Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMeta Networks for Neural Style Transfer
In this paper we propose a new method to get the specified network parameters through one time feed-forward propagation of the meta networks and explore the application to neural style transfer. Recent works on style transfer typically need to train image transformation networks for every new style, and the style is encoded in the network parameters by enormous iterations of stochastic gradient descent. To tackle these issues, we build a meta network which takes in the style image and produces a corresponding image transformations network directly. Compared with optimization-based methods for every style, our meta networks can handle an arbitrary new style within 19ms seconds on one modern GPU card. The fast image transformation network generated by our meta network is only 449KB, which is capable of real-time executing on a mobile device. We also investigate the manifold of the style transfer networks by operating the hidden features from meta networks. Experiments have well validated the effectiveness of our method. Code and trained models has been released https://github.com/FalongShen/styletransfer.
StainFuser: Controlling Diffusion for Faster Neural Style Transfer in Multi-Gigapixel Histology Images
Stain normalization algorithms aim to transform the color and intensity characteristics of a source multi-gigapixel histology image to match those of a target image, mitigating inconsistencies in the appearance of stains used to highlight cellular components in the images. We propose a new approach, StainFuser, which treats this problem as a style transfer task using a novel Conditional Latent Diffusion architecture, eliminating the need for handcrafted color components. With this method, we curate SPI-2M the largest stain normalization dataset to date of over 2 million histology images with neural style transfer for high-quality transformations. Trained on this data, StainFuser outperforms current state-of-the-art GAN and handcrafted methods in terms of the quality of normalized images. Additionally, compared to existing approaches, it improves the performance of nuclei instance segmentation and classification models when used as a test time augmentation method on the challenging CoNIC dataset. Finally, we apply StainFuser on multi-gigapixel Whole Slide Images (WSIs) and demonstrate improved performance in terms of computational efficiency, image quality and consistency across tiles over current methods.
Generation of microbial colonies dataset with deep learning style transfer
We introduce an effective strategy to generate an annotated synthetic dataset of microbiological images of Petri dishes that can be used to train deep learning models in a fully supervised fashion. The developed generator employs traditional computer vision algorithms together with a neural style transfer method for data augmentation. We show that the method is able to synthesize a dataset of realistic looking images that can be used to train a neural network model capable of localising, segmenting, and classifying five different microbial species. Our method requires significantly fewer resources to obtain a useful dataset than collecting and labeling a whole large set of real images with annotations. We show that starting with only 100 real images, we can generate data to train a detector that achieves comparable results (detection mAP = 0.416, and counting MAE = 4.49) to the same detector but trained on a real, several dozen times bigger dataset (mAP = 0.520, MAE = 4.31), containing over 7k images. We prove the usefulness of the method in microbe detection and segmentation, but we expect that it is general and flexible and can also be applicable in other domains of science and industry to detect various objects.
DiffFashion: Reference-based Fashion Design with Structure-aware Transfer by Diffusion Models
Image-based fashion design with AI techniques has attracted increasing attention in recent years. We focus on a new fashion design task, where we aim to transfer a reference appearance image onto a clothing image while preserving the structure of the clothing image. It is a challenging task since there are no reference images available for the newly designed output fashion images. Although diffusion-based image translation or neural style transfer (NST) has enabled flexible style transfer, it is often difficult to maintain the original structure of the image realistically during the reverse diffusion, especially when the referenced appearance image greatly differs from the common clothing appearance. To tackle this issue, we present a novel diffusion model-based unsupervised structure-aware transfer method to semantically generate new clothes from a given clothing image and a reference appearance image. In specific, we decouple the foreground clothing with automatically generated semantic masks by conditioned labels. And the mask is further used as guidance in the denoising process to preserve the structure information. Moreover, we use the pre-trained vision Transformer (ViT) for both appearance and structure guidance. Our experimental results show that the proposed method outperforms state-of-the-art baseline models, generating more realistic images in the fashion design task. Code and demo can be found at https://github.com/Rem105-210/DiffFashion.
StyleRF: Zero-shot 3D Style Transfer of Neural Radiance Fields
3D style transfer aims to render stylized novel views of a 3D scene with multi-view consistency. However, most existing work suffers from a three-way dilemma over accurate geometry reconstruction, high-quality stylization, and being generalizable to arbitrary new styles. We propose StyleRF (Style Radiance Fields), an innovative 3D style transfer technique that resolves the three-way dilemma by performing style transformation within the feature space of a radiance field. StyleRF employs an explicit grid of high-level features to represent 3D scenes, with which high-fidelity geometry can be reliably restored via volume rendering. In addition, it transforms the grid features according to the reference style which directly leads to high-quality zero-shot style transfer. StyleRF consists of two innovative designs. The first is sampling-invariant content transformation that makes the transformation invariant to the holistic statistics of the sampled 3D points and accordingly ensures multi-view consistency. The second is deferred style transformation of 2D feature maps which is equivalent to the transformation of 3D points but greatly reduces memory footprint without degrading multi-view consistency. Extensive experiments show that StyleRF achieves superior 3D stylization quality with precise geometry reconstruction and it can generalize to various new styles in a zero-shot manner.
Artist Style Transfer Via Quadratic Potential
In this paper we address the problem of artist style transfer where the painting style of a given artist is applied on a real world photograph. We train our neural networks in adversarial setting via recently introduced quadratic potential divergence for stable learning process. To further improve the quality of generated artist stylized images we also integrate some of the recently introduced deep learning techniques in our method. To our best knowledge this is the first attempt towards artist style transfer via quadratic potential divergence. We provide some stylized image samples in the supplementary material. The source code for experimentation was written in PyTorch and is available online in my GitHub repository.
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a per-pixel loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing perceptual loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.
ST-ITO: Controlling Audio Effects for Style Transfer with Inference-Time Optimization
Audio production style transfer is the task of processing an input to impart stylistic elements from a reference recording. Existing approaches often train a neural network to estimate control parameters for a set of audio effects. However, these approaches are limited in that they can only control a fixed set of effects, where the effects must be differentiable or otherwise employ specialized training techniques. In this work, we introduce ST-ITO, Style Transfer with Inference-Time Optimization, an approach that instead searches the parameter space of an audio effect chain at inference. This method enables control of arbitrary audio effect chains, including unseen and non-differentiable effects. Our approach employs a learned metric of audio production style, which we train through a simple and scalable self-supervised pretraining strategy, along with a gradient-free optimizer. Due to the limited existing evaluation methods for audio production style transfer, we introduce a multi-part benchmark to evaluate audio production style metrics and style transfer systems. This evaluation demonstrates that our audio representation better captures attributes related to audio production and enables expressive style transfer via control of arbitrary audio effects.
Real-time Localized Photorealistic Video Style Transfer
We present a novel algorithm for transferring artistic styles of semantically meaningful local regions of an image onto local regions of a target video while preserving its photorealism. Local regions may be selected either fully automatically from an image, through using video segmentation algorithms, or from casual user guidance such as scribbles. Our method, based on a deep neural network architecture inspired by recent work in photorealistic style transfer, is real-time and works on arbitrary inputs without runtime optimization once trained on a diverse dataset of artistic styles. By augmenting our video dataset with noisy semantic labels and jointly optimizing over style, content, mask, and temporal losses, our method can cope with a variety of imperfections in the input and produce temporally coherent videos without visual artifacts. We demonstrate our method on a variety of style images and target videos, including the ability to transfer different styles onto multiple objects simultaneously, and smoothly transition between styles in time.
Zero-Shot Contrastive Loss for Text-Guided Diffusion Image Style Transfer
Diffusion models have shown great promise in text-guided image style transfer, but there is a trade-off between style transformation and content preservation due to their stochastic nature. Existing methods require computationally expensive fine-tuning of diffusion models or additional neural network. To address this, here we propose a zero-shot contrastive loss for diffusion models that doesn't require additional fine-tuning or auxiliary networks. By leveraging patch-wise contrastive loss between generated samples and original image embeddings in the pre-trained diffusion model, our method can generate images with the same semantic content as the source image in a zero-shot manner. Our approach outperforms existing methods while preserving content and requiring no additional training, not only for image style transfer but also for image-to-image translation and manipulation. Our experimental results validate the effectiveness of our proposed method.
BACON: Deep-Learning Powered AI for Poetry Generation with Author Linguistic Style Transfer
This paper describes BACON, a basic prototype of an automatic poetry generator with author linguistic style transfer. It combines concepts and techniques from finite state machinery, probabilistic models, artificial neural networks and deep learning, to write original poetry with rich aesthetic-qualities in the style of any given author. Extrinsic evaluation of the output generated by BACON shows that participants were unable to tell the difference between human and AI-generated poems in any statistically significant way.
Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer
We consider the task of text attribute transfer: transforming a sentence to alter a specific attribute (e.g., sentiment) while preserving its attribute-independent content (e.g., changing "screen is just the right size" to "screen is too small"). Our training data includes only sentences labeled with their attribute (e.g., positive or negative), but not pairs of sentences that differ only in their attributes, so we must learn to disentangle attributes from attribute-independent content in an unsupervised way. Previous work using adversarial methods has struggled to produce high-quality outputs. In this paper, we propose simpler methods motivated by the observation that text attributes are often marked by distinctive phrases (e.g., "too small"). Our strongest method extracts content words by deleting phrases associated with the sentence's original attribute value, retrieves new phrases associated with the target attribute, and uses a neural model to fluently combine these into a final output. On human evaluation, our best method generates grammatical and appropriate responses on 22% more inputs than the best previous system, averaged over three attribute transfer datasets: altering sentiment of reviews on Yelp, altering sentiment of reviews on Amazon, and altering image captions to be more romantic or humorous.
