducted on Riemannian manifold defined by a positive definite metric. In addition, we show that the proposed HSMC method can improve SSMs realized by both Gaussian Processes (GP) and Neural Network (NN). 1 authors · Jan 3, 2019
- SMR: State Memory Replay for Long Sequence Modeling Despite the promising performance of state space models (SSMs) in long sequence modeling, limitations still exist. Advanced SSMs like S5 and S6 (Mamba) in addressing non-uniform sampling, their recursive structures impede efficient SSM computation via convolution. To overcome compatibility limitations in parallel convolutional computation, this paper proposes a novel non-recursive non-uniform sample processing strategy. Theoretical analysis of SSMs through the lens of Event-Triggered Control (ETC) theory reveals the Non-Stable State (NSS) problem, where deviations from sampling point requirements lead to error transmission and accumulation, causing the divergence of the SSM's hidden state. Our analysis further reveals that adjustments of input sequences with early memories can mitigate the NSS problem, achieving Sampling Step Adaptation (SSA). Building on this insight, we introduce a simple yet effective plug-and-play mechanism, State Memory Replay (SMR), which utilizes learnable memories to adjust the current state with multi-step information for generalization at sampling points different from those in the training data. This enables SSMs to stably model varying sampling points. Experiments on long-range modeling tasks in autoregressive language modeling and Long Range Arena demonstrate the general effectiveness of the SMR mechanism for a series of SSM models. 7 authors · May 27, 2024 2
- Hybrid Systems Neural Control with Region-of-Attraction Planner Hybrid systems are prevalent in robotics. However, ensuring the stability of hybrid systems is challenging due to sophisticated continuous and discrete dynamics. A system with all its system modes stable can still be unstable. Hence special treatments are required at mode switchings to stabilize the system. In this work, we propose a hierarchical, neural network (NN)-based method to control general hybrid systems. For each system mode, we first learn an NN Lyapunov function and an NN controller to ensure the states within the region of attraction (RoA) can be stabilized. Then an RoA NN estimator is learned across different modes. Upon mode switching, we propose a differentiable planner to ensure the states after switching can land in next mode's RoA, hence stabilizing the hybrid system. We provide novel theoretical stability guarantees and conduct experiments in car tracking control, pogobot navigation, and bipedal walker locomotion. Our method only requires 0.25X of the training time as needed by other learning-based methods. With low running time (10-50X faster than model predictive control (MPC)), our controller achieves a higher stability/success rate over other baselines such as MPC, reinforcement learning (RL), common Lyapunov methods (CLF), linear quadratic regulator (LQR), quadratic programming (QP) and Hamilton-Jacobian-based methods (HJB). The project page is on https://mit-realm.github.io/hybrid-clf. 2 authors · Mar 18, 2023
- Continuous-time optimal control for trajectory planning under uncertainty This paper presents a continuous-time optimal control framework for the generation of reference trajectories in driving scenarios with uncertainty. A previous work presented a discrete-time stochastic generator for autonomous vehicles; those results are extended to continuous time to ensure the robustness of the generator in a real-time setting. We show that the stochastic model in continuous time can capture the uncertainty of information by producing better results, limiting the risk of violating the problem's constraints compared to a discrete approach. Dynamic solvers provide faster computation and the continuous-time model is more robust to a wider variety of driving scenarios than the discrete-time model, as it can handle further time horizons, which allows trajectory planning outside the framework of urban driving scenarios. 3 authors · Jun 25, 2024
- Efficiently Training Deep-Learning Parametric Policies using Lagrangian Duality Constrained Markov Decision Processes (CMDPs) are critical in many high-stakes applications, where decisions must optimize cumulative rewards while strictly adhering to complex nonlinear constraints. In domains such as power systems, finance, supply chains, and precision robotics, violating these constraints can result in significant financial or societal costs. Existing Reinforcement Learning (RL) methods often struggle with sample efficiency and effectiveness in finding feasible policies for highly and strictly constrained CMDPs, limiting their applicability in these environments. Stochastic dual dynamic programming is often used in practice on convex relaxations of the original problem, but they also encounter computational challenges and loss of optimality. This paper introduces a novel approach, Two-Stage Deep Decision Rules (TS-DDR), to efficiently train parametric actor policies using Lagrangian Duality. TS-DDR is a self-supervised learning algorithm that trains general decision rules (parametric policies) using stochastic gradient descent (SGD); its forward passes solve {\em deterministic} optimization problems to find feasible policies, and its backward passes leverage duality theory to train the parametric policy with closed-form gradients. TS-DDR inherits the flexibility and computational performance of deep learning methodologies to solve CMDP problems. Applied to the Long-Term Hydrothermal Dispatch (LTHD) problem using actual power system data from Bolivia, TS-DDR is shown to enhance solution quality and to reduce computation times by several orders of magnitude when compared to current state-of-the-art methods. 4 authors · May 23, 2024
