Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSense Less, Generate More: Pre-training LiDAR Perception with Masked Autoencoders for Ultra-Efficient 3D Sensing
In this work, we propose a disruptively frugal LiDAR perception dataflow that generates rather than senses parts of the environment that are either predictable based on the extensive training of the environment or have limited consequence to the overall prediction accuracy. Therefore, the proposed methodology trades off sensing energy with training data for low-power robotics and autonomous navigation to operate frugally with sensors, extending their lifetime on a single battery charge. Our proposed generative pre-training strategy for this purpose, called as radially masked autoencoding (R-MAE), can also be readily implemented in a typical LiDAR system by selectively activating and controlling the laser power for randomly generated angular regions during on-field operations. Our extensive evaluations show that pre-training with R-MAE enables focusing on the radial segments of the data, thereby capturing spatial relationships and distances between objects more effectively than conventional procedures. Therefore, the proposed methodology not only reduces sensing energy but also improves prediction accuracy. For example, our extensive evaluations on Waymo, nuScenes, and KITTI datasets show that the approach achieves over a 5% average precision improvement in detection tasks across datasets and over a 4% accuracy improvement in transferring domains from Waymo and nuScenes to KITTI. In 3D object detection, it enhances small object detection by up to 4.37% in AP at moderate difficulty levels in the KITTI dataset. Even with 90% radial masking, it surpasses baseline models by up to 5.59% in mAP/mAPH across all object classes in the Waymo dataset. Additionally, our method achieves up to 3.17% and 2.31% improvements in mAP and NDS, respectively, on the nuScenes dataset, demonstrating its effectiveness with both single and fused LiDAR-camera modalities. https://github.com/sinatayebati/Radial_MAE.
Calorie Burn Estimation in Community Parks Through DLICP: A Mathematical Modelling Approach
Community parks play a crucial role in promoting physical activity and overall well-being. This study introduces DLICP (Deep Learning Integrated Community Parks), an innovative approach that combines deep learning techniques specifically, face recognition technology with a novel walking activity measurement algorithm to enhance user experience in community parks. The DLICP utilizes a camera with face recognition software to accurately identify and track park users. Simultaneously, a walking activity measurement algorithm calculates parameters such as the average pace and calories burned, tailored to individual attributes. Extensive evaluations confirm the precision of DLICP, with a Mean Absolute Error (MAE) of 5.64 calories and a Mean Percentage Error (MPE) of 1.96%, benchmarked against widely available fitness measurement devices, such as the Apple Watch Series 6. This study contributes significantly to the development of intelligent smart park systems, enabling real-time updates on burned calories and personalized fitness tracking.
An Analysis of Approaches Taken in the ACM RecSys Challenge 2018 for Automatic Music Playlist Continuation
The ACM Recommender Systems Challenge 2018 focused on the task of automatic music playlist continuation, which is a form of the more general task of sequential recommendation. Given a playlist of arbitrary length with some additional meta-data, the task was to recommend up to 500 tracks that fit the target characteristics of the original playlist. For the RecSys Challenge, Spotify released a dataset of one million user-generated playlists. Participants could compete in two tracks, i.e., main and creative tracks. Participants in the main track were only allowed to use the provided training set, however, in the creative track, the use of external public sources was permitted. In total, 113 teams submitted 1,228 runs to the main track; 33 teams submitted 239 runs to the creative track. The highest performing team in the main track achieved an R-precision of 0.2241, an NDCG of 0.3946, and an average number of recommended songs clicks of 1.784. In the creative track, an R-precision of 0.2233, an NDCG of 0.3939, and a click rate of 1.785 was obtained by the best team. This article provides an overview of the challenge, including motivation, task definition, dataset description, and evaluation. We further report and analyze the results obtained by the top performing teams in each track and explore the approaches taken by the winners. We finally summarize our key findings, discuss generalizability of approaches and results to domains other than music, and list the open avenues and possible future directions in the area of automatic playlist continuation.
fastrerandomize: An R Package for Fast Rerandomization Using Accelerated Computing
The fastrerandomize R package provides hardware-accelerated tools for performing rerandomization and randomization testing in experimental research. Using a JAX backend, the package enables exact rerandomization inference even for large experiments with hundreds of billions of possible randomizations. Key functionalities include generating pools of acceptable rerandomizations based on covariate balance, conducting exact randomization tests, and performing pre-analysis evaluations to determine optimal rerandomization acceptance thresholds. Through batched processing and GPU acceleration, fastrerandomize achieves substantial performance gains compared to existing implementations, making previously intractable designs computationally feasible. The package therefore extends the randomization-based inference toolkit in R, allowing researchers to efficiently implement more stringent rerandomization designs and conduct valid inference even with large sample sizes or in high-dimensional settings.