Expressive Neural Voice Cloning
Voice cloning is the task of learning to synthesize the voice of an unseen speaker from a few samples. While current voice cloning methods achieve promising results in Text-to-Speech (TTS) synthesis for a new voice, these approaches lack the ability to control the expressiveness of synthesized audio. In this work, we propose a controllable voice cloning method that allows fine-grained control over various style aspects of the synthesized speech for an unseen speaker. We achieve this by explicitly conditioning the speech synthesis model on a speaker encoding, pitch contour and latent style tokens during training. Through both quantitative and qualitative evaluations, we show that our framework can be used for various expressive voice cloning tasks using only a few transcribed or untranscribed speech samples for a new speaker. These cloning tasks include style transfer from a reference speech, synthesizing speech directly from text, and fine-grained style control by manipulating the style conditioning variables during inference.
Locally Stylized Neural Radiance Fields
In recent years, there has been increasing interest in applying stylization on 3D scenes from a reference style image, in particular onto neural radiance fields (NeRF). While performing stylization directly on NeRF guarantees appearance consistency over arbitrary novel views, it is a challenging problem to guide the transfer of patterns from the style image onto different parts of the NeRF scene. In this work, we propose a stylization framework for NeRF based on local style transfer. In particular, we use a hash-grid encoding to learn the embedding of the appearance and geometry components, and show that the mapping defined by the hash table allows us to control the stylization to a certain extent. Stylization is then achieved by optimizing the appearance branch while keeping the geometry branch fixed. To support local style transfer, we propose a new loss function that utilizes a segmentation network and bipartite matching to establish region correspondences between the style image and the content images obtained from volume rendering. Our experiments show that our method yields plausible stylization results with novel view synthesis while having flexible controllability via manipulating and customizing the region correspondences.
Text Detoxification using Large Pre-trained Neural Models
We present two novel unsupervised methods for eliminating toxicity in text. Our first method combines two recent ideas: (1) guidance of the generation process with small style-conditional language models and (2) use of paraphrasing models to perform style transfer. We use a well-performing paraphraser guided by style-trained language models to keep the text content and remove toxicity. Our second method uses BERT to replace toxic words with their non-offensive synonyms. We make the method more flexible by enabling BERT to replace mask tokens with a variable number of words. Finally, we present the first large-scale comparative study of style transfer models on the task of toxicity removal. We compare our models with a number of methods for style transfer. The models are evaluated in a reference-free way using a combination of unsupervised style transfer metrics. Both methods we suggest yield new SOTA results.
INRetouch: Context Aware Implicit Neural Representation for Photography Retouching
Professional photo editing remains challenging, requiring extensive knowledge of imaging pipelines and significant expertise. With the ubiquity of smartphone photography, there is an increasing demand for accessible yet sophisticated image editing solutions. While recent deep learning approaches, particularly style transfer methods, have attempted to automate this process, they often struggle with output fidelity, editing control, and complex retouching capabilities. We propose a novel retouch transfer approach that learns from professional edits through before-after image pairs, enabling precise replication of complex editing operations. To facilitate this research direction, we introduce a comprehensive Photo Retouching Dataset comprising 100,000 high-quality images edited using over 170 professional Adobe Lightroom presets. We develop a context-aware Implicit Neural Representation that learns to apply edits adaptively based on image content and context, requiring no pretraining and capable of learning from a single example. Our method extracts implicit transformations from reference edits and adaptively applies them to new images. Through extensive evaluation, we demonstrate that our approach not only surpasses existing methods in photo retouching but also enhances performance in related image reconstruction tasks like Gamut Mapping and Raw Reconstruction. By bridging the gap between professional editing capabilities and automated solutions, our work presents a significant step toward making sophisticated photo editing more accessible while maintaining high-fidelity results. Check the Project Page at https://omaralezaby.github.io/inretouch for more Results and information about Code and Dataset availability.
Stroke-based Neural Painting and Stylization with Dynamically Predicted Painting Region
Stroke-based rendering aims to recreate an image with a set of strokes. Most existing methods render complex images using an uniform-block-dividing strategy, which leads to boundary inconsistency artifacts. To solve the problem, we propose Compositional Neural Painter, a novel stroke-based rendering framework which dynamically predicts the next painting region based on the current canvas, instead of dividing the image plane uniformly into painting regions. We start from an empty canvas and divide the painting process into several steps. At each step, a compositor network trained with a phasic RL strategy first predicts the next painting region, then a painter network trained with a WGAN discriminator predicts stroke parameters, and a stroke renderer paints the strokes onto the painting region of the current canvas. Moreover, we extend our method to stroke-based style transfer with a novel differentiable distance transform loss, which helps preserve the structure of the input image during stroke-based stylization. Extensive experiments show our model outperforms the existing models in both stroke-based neural painting and stroke-based stylization. Code is available at https://github.com/sjtuplayer/Compositional_Neural_Painter
Exploring the structure of a real-time, arbitrary neural artistic stylization network
In this paper, we present a method which combines the flexibility of the neural algorithm of artistic style with the speed of fast style transfer networks to allow real-time stylization using any content/style image pair. We build upon recent work leveraging conditional instance normalization for multi-style transfer networks by learning to predict the conditional instance normalization parameters directly from a style image. The model is successfully trained on a corpus of roughly 80,000 paintings and is able to generalize to paintings previously unobserved. We demonstrate that the learned embedding space is smooth and contains a rich structure and organizes semantic information associated with paintings in an entirely unsupervised manner.
Vec-Tok Speech: speech vectorization and tokenization for neural speech generation
Language models (LMs) have recently flourished in natural language processing and computer vision, generating high-fidelity texts or images in various tasks. In contrast, the current speech generative models are still struggling regarding speech quality and task generalization. This paper presents Vec-Tok Speech, an extensible framework that resembles multiple speech generation tasks, generating expressive and high-fidelity speech. Specifically, we propose a novel speech codec based on speech vectors and semantic tokens. Speech vectors contain acoustic details contributing to high-fidelity speech reconstruction, while semantic tokens focus on the linguistic content of speech, facilitating language modeling. Based on the proposed speech codec, Vec-Tok Speech leverages an LM to undertake the core of speech generation. Moreover, Byte-Pair Encoding (BPE) is introduced to reduce the token length and bit rate for lower exposure bias and longer context coverage, improving the performance of LMs. Vec-Tok Speech can be used for intra- and cross-lingual zero-shot voice conversion (VC), zero-shot speaking style transfer text-to-speech (TTS), speech-to-speech translation (S2ST), speech denoising, and speaker de-identification and anonymization. Experiments show that Vec-Tok Speech, built on 50k hours of speech, performs better than other SOTA models. Code will be available at https://github.com/BakerBunker/VecTok .
Plug-in, Trainable Gate for Streamlining Arbitrary Neural Networks
Architecture optimization, which is a technique for finding an efficient neural network that meets certain requirements, generally reduces to a set of multiple-choice selection problems among alternative sub-structures or parameters. The discrete nature of the selection problem, however, makes this optimization difficult. To tackle this problem we introduce a novel concept of a trainable gate function. The trainable gate function, which confers a differentiable property to discretevalued variables, allows us to directly optimize loss functions that include non-differentiable discrete values such as 0-1 selection. The proposed trainable gate can be applied to pruning. Pruning can be carried out simply by appending the proposed trainable gate functions to each intermediate output tensor followed by fine-tuning the overall model, using any gradient-based training methods. So the proposed method can jointly optimize the selection of the pruned channels while fine-tuning the weights of the pruned model at the same time. Our experimental results demonstrate that the proposed method efficiently optimizes arbitrary neural networks in various tasks such as image classification, style transfer, optical flow estimation, and neural machine translation.
Deep Feature Consistent Variational Autoencoder
We present a novel method for constructing Variational Autoencoder (VAE). Instead of using pixel-by-pixel loss, we enforce deep feature consistency between the input and the output of a VAE, which ensures the VAE's output to preserve the spatial correlation characteristics of the input, thus leading the output to have a more natural visual appearance and better perceptual quality. Based on recent deep learning works such as style transfer, we employ a pre-trained deep convolutional neural network (CNN) and use its hidden features to define a feature perceptual loss for VAE training. Evaluated on the CelebA face dataset, we show that our model produces better results than other methods in the literature. We also show that our method can produce latent vectors that can capture the semantic information of face expressions and can be used to achieve state-of-the-art performance in facial attribute prediction.
Learning to Model Editing Processes
Most existing sequence generation models produce outputs in one pass, usually left-to-right. However, this is in contrast with a more natural approach that humans use in generating content; iterative refinement and editing. Recent work has introduced edit-based models for various tasks (such as neural machine translation and text style transfer), but these generally model a single edit step. In this work, we propose modeling editing processes, modeling the whole process of iteratively generating sequences. We form a conceptual framework to describe the likelihood of multi-step edits, and describe neural models that can learn a generative model of sequences based on these multistep edits. We introduce baseline results and metrics on this task, finding that modeling editing processes improves performance on a variety of axes on both our proposed task and related downstream tasks compared to previous single-step models of edits.