1 SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models Diffusion Probabilistic Models (DPMs) have achieved considerable success in generation tasks. As sampling from DPMs is equivalent to solving diffusion SDE or ODE which is time-consuming, numerous fast sampling methods built upon improved differential equation solvers are proposed. The majority of such techniques consider solving the diffusion ODE due to its superior efficiency. However, stochastic sampling could offer additional advantages in generating diverse and high-quality data. In this work, we engage in a comprehensive analysis of stochastic sampling from two aspects: variance-controlled diffusion SDE and linear multi-step SDE solver. Based on our analysis, we propose SA-Solver, which is an improved efficient stochastic Adams method for solving diffusion SDE to generate data with high quality. Our experiments show that SA-Solver achieves: 1) improved or comparable performance compared with the existing state-of-the-art sampling methods for few-step sampling; 2) SOTA FID scores on substantial benchmark datasets under a suitable number of function evaluations (NFEs). 7 authors · Sep 10, 2023
2 Discrete-Time Hybrid Automata Learning: Legged Locomotion Meets Skateboarding This paper introduces Discrete-time Hybrid Automata Learning (DHAL), a framework using on-policy Reinforcement Learning to identify and execute mode-switching without trajectory segmentation or event function learning. Hybrid dynamical systems, which include continuous flow and discrete mode switching, can model robotics tasks like legged robot locomotion. Model-based methods usually depend on predefined gaits, while model-free approaches lack explicit mode-switching knowledge. Current methods identify discrete modes via segmentation before regressing continuous flow, but learning high-dimensional complex rigid body dynamics without trajectory labels or segmentation is a challenging open problem. Our approach incorporates a beta policy distribution and a multi-critic architecture to model contact-guided motions, exemplified by a challenging quadrupedal robot skateboard task. We validate our method through simulations and real-world tests, demonstrating robust performance in hybrid dynamical systems. 5 authors · Mar 3 2
- Theoretical Foundations of Deep Selective State-Space Models Structured state-space models (SSMs) such as S4, stemming from the seminal work of Gu et al., are gaining popularity as effective approaches for modeling sequential data. Deep SSMs demonstrate outstanding performance across a diverse set of domains, at a reduced training and inference cost compared to attention-based transformers. Recent developments show that if the linear recurrence powering SSMs allows for multiplicative interactions between inputs and hidden states (e.g. GateLoop, Mamba, GLA), then the resulting architecture can surpass in both in accuracy and efficiency attention-powered foundation models trained on text, at scales of billion parameters. In this paper, we give theoretical grounding to this recent finding using tools from Rough Path Theory: we show that when random linear recurrences are equipped with simple input-controlled transitions (selectivity mechanism), then the hidden state is provably a low-dimensional projection of a powerful mathematical object called the signature of the input -- capturing non-linear interactions between tokens at distinct timescales. Our theory not only motivates the success of modern selective state-space models such as Mamba but also provides a solid framework to understand the expressive power of future SSM variants. 5 authors · Feb 29, 2024
- Multi-marginal Schrödinger Bridges with Iterative Reference Refinement Practitioners frequently aim to infer an unobserved population trajectory using sample snapshots at multiple time points. For instance, in single-cell sequencing, scientists would like to learn how gene expression evolves over time. But sequencing any cell destroys that cell. So we cannot access any cell's full trajectory, but we can access snapshot samples from many cells. Stochastic differential equations are commonly used to analyze systems with full individual-trajectory access; since here we have only sample snapshots, these methods are inapplicable. The deep learning community has recently explored using Schr\"odinger bridges (SBs) and their extensions to estimate these dynamics. However, these methods either (1) interpolate between just two time points or (2) require a single fixed reference dynamic within the SB, which is often just set to be Brownian motion. But learning piecewise from adjacent time points can fail to capture long-term dependencies. And practitioners are typically able to specify a model class for the reference dynamic but not the exact values of the parameters within it. So we propose a new method that (1) learns the unobserved trajectories from sample snapshots across multiple time points and (2) requires specification only of a class of reference dynamics, not a single fixed one. In particular, we suggest an iterative projection method inspired by Schr\"odinger bridges; we alternate between learning a piecewise SB on the unobserved trajectories and using the learned SB to refine our best guess for the dynamics within the reference class. We demonstrate the advantages of our method via a well-known simulated parametric model from ecology, simulated and real data from systems biology, and real motion-capture data. 3 authors · Aug 12, 2024
- On stochastic MPC formulations with closed-loop guarantees: Analysis and a unifying framework We investigate model predictive control (MPC) formulations for linear systems subject to i.i.d. stochastic disturbances with bounded support and chance constraints. Existing stochastic MPC formulations with closed-loop guarantees can be broadly classified in two separate frameworks: i) using robust techniques; ii) feasibility preserving algorithms. We investigate two particular MPC formulations representative for these two frameworks called robust-stochastic MPC and indirect feedback stochastic MPC. We provide a qualitative analysis, highlighting intrinsic limitations of both approaches in different edge cases. Then, we derive a unifying stochastic MPC framework that naturally includes these two formulations as limit cases. This qualitative analysis is complemented with numerical results, showcasing the advantages and limitations of each method. 3 authors · Mar 31, 2023