On the Anatomy of Real-World R Code for Static Analysis
CONTEXT The R programming language has a huge and active community, especially in the area of statistical computing. Its interpreted nature allows for several interesting constructs, like the manipulation of functions at run-time, that hinder the static analysis of R programs. At the same time, there is a lack of existing research regarding how these features, or even the R language as a whole are used in practice. OBJECTIVE In this paper, we conduct a large-scale, static analysis of more than 50 million lines of real-world R programs and packages to identify their characteristics and the features that are actually used. Moreover, we compare the similarities and differences between the scripts of R users and the implementations of package authors. We provide insights for static analysis tools like the lintr package as well as potential interpreter optimizations and uncover areas for future research. METHOD We analyze 4230 R scripts submitted alongside publications and the sources of 19450 CRAN packages for over 350000 R files, collecting and summarizing quantitative information for features of interest. RESULTS We find a high frequency of name-based indexing operations, assignments, and loops, but a low frequency for most of R's reflective functions. Furthermore, we find neither testing functions nor many calls to R's foreign function interface (FFI) in the publication submissions. CONCLUSION R scripts and package sources differ, for example, in their size, the way they include other packages, and their usage of R's reflective capabilities. We provide features that are used frequently and should be prioritized by static analysis tools, like operator assignments, function calls, and certain reflective functions like load.
AutoKnots: Adaptive Knot Allocation for Spline Interpolation
In astrophysical and cosmological analyses, the increasing quality and volume of astronomical data demand efficient and precise computational tools. This work introduces a novel adaptive algorithm for automatic knots (AutoKnots) allocation in spline interpolation, designed to meet user-defined precision requirements. Unlike traditional methods that rely on manually configured knot distributions with numerous parameters, the proposed technique automatically determines the optimal number and placement of knots based on interpolation error criteria. This simplifies configuration, often requiring only a single parameter. The algorithm progressively improves the interpolation by adaptively sampling the function-to-be-approximated, f(x), in regions where the interpolation error exceeds the desired threshold. All function evaluations contribute directly to the final approximation, ensuring efficiency. While each resampling step involves recomputing the interpolation table, this process is highly optimized and usually computationally negligible compared to the cost of evaluating f(x). We show the algorithm's efficacy through a series of precision tests on different functions. However, the study underscores the necessity for caution when dealing with certain function types, notably those featuring plateaus. To address this challenge, a heuristic enhancement is incorporated, improving accuracy in flat regions. This algorithm has been extensively used and tested over the years. NumCosmo includes a comprehensive set of unit tests that rigorously evaluate the algorithm both directly and indirectly, underscoring its robustness and reliability. As a practical application, we compute the surface mass density Sigma(R) and the average surface mass density Sigma(<R) for Navarro-Frenk-White and Hernquist halo density profiles, which provide analytical benchmarks. (abridged)
Collage: Light-Weight Low-Precision Strategy for LLM Training
Large models training is plagued by the intense compute cost and limited hardware memory. A practical solution is low-precision representation but is troubled by loss in numerical accuracy and unstable training rendering the model less useful. We argue that low-precision floating points can perform well provided the error is properly compensated at the critical locations in the training process. We propose Collage which utilizes multi-component float representation in low-precision to accurately perform operations with numerical errors accounted. To understand the impact of imprecision to training, we propose a simple and novel metric which tracks the lost information during training as well as differentiates various precision strategies. Our method works with commonly used low-precision such as half-precision (16-bit floating points) and can be naturally extended to work with even lower precision such as 8-bit. Experimental results show that pre-training using Collage removes the requirement of using 32-bit floating-point copies of the model and attains similar/better training performance compared to (16, 32)-bit mixed-precision strategy, with up to 3.7times speedup and sim 15% to 23% less memory usage in practice.