Brain Captioning: Decoding human brain activity into images and text
Every day, the human brain processes an immense volume of visual information, relying on intricate neural mechanisms to perceive and interpret these stimuli. Recent breakthroughs in functional magnetic resonance imaging (fMRI) have enabled scientists to extract visual information from human brain activity patterns. In this study, we present an innovative method for decoding brain activity into meaningful images and captions, with a specific focus on brain captioning due to its enhanced flexibility as compared to brain decoding into images. Our approach takes advantage of cutting-edge image captioning models and incorporates a unique image reconstruction pipeline that utilizes latent diffusion models and depth estimation. We utilized the Natural Scenes Dataset, a comprehensive fMRI dataset from eight subjects who viewed images from the COCO dataset. We employed the Generative Image-to-text Transformer (GIT) as our backbone for captioning and propose a new image reconstruction pipeline based on latent diffusion models. The method involves training regularized linear regression models between brain activity and extracted features. Additionally, we incorporated depth maps from the ControlNet model to further guide the reconstruction process. We evaluate our methods using quantitative metrics for both generated captions and images. Our brain captioning approach outperforms existing methods, while our image reconstruction pipeline generates plausible images with improved spatial relationships. In conclusion, we demonstrate significant progress in brain decoding, showcasing the enormous potential of integrating vision and language to better understand human cognition. Our approach provides a flexible platform for future research, with potential applications in various fields, including neural art, style transfer, and portable devices.
Tunable Convolutions with Parametric Multi-Loss Optimization
Behavior of neural networks is irremediably determined by the specific loss and data used during training. However it is often desirable to tune the model at inference time based on external factors such as preferences of the user or dynamic characteristics of the data. This is especially important to balance the perception-distortion trade-off of ill-posed image-to-image translation tasks. In this work, we propose to optimize a parametric tunable convolutional layer, which includes a number of different kernels, using a parametric multi-loss, which includes an equal number of objectives. Our key insight is to use a shared set of parameters to dynamically interpolate both the objectives and the kernels. During training, these parameters are sampled at random to explicitly optimize all possible combinations of objectives and consequently disentangle their effect into the corresponding kernels. During inference, these parameters become interactive inputs of the model hence enabling reliable and consistent control over the model behavior. Extensive experimental results demonstrate that our tunable convolutions effectively work as a drop-in replacement for traditional convolutions in existing neural networks at virtually no extra computational cost, outperforming state-of-the-art control strategies in a wide range of applications; including image denoising, deblurring, super-resolution, and style transfer.
DeformToon3D: Deformable 3D Toonification from Neural Radiance Fields
In this paper, we address the challenging problem of 3D toonification, which involves transferring the style of an artistic domain onto a target 3D face with stylized geometry and texture. Although fine-tuning a pre-trained 3D GAN on the artistic domain can produce reasonable performance, this strategy has limitations in the 3D domain. In particular, fine-tuning can deteriorate the original GAN latent space, which affects subsequent semantic editing, and requires independent optimization and storage for each new style, limiting flexibility and efficient deployment. To overcome these challenges, we propose DeformToon3D, an effective toonification framework tailored for hierarchical 3D GAN. Our approach decomposes 3D toonification into subproblems of geometry and texture stylization to better preserve the original latent space. Specifically, we devise a novel StyleField that predicts conditional 3D deformation to align a real-space NeRF to the style space for geometry stylization. Thanks to the StyleField formulation, which already handles geometry stylization well, texture stylization can be achieved conveniently via adaptive style mixing that injects information of the artistic domain into the decoder of the pre-trained 3D GAN. Due to the unique design, our method enables flexible style degree control and shape-texture-specific style swap. Furthermore, we achieve efficient training without any real-world 2D-3D training pairs but proxy samples synthesized from off-the-shelf 2D toonification models.
Style Injection in Diffusion: A Training-free Approach for Adapting Large-scale Diffusion Models for Style Transfer
Despite the impressive generative capabilities of diffusion models, existing diffusion model-based style transfer methods require inference-stage optimization (e.g. fine-tuning or textual inversion of style) which is time-consuming, or fails to leverage the generative ability of large-scale diffusion models. To address these issues, we introduce a novel artistic style transfer method based on a pre-trained large-scale diffusion model without any optimization. Specifically, we manipulate the features of self-attention layers as the way the cross-attention mechanism works; in the generation process, substituting the key and value of content with those of style image. This approach provides several desirable characteristics for style transfer including 1) preservation of content by transferring similar styles into similar image patches and 2) transfer of style based on similarity of local texture (e.g. edge) between content and style images. Furthermore, we introduce query preservation and attention temperature scaling to mitigate the issue of disruption of original content, and initial latent Adaptive Instance Normalization (AdaIN) to deal with the disharmonious color (failure to transfer the colors of style). Our experimental results demonstrate that our proposed method surpasses state-of-the-art methods in both conventional and diffusion-based style transfer baselines.
Bridging Text and Image for Artist Style Transfer via Contrastive Learning
Image style transfer has attracted widespread attention in the past few years. Despite its remarkable results, it requires additional style images available as references, making it less flexible and inconvenient. Using text is the most natural way to describe the style. More importantly, text can describe implicit abstract styles, like styles of specific artists or art movements. In this paper, we propose a Contrastive Learning for Artistic Style Transfer (CLAST) that leverages advanced image-text encoders to control arbitrary style transfer. We introduce a supervised contrastive training strategy to effectively extract style descriptions from the image-text model (i.e., CLIP), which aligns stylization with the text description. To this end, we also propose a novel and efficient adaLN based state space models that explore style-content fusion. Finally, we achieve a text-driven image style transfer. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods in artistic style transfer. More importantly, it does not require online fine-tuning and can render a 512x512 image in 0.03s.
StyleShot: A Snapshot on Any Style
In this paper, we show that, a good style representation is crucial and sufficient for generalized style transfer without test-time tuning. We achieve this through constructing a style-aware encoder and a well-organized style dataset called StyleGallery. With dedicated design for style learning, this style-aware encoder is trained to extract expressive style representation with decoupling training strategy, and StyleGallery enables the generalization ability. We further employ a content-fusion encoder to enhance image-driven style transfer. We highlight that, our approach, named StyleShot, is simple yet effective in mimicking various desired styles, i.e., 3D, flat, abstract or even fine-grained styles, without test-time tuning. Rigorous experiments validate that, StyleShot achieves superior performance across a wide range of styles compared to existing state-of-the-art methods. The project page is available at: https://styleshot.github.io/.
3DSNet: Unsupervised Shape-to-Shape 3D Style Transfer
Transferring the style from one image onto another is a popular and widely studied task in computer vision. Yet, style transfer in the 3D setting remains a largely unexplored problem. To our knowledge, we propose the first learning-based approach for style transfer between 3D objects based on disentangled content and style representations. The proposed method can synthesize new 3D shapes both in the form of point clouds and meshes, combining the content and style of a source and target 3D model to generate a novel shape that resembles in style the target while retaining the source content. Furthermore, we extend our technique to implicitly learn the multimodal style distribution of the chosen domains. By sampling style codes from the learned distributions, we increase the variety of styles that our model can confer to an input shape. Experimental results validate the effectiveness of the proposed 3D style transfer method on a number of benchmarks. The implementation of our framework will be released upon acceptance.
StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized Tokenizer of a Large-Scale Generative Model
Despite the progress made in the style transfer task, most previous work focus on transferring only relatively simple features like color or texture, while missing more abstract concepts such as overall art expression or painter-specific traits. However, these abstract semantics can be captured by models like DALL-E or CLIP, which have been trained using huge datasets of images and textual documents. In this paper, we propose StylerDALLE, a style transfer method that exploits both of these models and uses natural language to describe abstract art styles. Specifically, we formulate the language-guided style transfer task as a non-autoregressive token sequence translation, i.e., from input content image to output stylized image, in the discrete latent space of a large-scale pretrained vector-quantized tokenizer. To incorporate style information, we propose a Reinforcement Learning strategy with CLIP-based language supervision that ensures stylization and content preservation simultaneously. Experimental results demonstrate the superiority of our method, which can effectively transfer art styles using language instructions at different granularities. Code is available at https://github.com/zipengxuc/StylerDALLE.
StyleMamba : State Space Model for Efficient Text-driven Image Style Transfer
We present StyleMamba, an efficient image style transfer framework that translates text prompts into corresponding visual styles while preserving the content integrity of the original images. Existing text-guided stylization requires hundreds of training iterations and takes a lot of computing resources. To speed up the process, we propose a conditional State Space Model for Efficient Text-driven Image Style Transfer, dubbed StyleMamba, that sequentially aligns the image features to the target text prompts. To enhance the local and global style consistency between text and image, we propose masked and second-order directional losses to optimize the stylization direction to significantly reduce the training iterations by 5 times and the inference time by 3 times. Extensive experiments and qualitative evaluation confirm the robust and superior stylization performance of our methods compared to the existing baselines.
FreeStyle: Free Lunch for Text-guided Style Transfer using Diffusion Models
The rapid development of generative diffusion models has significantly advanced the field of style transfer. However, most current style transfer methods based on diffusion models typically involve a slow iterative optimization process, e.g., model fine-tuning and textual inversion of style concept. In this paper, we introduce FreeStyle, an innovative style transfer method built upon a pre-trained large diffusion model, requiring no further optimization. Besides, our method enables style transfer only through a text description of the desired style, eliminating the necessity of style images. Specifically, we propose a dual-stream encoder and single-stream decoder architecture, replacing the conventional U-Net in diffusion models. In the dual-stream encoder, two distinct branches take the content image and style text prompt as inputs, achieving content and style decoupling. In the decoder, we further modulate features from the dual streams based on a given content image and the corresponding style text prompt for precise style transfer. Our experimental results demonstrate high-quality synthesis and fidelity of our method across various content images and style text prompts. The code and more results are available at our project website:https://freestylefreelunch.github.io/.
Reformulating Unsupervised Style Transfer as Paraphrase Generation
Modern NLP defines the task of style transfer as modifying the style of a given sentence without appreciably changing its semantics, which implies that the outputs of style transfer systems should be paraphrases of their inputs. However, many existing systems purportedly designed for style transfer inherently warp the input's meaning through attribute transfer, which changes semantic properties such as sentiment. In this paper, we reformulate unsupervised style transfer as a paraphrase generation problem, and present a simple methodology based on fine-tuning pretrained language models on automatically generated paraphrase data. Despite its simplicity, our method significantly outperforms state-of-the-art style transfer systems on both human and automatic evaluations. We also survey 23 style transfer papers and discover that existing automatic metrics can be easily gamed and propose fixed variants. Finally, we pivot to a more real-world style transfer setting by collecting a large dataset of 15M sentences in 11 diverse styles, which we use for an in-depth analysis of our system.
Soulstyler: Using Large Language Model to Guide Image Style Transfer for Target Object
Image style transfer occupies an important place in both computer graphics and computer vision. However, most current methods require reference to stylized images and cannot individually stylize specific objects. To overcome this limitation, we propose the "Soulstyler" framework, which allows users to guide the stylization of specific objects in an image through simple textual descriptions. We introduce a large language model to parse the text and identify stylization goals and specific styles. Combined with a CLIP-based semantic visual embedding encoder, the model understands and matches text and image content. We also introduce a novel localized text-image block matching loss that ensures that style transfer is performed only on specified target objects, while non-target regions remain in their original style. Experimental results demonstrate that our model is able to accurately perform style transfer on target objects according to textual descriptions without affecting the style of background regions. Our code will be available at https://github.com/yisuanwang/Soulstyler.
All-to-key Attention for Arbitrary Style Transfer
Attention-based arbitrary style transfer studies have shown promising performance in synthesizing vivid local style details. They typically use the all-to-all attention mechanism -- each position of content features is fully matched to all positions of style features. However, all-to-all attention tends to generate distorted style patterns and has quadratic complexity, limiting the effectiveness and efficiency of arbitrary style transfer. In this paper, we propose a novel all-to-key attention mechanism -- each position of content features is matched to stable key positions of style features -- that is more in line with the characteristics of style transfer. Specifically, it integrates two newly proposed attention forms: distributed and progressive attention. Distributed attention assigns attention to key style representations that depict the style distribution of local regions; Progressive attention pays attention from coarse-grained regions to fine-grained key positions. The resultant module, dubbed StyA2K, shows extraordinary performance in preserving the semantic structure and rendering consistent style patterns. Qualitative and quantitative comparisons with state-of-the-art methods demonstrate the superior performance of our approach.
Style-NeRF2NeRF: 3D Style Transfer From Style-Aligned Multi-View Images
We propose a simple yet effective pipeline for stylizing a 3D scene, harnessing the power of 2D image diffusion models. Given a NeRF model reconstructed from a set of multi-view images, we perform 3D style transfer by refining the source NeRF model using stylized images generated by a style-aligned image-to-image diffusion model. Given a target style prompt, we first generate perceptually similar multi-view images by leveraging a depth-conditioned diffusion model with an attention-sharing mechanism. Next, based on the stylized multi-view images, we propose to guide the style transfer process with the sliced Wasserstein loss based on the feature maps extracted from a pre-trained CNN model. Our pipeline consists of decoupled steps, allowing users to test various prompt ideas and preview the stylized 3D result before proceeding to the NeRF fine-tuning stage. We demonstrate that our method can transfer diverse artistic styles to real-world 3D scenes with competitive quality.
Harnessing the Latent Diffusion Model for Training-Free Image Style Transfer
Diffusion models have recently shown the ability to generate high-quality images. However, controlling its generation process still poses challenges. The image style transfer task is one of those challenges that transfers the visual attributes of a style image to another content image. Typical obstacle of this task is the requirement of additional training of a pre-trained model. We propose a training-free style transfer algorithm, Style Tracking Reverse Diffusion Process (STRDP) for a pretrained Latent Diffusion Model (LDM). Our algorithm employs Adaptive Instance Normalization (AdaIN) function in a distinct manner during the reverse diffusion process of an LDM while tracking the encoding history of the style image. This algorithm enables style transfer in the latent space of LDM for reduced computational cost, and provides compatibility for various LDM models. Through a series of experiments and a user study, we show that our method can quickly transfer the style of an image without additional training. The speed, compatibility, and training-free aspect of our algorithm facilitates agile experiments with combinations of styles and LDMs for extensive application.
Attention Distillation: A Unified Approach to Visual Characteristics Transfer
Recent advances in generative diffusion models have shown a notable inherent understanding of image style and semantics. In this paper, we leverage the self-attention features from pretrained diffusion networks to transfer the visual characteristics from a reference to generated images. Unlike previous work that uses these features as plug-and-play attributes, we propose a novel attention distillation loss calculated between the ideal and current stylization results, based on which we optimize the synthesized image via backpropagation in latent space. Next, we propose an improved Classifier Guidance that integrates attention distillation loss into the denoising sampling process, further accelerating the synthesis and enabling a broad range of image generation applications. Extensive experiments have demonstrated the extraordinary performance of our approach in transferring the examples' style, appearance, and texture to new images in synthesis. Code is available at https://github.com/xugao97/AttentionDistillation.
StyleDiffusion: Controllable Disentangled Style Transfer via Diffusion Models
Content and style (C-S) disentanglement is a fundamental problem and critical challenge of style transfer. Existing approaches based on explicit definitions (e.g., Gram matrix) or implicit learning (e.g., GANs) are neither interpretable nor easy to control, resulting in entangled representations and less satisfying results. In this paper, we propose a new C-S disentangled framework for style transfer without using previous assumptions. The key insight is to explicitly extract the content information and implicitly learn the complementary style information, yielding interpretable and controllable C-S disentanglement and style transfer. A simple yet effective CLIP-based style disentanglement loss coordinated with a style reconstruction prior is introduced to disentangle C-S in the CLIP image space. By further leveraging the powerful style removal and generative ability of diffusion models, our framework achieves superior results than state of the art and flexible C-S disentanglement and trade-off control. Our work provides new insights into the C-S disentanglement in style transfer and demonstrates the potential of diffusion models for learning well-disentangled C-S characteristics.
ParaGuide: Guided Diffusion Paraphrasers for Plug-and-Play Textual Style Transfer
Textual style transfer is the task of transforming stylistic properties of text while preserving meaning. Target "styles" can be defined in numerous ways, ranging from single attributes (e.g, formality) to authorship (e.g, Shakespeare). Previous unsupervised style-transfer approaches generally rely on significant amounts of labeled data for only a fixed set of styles or require large language models. In contrast, we introduce a novel diffusion-based framework for general-purpose style transfer that can be flexibly adapted to arbitrary target styles at inference time. Our parameter-efficient approach, ParaGuide, leverages paraphrase-conditioned diffusion models alongside gradient-based guidance from both off-the-shelf classifiers and strong existing style embedders to transform the style of text while preserving semantic information. We validate the method on the Enron Email Corpus, with both human and automatic evaluations, and find that it outperforms strong baselines on formality, sentiment, and even authorship style transfer.
Parameter-Free Style Projection for Arbitrary Style Transfer
Arbitrary image style transfer is a challenging task which aims to stylize a content image conditioned on arbitrary style images. In this task the feature-level content-style transformation plays a vital role for proper fusion of features. Existing feature transformation algorithms often suffer from loss of content or style details, non-natural stroke patterns, and unstable training. To mitigate these issues, this paper proposes a new feature-level style transformation technique, named Style Projection, for parameter-free, fast, and effective content-style transformation. This paper further presents a real-time feed-forward model to leverage Style Projection for arbitrary image style transfer, which includes a regularization term for matching the semantics between input contents and stylized outputs. Extensive qualitative analysis, quantitative evaluation, and user study have demonstrated the effectiveness and efficiency of the proposed methods.
AesPA-Net: Aesthetic Pattern-Aware Style Transfer Networks
To deliver the artistic expression of the target style, recent studies exploit the attention mechanism owing to its ability to map the local patches of the style image to the corresponding patches of the content image. However, because of the low semantic correspondence between arbitrary content and artworks, the attention module repeatedly abuses specific local patches from the style image, resulting in disharmonious and evident repetitive artifacts. To overcome this limitation and accomplish impeccable artistic style transfer, we focus on enhancing the attention mechanism and capturing the rhythm of patterns that organize the style. In this paper, we introduce a novel metric, namely pattern repeatability, that quantifies the repetition of patterns in the style image. Based on the pattern repeatability, we propose Aesthetic Pattern-Aware style transfer Networks (AesPA-Net) that discover the sweet spot of local and global style expressions. In addition, we propose a novel self-supervisory task to encourage the attention mechanism to learn precise and meaningful semantic correspondence. Lastly, we introduce the patch-wise style loss to transfer the elaborate rhythm of local patterns. Through qualitative and quantitative evaluations, we verify the reliability of the proposed pattern repeatability that aligns with human perception, and demonstrate the superiority of the proposed framework.
XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings
Style transfer usually refers to the task of applying color and texture information from a specific style image to a given content image while preserving the structure of the latter. Here we tackle the more generic problem of semantic style transfer: given two unpaired collections of images, we aim to learn a mapping between the corpus-level style of each collection, while preserving semantic content shared across the two domains. We introduce XGAN ("Cross-GAN"), a dual adversarial autoencoder, which captures a shared representation of the common domain semantic content in an unsupervised way, while jointly learning the domain-to-domain image translations in both directions. We exploit ideas from the domain adaptation literature and define a semantic consistency loss which encourages the model to preserve semantics in the learned embedding space. We report promising qualitative results for the task of face-to-cartoon translation. The cartoon dataset, CartoonSet, we collected for this purpose is publicly available at google.github.io/cartoonset/ as a new benchmark for semantic style transfer.