T5APR: Empowering Automated Program Repair across Languages through Checkpoint Ensemble
Automated program repair (APR) using deep learning techniques has become an important area of research in recent years, aiming to automatically generate bug-fixing patches that can improve software reliability and maintainability. However, most existing methods either target a single language or require high computational resources to train multilingual models. In this paper, we propose T5APR, a novel neural program repair approach that provides a unified solution for bug fixing across multiple programming languages. T5APR leverages CodeT5, a powerful pre-trained text-to-text transformer model, and adopts a checkpoint ensemble strategy to improve patch recommendation. We conduct comprehensive evaluations on six well-known benchmarks in four programming languages (Java, Python, C, JavaScript), demonstrating T5APR's competitiveness against state-of-the-art techniques. T5APR correctly fixes 1,985 bugs, including 1,442 bugs that none of the compared techniques has fixed. We further support the effectiveness of our approach by conducting detailed analyses, such as comparing the correct patch ranking among different techniques. The findings of this study demonstrate the potential of T5APR for use in real-world applications and highlight the importance of multilingual approaches in the field of APR.
Probabilistic Precision and Recall Towards Reliable Evaluation of Generative Models
Assessing the fidelity and diversity of the generative model is a difficult but important issue for technological advancement. So, recent papers have introduced k-Nearest Neighbor (kNN) based precision-recall metrics to break down the statistical distance into fidelity and diversity. While they provide an intuitive method, we thoroughly analyze these metrics and identify oversimplified assumptions and undesirable properties of kNN that result in unreliable evaluation, such as susceptibility to outliers and insensitivity to distributional changes. Thus, we propose novel metrics, P-precision and P-recall (PP\&PR), based on a probabilistic approach that address the problems. Through extensive investigations on toy experiments and state-of-the-art generative models, we show that our PP\&PR provide more reliable estimates for comparing fidelity and diversity than the existing metrics. The codes are available at https://github.com/kdst-team/Probablistic_precision_recall.
A Model RRNet for Spectral Information Exploitation and LAMOST Medium-resolution Spectrum Parameter Estimation
This work proposes a Residual Recurrent Neural Network (RRNet) for synthetically extracting spectral information, and estimating stellar atmospheric parameters together with 15 chemical element abundances for medium-resolution spectra from Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). The RRNet consists of two fundamental modules: a residual module and a recurrent module. The residual module extracts spectral features based on the longitudinally driving power from parameters, while the recurrent module recovers spectral information and restrains the negative influences from noises based on Cross-band Belief Enhancement. RRNet is trained by the spectra from common stars between LAMOST DR7 and APOGEE-Payne catalog. The 17 stellar parameters and their uncertainties for 2.37 million medium-resolution spectra from LAMOST DR7 are predicted. For spectra with S/N >= 10, the precision of estimations Teff and log g are 88 K and 0.13 dex respectively, elements C, Mg, Al, Si, Ca, Fe, Ni are 0.05 dex to 0.08 dex, and N, O, S, K, Ti, Cr, Mn are 0.09 dex to 0.14 dex, while that of Cu is 0.19 dex. Compared with StarNet and SPCANet, RRNet shows higher accuracy and robustness. In comparison to Apache Point Observatory Galactic Evolution Experiment and Galactic Archaeology with HERMES surveys, RRNet manifests good consistency within a reasonable range of bias. Finally, this work releases a catalog for 2.37 million medium-resolution spectra from the LAMOST DR7, the source code, the trained model and the experimental data respectively for astronomical science exploration and data processing algorithm research reference.
Cosmic Calipers: Precise and Accurate Neutron Star Radius Measurements with Next-Generation Gravitational Wave Detectors
Gravitational waves from merging binary neutron stars carry characteristic information about their astrophysical properties, including masses and tidal deformabilities, that are needed to infer their radii. In this study, we use Bayesian inference to quantify the precision with which radius can inferred with upgrades in the current gravitational wave detectors and next-generation observatories such as the Einstein Telescope and Cosmic Explorer. We assign evidences for a set of plausible equations of state, which are then used as weights to obtain radius posteriors. We find that prior choices and the loudness of observed signals limit the precision and accuracy of inferred radii by current detectors. In contrast, next-generation observatories can resolve the radius precisely and accurately, across most of the mass range to within lesssim 5% for both soft and stiff equations of state. We also explore how the choice of the neutron star mass prior can influence the inferred masses and potentially affect radii measurements, finding that choosing an astrophysically motivated prior does not notably impact an individual neutron star's radius measurements.