DiffStyler: Diffusion-based Localized Image Style Transfer
Image style transfer aims to imbue digital imagery with the distinctive attributes of style targets, such as colors, brushstrokes, shapes, whilst concurrently preserving the semantic integrity of the content. Despite the advancements in arbitrary style transfer methods, a prevalent challenge remains the delicate equilibrium between content semantics and style attributes. Recent developments in large-scale text-to-image diffusion models have heralded unprecedented synthesis capabilities, albeit at the expense of relying on extensive and often imprecise textual descriptions to delineate artistic styles. Addressing these limitations, this paper introduces DiffStyler, a novel approach that facilitates efficient and precise arbitrary image style transfer. DiffStyler lies the utilization of a text-to-image Stable Diffusion model-based LoRA to encapsulate the essence of style targets. This approach, coupled with strategic cross-LoRA feature and attention injection, guides the style transfer process. The foundation of our methodology is rooted in the observation that LoRA maintains the spatial feature consistency of UNet, a discovery that further inspired the development of a mask-wise style transfer technique. This technique employs masks extracted through a pre-trained FastSAM model, utilizing mask prompts to facilitate feature fusion during the denoising process, thereby enabling localized style transfer that preserves the original image's unaffected regions. Moreover, our approach accommodates multiple style targets through the use of corresponding masks. Through extensive experimentation, we demonstrate that DiffStyler surpasses previous methods in achieving a more harmonious balance between content preservation and style integration.
TextSETTR: Few-Shot Text Style Extraction and Tunable Targeted Restyling
We present a novel approach to the problem of text style transfer. Unlike previous approaches requiring style-labeled training data, our method makes use of readily-available unlabeled text by relying on the implicit connection in style between adjacent sentences, and uses labeled data only at inference time. We adapt T5 (Raffel et al., 2020), a strong pretrained text-to-text model, to extract a style vector from text and use it to condition the decoder to perform style transfer. As our label-free training results in a style vector space encoding many facets of style, we recast transfers as "targeted restyling" vector operations that adjust specific attributes of the input while preserving others. We demonstrate that training on unlabeled Amazon reviews data results in a model that is competitive on sentiment transfer, even compared to models trained fully on labeled data. Furthermore, applying our novel method to a diverse corpus of unlabeled web text results in a single model capable of transferring along multiple dimensions of style (dialect, emotiveness, formality, politeness, sentiment) despite no additional training and using only a handful of exemplars at inference time.
STEER: Unified Style Transfer with Expert Reinforcement
While text style transfer has many applications across natural language processing, the core premise of transferring from a single source style is unrealistic in a real-world setting. In this work, we focus on arbitrary style transfer: rewriting a text from an arbitrary, unknown style to a target style. We propose STEER: Unified Style Transfer with Expert Reinforcement, a unified frame-work developed to overcome the challenge of limited parallel data for style transfer. STEER involves automatically generating a corpus of style-transfer pairs using a product of experts during decoding. The generated offline data is then used to pre-train an initial policy before switching to online, off-policy reinforcement learning for further improvements via fine-grained reward signals. STEER is unified and can transfer to multiple target styles from an arbitrary, unknown source style, making it particularly flexible and efficient. Experimental results on a challenging dataset with text from a diverse set of styles demonstrate state-of-the-art results compared to competitive baselines. Remarkably, STEER outperforms the 175B parameter instruction-tuned GPT-3 on overall style transfer quality, despite being 226 times smaller in size. We also show STEER is robust, maintaining its style transfer capabilities on out-of-domain data, and surpassing nearly all baselines across various styles. The success of our method highlights the potential of RL algorithms when augmented with controllable decoding to overcome the challenge of limited data supervision.
Multimodality-guided Image Style Transfer using Cross-modal GAN Inversion
Image Style Transfer (IST) is an interdisciplinary topic of computer vision and art that continuously attracts researchers' interests. Different from traditional Image-guided Image Style Transfer (IIST) methods that require a style reference image as input to define the desired style, recent works start to tackle the problem in a text-guided manner, i.e., Text-guided Image Style Transfer (TIST). Compared to IIST, such approaches provide more flexibility with text-specified styles, which are useful in scenarios where the style is hard to define with reference images. Unfortunately, many TIST approaches produce undesirable artifacts in the transferred images. To address this issue, we present a novel method to achieve much improved style transfer based on text guidance. Meanwhile, to offer more flexibility than IIST and TIST, our method allows style inputs from multiple sources and modalities, enabling MultiModality-guided Image Style Transfer (MMIST). Specifically, we realize MMIST with a novel cross-modal GAN inversion method, which generates style representations consistent with specified styles. Such style representations facilitate style transfer and in principle generalize any IIST methods to MMIST. Large-scale experiments and user studies demonstrate that our method achieves state-of-the-art performance on TIST task. Furthermore, comprehensive qualitative results confirm the effectiveness of our method on MMIST task and cross-modal style interpolation.
Multiple-Attribute Text Style Transfer
The dominant approach to unsupervised "style transfer" in text is based on the idea of learning a latent representation, which is independent of the attributes specifying its "style". In this paper, we show that this condition is not necessary and is not always met in practice, even with domain adversarial training that explicitly aims at learning such disentangled representations. We thus propose a new model that controls several factors of variation in textual data where this condition on disentanglement is replaced with a simpler mechanism based on back-translation. Our method allows control over multiple attributes, like gender, sentiment, product type, etc., and a more fine-grained control on the trade-off between content preservation and change of style with a pooling operator in the latent space. Our experiments demonstrate that the fully entangled model produces better generations, even when tested on new and more challenging benchmarks comprising reviews with multiple sentences and multiple attributes.
Text2Mesh: Text-Driven Neural Stylization for Meshes
In this work, we develop intuitive controls for editing the style of 3D objects. Our framework, Text2Mesh, stylizes a 3D mesh by predicting color and local geometric details which conform to a target text prompt. We consider a disentangled representation of a 3D object using a fixed mesh input (content) coupled with a learned neural network, which we term neural style field network. In order to modify style, we obtain a similarity score between a text prompt (describing style) and a stylized mesh by harnessing the representational power of CLIP. Text2Mesh requires neither a pre-trained generative model nor a specialized 3D mesh dataset. It can handle low-quality meshes (non-manifold, boundaries, etc.) with arbitrary genus, and does not require UV parameterization. We demonstrate the ability of our technique to synthesize a myriad of styles over a wide variety of 3D meshes.
StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements
Text-driven style transfer aims to merge the style of a reference image with content described by a text prompt. Recent advancements in text-to-image models have improved the nuance of style transformations, yet significant challenges remain, particularly with overfitting to reference styles, limiting stylistic control, and misaligning with textual content. In this paper, we propose three complementary strategies to address these issues. First, we introduce a cross-modal Adaptive Instance Normalization (AdaIN) mechanism for better integration of style and text features, enhancing alignment. Second, we develop a Style-based Classifier-Free Guidance (SCFG) approach that enables selective control over stylistic elements, reducing irrelevant influences. Finally, we incorporate a teacher model during early generation stages to stabilize spatial layouts and mitigate artifacts. Our extensive evaluations demonstrate significant improvements in style transfer quality and alignment with textual prompts. Furthermore, our approach can be integrated into existing style transfer frameworks without fine-tuning.
SigStyle: Signature Style Transfer via Personalized Text-to-Image Models
Style transfer enables the seamless integration of artistic styles from a style image into a content image, resulting in visually striking and aesthetically enriched outputs. Despite numerous advances in this field, existing methods did not explicitly focus on the signature style, which represents the distinct and recognizable visual traits of the image such as geometric and structural patterns, color palettes and brush strokes etc. In this paper, we introduce SigStyle, a framework that leverages the semantic priors that embedded in a personalized text-to-image diffusion model to capture the signature style representation. This style capture process is powered by a hypernetwork that efficiently fine-tunes the diffusion model for any given single style image. Style transfer then is conceptualized as the reconstruction process of content image through learned style tokens from the personalized diffusion model. Additionally, to ensure the content consistency throughout the style transfer process, we introduce a time-aware attention swapping technique that incorporates content information from the original image into the early denoising steps of target image generation. Beyond enabling high-quality signature style transfer across a wide range of styles, SigStyle supports multiple interesting applications, such as local style transfer, texture transfer, style fusion and style-guided text-to-image generation. Quantitative and qualitative evaluations demonstrate our approach outperforms existing style transfer methods for recognizing and transferring the signature styles.
ArtAdapter: Text-to-Image Style Transfer using Multi-Level Style Encoder and Explicit Adaptation
This work introduces ArtAdapter, a transformative text-to-image (T2I) style transfer framework that transcends traditional limitations of color, brushstrokes, and object shape, capturing high-level style elements such as composition and distinctive artistic expression. The integration of a multi-level style encoder with our proposed explicit adaptation mechanism enables ArtAdapte to achieve unprecedented fidelity in style transfer, ensuring close alignment with textual descriptions. Additionally, the incorporation of an Auxiliary Content Adapter (ACA) effectively separates content from style, alleviating the borrowing of content from style references. Moreover, our novel fast finetuning approach could further enhance zero-shot style representation while mitigating the risk of overfitting. Comprehensive evaluations confirm that ArtAdapter surpasses current state-of-the-art methods.
A Style-aware Discriminator for Controllable Image Translation
Current image-to-image translations do not control the output domain beyond the classes used during training, nor do they interpolate between different domains well, leading to implausible results. This limitation largely arises because labels do not consider the semantic distance. To mitigate such problems, we propose a style-aware discriminator that acts as a critic as well as a style encoder to provide conditions. The style-aware discriminator learns a controllable style space using prototype-based self-supervised learning and simultaneously guides the generator. Experiments on multiple datasets verify that the proposed model outperforms current state-of-the-art image-to-image translation methods. In contrast with current methods, the proposed approach supports various applications, including style interpolation, content transplantation, and local image translation.
Two Birds, One Stone: A Unified Framework for Joint Learning of Image and Video Style Transfers
Current arbitrary style transfer models are limited to either image or video domains. In order to achieve satisfying image and video style transfers, two different models are inevitably required with separate training processes on image and video domains, respectively. In this paper, we show that this can be precluded by introducing UniST, a Unified Style Transfer framework for both images and videos. At the core of UniST is a domain interaction transformer (DIT), which first explores context information within the specific domain and then interacts contextualized domain information for joint learning. In particular, DIT enables exploration of temporal information from videos for the image style transfer task and meanwhile allows rich appearance texture from images for video style transfer, thus leading to mutual benefits. Considering heavy computation of traditional multi-head self-attention, we present a simple yet effective axial multi-head self-attention (AMSA) for DIT, which improves computational efficiency while maintains style transfer performance. To verify the effectiveness of UniST, we conduct extensive experiments on both image and video style transfer tasks and show that UniST performs favorably against state-of-the-art approaches on both tasks. Our code and results will be released.
TSIT: A Simple and Versatile Framework for Image-to-Image Translation
We introduce a simple and versatile framework for image-to-image translation. We unearth the importance of normalization layers, and provide a carefully designed two-stream generative model with newly proposed feature transformations in a coarse-to-fine fashion. This allows multi-scale semantic structure information and style representation to be effectively captured and fused by the network, permitting our method to scale to various tasks in both unsupervised and supervised settings. No additional constraints (e.g., cycle consistency) are needed, contributing to a very clean and simple method. Multi-modal image synthesis with arbitrary style control is made possible. A systematic study compares the proposed method with several state-of-the-art task-specific baselines, verifying its effectiveness in both perceptual quality and quantitative evaluations.
Text-to-Sticker: Style Tailoring Latent Diffusion Models for Human Expression
We introduce Style Tailoring, a recipe to finetune Latent Diffusion Models (LDMs) in a distinct domain with high visual quality, prompt alignment and scene diversity. We choose sticker image generation as the target domain, as the images significantly differ from photorealistic samples typically generated by large-scale LDMs. We start with a competent text-to-image model, like Emu, and show that relying on prompt engineering with a photorealistic model to generate stickers leads to poor prompt alignment and scene diversity. To overcome these drawbacks, we first finetune Emu on millions of sticker-like images collected using weak supervision to elicit diversity. Next, we curate human-in-the-loop (HITL) Alignment and Style datasets from model generations, and finetune to improve prompt alignment and style alignment respectively. Sequential finetuning on these datasets poses a tradeoff between better style alignment and prompt alignment gains. To address this tradeoff, we propose a novel fine-tuning method called Style Tailoring, which jointly fits the content and style distribution and achieves best tradeoff. Evaluation results show our method improves visual quality by 14%, prompt alignment by 16.2% and scene diversity by 15.3%, compared to prompt engineering the base Emu model for stickers generation.
Sem-CS: Semantic CLIPStyler for Text-Based Image Style Transfer
CLIPStyler demonstrated image style transfer with realistic textures using only a style text description (instead of requiring a reference style image). However, the ground semantics of objects in the style transfer output is lost due to style spill-over on salient and background objects (content mismatch) or over-stylization. To solve this, we propose Semantic CLIPStyler (Sem-CS), that performs semantic style transfer. Sem-CS first segments the content image into salient and non-salient objects and then transfers artistic style based on a given style text description. The semantic style transfer is achieved using global foreground loss (for salient objects) and global background loss (for non-salient objects). Our empirical results, including DISTS, NIMA and user study scores, show that our proposed framework yields superior qualitative and quantitative performance. Our code is available at github.com/chandagrover/sem-cs.
DCT-Net: Domain-Calibrated Translation for Portrait Stylization
This paper introduces DCT-Net, a novel image translation architecture for few-shot portrait stylization. Given limited style exemplars (sim100), the new architecture can produce high-quality style transfer results with advanced ability to synthesize high-fidelity contents and strong generality to handle complicated scenes (e.g., occlusions and accessories). Moreover, it enables full-body image translation via one elegant evaluation network trained by partial observations (i.e., stylized heads). Few-shot learning based style transfer is challenging since the learned model can easily become overfitted in the target domain, due to the biased distribution formed by only a few training examples. This paper aims to handle the challenge by adopting the key idea of "calibration first, translation later" and exploring the augmented global structure with locally-focused translation. Specifically, the proposed DCT-Net consists of three modules: a content adapter borrowing the powerful prior from source photos to calibrate the content distribution of target samples; a geometry expansion module using affine transformations to release spatially semantic constraints; and a texture translation module leveraging samples produced by the calibrated distribution to learn a fine-grained conversion. Experimental results demonstrate the proposed method's superiority over the state of the art in head stylization and its effectiveness on full image translation with adaptive deformations.
Style Aligned Image Generation via Shared Attention
Large-scale Text-to-Image (T2I) models have rapidly gained prominence across creative fields, generating visually compelling outputs from textual prompts. However, controlling these models to ensure consistent style remains challenging, with existing methods necessitating fine-tuning and manual intervention to disentangle content and style. In this paper, we introduce StyleAligned, a novel technique designed to establish style alignment among a series of generated images. By employing minimal `attention sharing' during the diffusion process, our method maintains style consistency across images within T2I models. This approach allows for the creation of style-consistent images using a reference style through a straightforward inversion operation. Our method's evaluation across diverse styles and text prompts demonstrates high-quality synthesis and fidelity, underscoring its efficacy in achieving consistent style across various inputs.
ColoristaNet for Photorealistic Video Style Transfer
Photorealistic style transfer aims to transfer the artistic style of an image onto an input image or video while keeping photorealism. In this paper, we think it's the summary statistics matching scheme in existing algorithms that leads to unrealistic stylization. To avoid employing the popular Gram loss, we propose a self-supervised style transfer framework, which contains a style removal part and a style restoration part. The style removal network removes the original image styles, and the style restoration network recovers image styles in a supervised manner. Meanwhile, to address the problems in current feature transformation methods, we propose decoupled instance normalization to decompose feature transformation into style whitening and restylization. It works quite well in ColoristaNet and can transfer image styles efficiently while keeping photorealism. To ensure temporal coherency, we also incorporate optical flow methods and ConvLSTM to embed contextual information. Experiments demonstrates that ColoristaNet can achieve better stylization effects when compared with state-of-the-art algorithms.
ArtFusion: Arbitrary Style Transfer using Dual Conditional Latent Diffusion Models
Arbitrary Style Transfer (AST) aims to transform images by adopting the style from any selected artwork. Nonetheless, the need to accommodate diverse and subjective user preferences poses a significant challenge. While some users wish to preserve distinct content structures, others might favor a more pronounced stylization. Despite advances in feed-forward AST methods, their limited customizability hinders their practical application. We propose a new approach, ArtFusion, which provides a flexible balance between content and style. In contrast to traditional methods reliant on biased similarity losses, ArtFusion utilizes our innovative Dual Conditional Latent Diffusion Probabilistic Models (Dual-cLDM). This approach mitigates repetitive patterns and enhances subtle artistic aspects like brush strokes and genre-specific features. Despite the promising results of conditional diffusion probabilistic models (cDM) in various generative tasks, their introduction to style transfer is challenging due to the requirement for paired training data. ArtFusion successfully navigates this issue, offering more practical and controllable stylization. A key element of our approach involves using a single image for both content and style during model training, all the while maintaining effective stylization during inference. ArtFusion outperforms existing approaches on outstanding controllability and faithful presentation of artistic details, providing evidence of its superior style transfer capabilities. Furthermore, the Dual-cLDM utilized in ArtFusion carries the potential for a variety of complex multi-condition generative tasks, thus greatly broadening the impact of our research.
Towards Multi-View Consistent Style Transfer with One-Step Diffusion via Vision Conditioning
The stylization of 3D scenes is an increasingly attractive topic in 3D vision. Although image style transfer has been extensively researched with promising results, directly applying 2D style transfer methods to 3D scenes often fails to preserve the structural and multi-view properties of 3D environments, resulting in unpleasant distortions in images from different viewpoints. To address these issues, we leverage the remarkable generative prior of diffusion-based models and propose a novel style transfer method, OSDiffST, based on a pre-trained one-step diffusion model (i.e., SD-Turbo) for rendering diverse styles in multi-view images of 3D scenes. To efficiently adapt the pre-trained model for multi-view style transfer on small datasets, we introduce a vision condition module to extract style information from the reference style image to serve as conditional input for the diffusion model and employ LoRA in diffusion model for adaptation. Additionally, we consider color distribution alignment and structural similarity between the stylized and content images using two specific loss functions. As a result, our method effectively preserves the structural information and multi-view consistency in stylized images without any 3D information. Experiments show that our method surpasses other promising style transfer methods in synthesizing various styles for multi-view images of 3D scenes. Stylized images from different viewpoints generated by our method achieve superior visual quality, with better structural integrity and less distortion. The source code is available at https://github.com/YushenZuo/OSDiffST.
A LoRA is Worth a Thousand Pictures
Recent advances in diffusion models and parameter-efficient fine-tuning (PEFT) have made text-to-image generation and customization widely accessible, with Low Rank Adaptation (LoRA) able to replicate an artist's style or subject using minimal data and computation. In this paper, we examine the relationship between LoRA weights and artistic styles, demonstrating that LoRA weights alone can serve as an effective descriptor of style, without the need for additional image generation or knowledge of the original training set. Our findings show that LoRA weights yield better performance in clustering of artistic styles compared to traditional pre-trained features, such as CLIP and DINO, with strong structural similarities between LoRA-based and conventional image-based embeddings observed both qualitatively and quantitatively. We identify various retrieval scenarios for the growing collection of customized models and show that our approach enables more accurate retrieval in real-world settings where knowledge of the training images is unavailable and additional generation is required. We conclude with a discussion on potential future applications, such as zero-shot LoRA fine-tuning and model attribution.
StyleGAN2 Distillation for Feed-forward Image Manipulation
StyleGAN2 is a state-of-the-art network in generating realistic images. Besides, it was explicitly trained to have disentangled directions in latent space, which allows efficient image manipulation by varying latent factors. Editing existing images requires embedding a given image into the latent space of StyleGAN2. Latent code optimization via backpropagation is commonly used for qualitative embedding of real world images, although it is prohibitively slow for many applications. We propose a way to distill a particular image manipulation of StyleGAN2 into image-to-image network trained in paired way. The resulting pipeline is an alternative to existing GANs, trained on unpaired data. We provide results of human faces' transformation: gender swap, aging/rejuvenation, style transfer and image morphing. We show that the quality of generation using our method is comparable to StyleGAN2 backpropagation and current state-of-the-art methods in these particular tasks.
Deformable Style Transfer
Both geometry and texture are fundamental aspects of visual style. Existing style transfer methods, however, primarily focus on texture, almost entirely ignoring geometry. We propose deformable style transfer (DST), an optimization-based approach that jointly stylizes the texture and geometry of a content image to better match a style image. Unlike previous geometry-aware stylization methods, our approach is neither restricted to a particular domain (such as human faces), nor does it require training sets of matching style/content pairs. We demonstrate our method on a diverse set of content and style images including portraits, animals, objects, scenes, and paintings. Code has been made publicly available at https://github.com/sunniesuhyoung/DST.
MOSAIC: Multi-Object Segmented Arbitrary Stylization Using CLIP
Style transfer driven by text prompts paved a new path for creatively stylizing the images without collecting an actual style image. Despite having promising results, with text-driven stylization, the user has no control over the stylization. If a user wants to create an artistic image, the user requires fine control over the stylization of various entities individually in the content image, which is not addressed by the current state-of-the-art approaches. On the other hand, diffusion style transfer methods also suffer from the same issue because the regional stylization control over the stylized output is ineffective. To address this problem, We propose a new method Multi-Object Segmented Arbitrary Stylization Using CLIP (MOSAIC), that can apply styles to different objects in the image based on the context extracted from the input prompt. Text-based segmentation and stylization modules which are based on vision transformer architecture, were used to segment and stylize the objects. Our method can extend to any arbitrary objects, styles and produce high-quality images compared to the current state of art methods. To our knowledge, this is the first attempt to perform text-guided arbitrary object-wise stylization. We demonstrate the effectiveness of our approach through qualitative and quantitative analysis, showing that it can generate visually appealing stylized images with enhanced control over stylization and the ability to generalize to unseen object classes.
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
We explore and analyze the latent style space of StyleGAN2, a state-of-the-art architecture for image generation, using models pretrained on several different datasets. We first show that StyleSpace, the space of channel-wise style parameters, is significantly more disentangled than the other intermediate latent spaces explored by previous works. Next, we describe a method for discovering a large collection of style channels, each of which is shown to control a distinct visual attribute in a highly localized and disentangled manner. Third, we propose a simple method for identifying style channels that control a specific attribute, using a pretrained classifier or a small number of example images. Manipulation of visual attributes via these StyleSpace controls is shown to be better disentangled than via those proposed in previous works. To show this, we make use of a newly proposed Attribute Dependency metric. Finally, we demonstrate the applicability of StyleSpace controls to the manipulation of real images. Our findings pave the way to semantically meaningful and well-disentangled image manipulations via simple and intuitive interfaces.
Conditional Balance: Improving Multi-Conditioning Trade-Offs in Image Generation
Balancing content fidelity and artistic style is a pivotal challenge in image generation. While traditional style transfer methods and modern Denoising Diffusion Probabilistic Models (DDPMs) strive to achieve this balance, they often struggle to do so without sacrificing either style, content, or sometimes both. This work addresses this challenge by analyzing the ability of DDPMs to maintain content and style equilibrium. We introduce a novel method to identify sensitivities within the DDPM attention layers, identifying specific layers that correspond to different stylistic aspects. By directing conditional inputs only to these sensitive layers, our approach enables fine-grained control over style and content, significantly reducing issues arising from over-constrained inputs. Our findings demonstrate that this method enhances recent stylization techniques by better aligning style and content, ultimately improving the quality of generated visual content.
Pastiche Master: Exemplar-Based High-Resolution Portrait Style Transfer
Recent studies on StyleGAN show high performance on artistic portrait generation by transfer learning with limited data. In this paper, we explore more challenging exemplar-based high-resolution portrait style transfer by introducing a novel DualStyleGAN with flexible control of dual styles of the original face domain and the extended artistic portrait domain. Different from StyleGAN, DualStyleGAN provides a natural way of style transfer by characterizing the content and style of a portrait with an intrinsic style path and a new extrinsic style path, respectively. The delicately designed extrinsic style path enables our model to modulate both the color and complex structural styles hierarchically to precisely pastiche the style example. Furthermore, a novel progressive fine-tuning scheme is introduced to smoothly transform the generative space of the model to the target domain, even with the above modifications on the network architecture. Experiments demonstrate the superiority of DualStyleGAN over state-of-the-art methods in high-quality portrait style transfer and flexible style control.
StyleDrop: Text-to-Image Generation in Any Style
Pre-trained large text-to-image models synthesize impressive images with an appropriate use of text prompts. However, ambiguities inherent in natural language and out-of-distribution effects make it hard to synthesize image styles, that leverage a specific design pattern, texture or material. In this paper, we introduce StyleDrop, a method that enables the synthesis of images that faithfully follow a specific style using a text-to-image model. The proposed method is extremely versatile and captures nuances and details of a user-provided style, such as color schemes, shading, design patterns, and local and global effects. It efficiently learns a new style by fine-tuning very few trainable parameters (less than 1% of total model parameters) and improving the quality via iterative training with either human or automated feedback. Better yet, StyleDrop is able to deliver impressive results even when the user supplies only a single image that specifies the desired style. An extensive study shows that, for the task of style tuning text-to-image models, StyleDrop implemented on Muse convincingly outperforms other methods, including DreamBooth and textual inversion on Imagen or Stable Diffusion. More results are available at our project website: https://styledrop.github.io
Measuring Style Similarity in Diffusion Models
Generative models are now widely used by graphic designers and artists. Prior works have shown that these models remember and often replicate content from their training data during generation. Hence as their proliferation increases, it has become important to perform a database search to determine whether the properties of the image are attributable to specific training data, every time before a generated image is used for professional purposes. Existing tools for this purpose focus on retrieving images of similar semantic content. Meanwhile, many artists are concerned with style replication in text-to-image models. We present a framework for understanding and extracting style descriptors from images. Our framework comprises a new dataset curated using the insight that style is a subjective property of an image that captures complex yet meaningful interactions of factors including but not limited to colors, textures, shapes, etc. We also propose a method to extract style descriptors that can be used to attribute style of a generated image to the images used in the training dataset of a text-to-image model. We showcase promising results in various style retrieval tasks. We also quantitatively and qualitatively analyze style attribution and matching in the Stable Diffusion model. Code and artifacts are available at https://github.com/learn2phoenix/CSD.
Transforming Delete, Retrieve, Generate Approach for Controlled Text Style Transfer
Text style transfer is the task of transferring the style of text having certain stylistic attributes, while preserving non-stylistic or content information. In this work we introduce the Generative Style Transformer (GST) - a new approach to rewriting sentences to a target style in the absence of parallel style corpora. GST leverages the power of both, large unsupervised pre-trained language models as well as the Transformer. GST is a part of a larger `Delete Retrieve Generate' framework, in which we also propose a novel method of deleting style attributes from the source sentence by exploiting the inner workings of the Transformer. Our models outperform state-of-art systems across 5 datasets on sentiment, gender and political slant transfer. We also propose the use of the GLEU metric as an automatic metric of evaluation of style transfer, which we found to compare better with human ratings than the predominantly used BLEU score.
Low-Resource Authorship Style Transfer with In-Context Learning
Authorship style transfer involves altering the style of text to match the style of some target author whilst preserving the semantic meaning of the original text. Existing approaches to unsupervised authorship style transfer like STRAP have largely focused on style transfer for target authors with many examples of their writing style through books, speeches, or other published works (Krishna et al., 2020). Due to this high-resource training data requirement (often greater than 100,000 words), these approaches are often only useful for style transfer to the style of published authors, politicians, or other well-known figures and authorship styles. In this paper, we attempt to perform low-resource authorship style transfer, a more challenging class of authorship style transfer where only a limited amount of text in the target author's style may exist. In our experiments, we specifically choose source and target authors from Reddit to perform style transfer over their Reddit posts, limiting ourselves to just 16 posts (on average approx 500 words) of the target author's style. We then propose a method for automatic evaluation on the low-resource authorship style transfer task utilizing authorship and style representation embeddings (Rivera-Soto et al., 2021; Wegmann et al., 2022). We evaluate our style transferred outputs with the proposed automatic evaluation method and find that our method, STYLL, is able to outperform STRAP and a comprehensive set of baselines.
A Recipe For Arbitrary Text Style Transfer with Large Language Models
In this paper, we leverage large language models (LMs) to perform zero-shot text style transfer. We present a prompting method that we call augmented zero-shot learning, which frames style transfer as a sentence rewriting task and requires only a natural language instruction, without model fine-tuning or exemplars in the target style. Augmented zero-shot learning is simple and demonstrates promising results not just on standard style transfer tasks such as sentiment, but also on arbitrary transformations such as "make this melodramatic" or "insert a metaphor."
Recognizing Image Style
The style of an image plays a significant role in how it is viewed, but style has received little attention in computer vision research. We describe an approach to predicting style of images, and perform a thorough evaluation of different image features for these tasks. We find that features learned in a multi-layer network generally perform best -- even when trained with object class (not style) labels. Our large-scale learning methods results in the best published performance on an existing dataset of aesthetic ratings and photographic style annotations. We present two novel datasets: 80K Flickr photographs annotated with 20 curated style labels, and 85K paintings annotated with 25 style/genre labels. Our approach shows excellent classification performance on both datasets. We use the learned classifiers to extend traditional tag-based image search to consider stylistic constraints, and demonstrate cross-dataset understanding of style.
Music Style Transfer with Time-Varying Inversion of Diffusion Models
With the development of diffusion models, text-guided image style transfer has demonstrated high-quality controllable synthesis results. However, the utilization of text for diverse music style transfer poses significant challenges, primarily due to the limited availability of matched audio-text datasets. Music, being an abstract and complex art form, exhibits variations and intricacies even within the same genre, thereby making accurate textual descriptions challenging. This paper presents a music style transfer approach that effectively captures musical attributes using minimal data. We introduce a novel time-varying textual inversion module to precisely capture mel-spectrogram features at different levels. During inference, we propose a bias-reduced stylization technique to obtain stable results. Experimental results demonstrate that our method can transfer the style of specific instruments, as well as incorporate natural sounds to compose melodies. Samples and source code are available at https://lsfhuihuiff.github.io/MusicTI/.
StyleCrafter: Enhancing Stylized Text-to-Video Generation with Style Adapter
Text-to-video (T2V) models have shown remarkable capabilities in generating diverse videos. However, they struggle to produce user-desired stylized videos due to (i) text's inherent clumsiness in expressing specific styles and (ii) the generally degraded style fidelity. To address these challenges, we introduce StyleCrafter, a generic method that enhances pre-trained T2V models with a style control adapter, enabling video generation in any style by providing a reference image. Considering the scarcity of stylized video datasets, we propose to first train a style control adapter using style-rich image datasets, then transfer the learned stylization ability to video generation through a tailor-made finetuning paradigm. To promote content-style disentanglement, we remove style descriptions from the text prompt and extract style information solely from the reference image using a decoupling learning strategy. Additionally, we design a scale-adaptive fusion module to balance the influences of text-based content features and image-based style features, which helps generalization across various text and style combinations. StyleCrafter efficiently generates high-quality stylized videos that align with the content of the texts and resemble the style of the reference images. Experiments demonstrate that our approach is more flexible and efficient than existing competitors.
The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN Inversion and High Quality Image Editing
The task of manipulating real image attributes through StyleGAN inversion has been extensively researched. This process involves searching latent variables from a well-trained StyleGAN generator that can synthesize a real image, modifying these latent variables, and then synthesizing an image with the desired edits. A balance must be struck between the quality of the reconstruction and the ability to edit. Earlier studies utilized the low-dimensional W-space for latent search, which facilitated effective editing but struggled with reconstructing intricate details. More recent research has turned to the high-dimensional feature space F, which successfully inverses the input image but loses much of the detail during editing. In this paper, we introduce StyleFeatureEditor -- a novel method that enables editing in both w-latents and F-latents. This technique not only allows for the reconstruction of finer image details but also ensures their preservation during editing. We also present a new training pipeline specifically designed to train our model to accurately edit F-latents. Our method is compared with state-of-the-art encoding approaches, demonstrating that our model excels in terms of reconstruction quality and is capable of editing even challenging out-of-domain examples. Code is available at https://github.com/AIRI-Institute/StyleFeatureEditor.
TinyStyler: Efficient Few-Shot Text Style Transfer with Authorship Embeddings
The goal of text style transfer is to transform the style of texts while preserving their original meaning, often with only a few examples of the target style. Existing style transfer methods generally rely on the few-shot capabilities of large language models or on complex controllable text generation approaches that are inefficient and underperform on fluency metrics. We introduce TinyStyler, a lightweight but effective approach, which leverages a small language model (800M params) and pre-trained authorship embeddings to perform efficient, few-shot text style transfer. We evaluate on the challenging task of authorship style transfer and find TinyStyler outperforms strong approaches such as GPT-4. We also evaluate TinyStyler's ability to perform text attribute style transfer (formal leftrightarrow informal) with automatic and human evaluations and find that the approach outperforms recent controllable text generation methods. Our model has been made publicly available at https://huggingface.co/tinystyler/tinystyler .
A Style-Based Generator Architecture for Generative Adversarial Networks
We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.
StyleInject: Parameter Efficient Tuning of Text-to-Image Diffusion Models
The ability to fine-tune generative models for text-to-image generation tasks is crucial, particularly facing the complexity involved in accurately interpreting and visualizing textual inputs. While LoRA is efficient for language model adaptation, it often falls short in text-to-image tasks due to the intricate demands of image generation, such as accommodating a broad spectrum of styles and nuances. To bridge this gap, we introduce StyleInject, a specialized fine-tuning approach tailored for text-to-image models. StyleInject comprises multiple parallel low-rank parameter matrices, maintaining the diversity of visual features. It dynamically adapts to varying styles by adjusting the variance of visual features based on the characteristics of the input signal. This approach significantly minimizes the impact on the original model's text-image alignment capabilities while adeptly adapting to various styles in transfer learning. StyleInject proves particularly effective in learning from and enhancing a range of advanced, community-fine-tuned generative models. Our comprehensive experiments, including both small-sample and large-scale data fine-tuning as well as base model distillation, show that StyleInject surpasses traditional LoRA in both text-image semantic consistency and human preference evaluation, all while ensuring greater parameter efficiency.
Customizing Text-to-Image Models with a Single Image Pair
Art reinterpretation is the practice of creating a variation of a reference work, making a paired artwork that exhibits a distinct artistic style. We ask if such an image pair can be used to customize a generative model to capture the demonstrated stylistic difference. We propose Pair Customization, a new customization method that learns stylistic difference from a single image pair and then applies the acquired style to the generation process. Unlike existing methods that learn to mimic a single concept from a collection of images, our method captures the stylistic difference between paired images. This allows us to apply a stylistic change without overfitting to the specific image content in the examples. To address this new task, we employ a joint optimization method that explicitly separates the style and content into distinct LoRA weight spaces. We optimize these style and content weights to reproduce the style and content images while encouraging their orthogonality. During inference, we modify the diffusion process via a new style guidance based on our learned weights. Both qualitative and quantitative experiments show that our method can effectively learn style while avoiding overfitting to image content, highlighting the potential of modeling such stylistic differences from a single image pair.
InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation
Style transfer is an inventive process designed to create an image that maintains the essence of the original while embracing the visual style of another. Although diffusion models have demonstrated impressive generative power in personalized subject-driven or style-driven applications, existing state-of-the-art methods still encounter difficulties in achieving a seamless balance between content preservation and style enhancement. For example, amplifying the style's influence can often undermine the structural integrity of the content. To address these challenges, we deconstruct the style transfer task into three core elements: 1) Style, focusing on the image's aesthetic characteristics; 2) Spatial Structure, concerning the geometric arrangement and composition of visual elements; and 3) Semantic Content, which captures the conceptual meaning of the image. Guided by these principles, we introduce InstantStyle-Plus, an approach that prioritizes the integrity of the original content while seamlessly integrating the target style. Specifically, our method accomplishes style injection through an efficient, lightweight process, utilizing the cutting-edge InstantStyle framework. To reinforce the content preservation, we initiate the process with an inverted content latent noise and a versatile plug-and-play tile ControlNet for preserving the original image's intrinsic layout. We also incorporate a global semantic adapter to enhance the semantic content's fidelity. To safeguard against the dilution of style information, a style extractor is employed as discriminator for providing supplementary style guidance. Codes will be available at https://github.com/instantX-research/InstantStyle-Plus.
CCPL: Contrastive Coherence Preserving Loss for Versatile Style Transfer
In this paper, we aim to devise a universally versatile style transfer method capable of performing artistic, photo-realistic, and video style transfer jointly, without seeing videos during training. Previous single-frame methods assume a strong constraint on the whole image to maintain temporal consistency, which could be violated in many cases. Instead, we make a mild and reasonable assumption that global inconsistency is dominated by local inconsistencies and devise a generic Contrastive Coherence Preserving Loss (CCPL) applied to local patches. CCPL can preserve the coherence of the content source during style transfer without degrading stylization. Moreover, it owns a neighbor-regulating mechanism, resulting in a vast reduction of local distortions and considerable visual quality improvement. Aside from its superior performance on versatile style transfer, it can be easily extended to other tasks, such as image-to-image translation. Besides, to better fuse content and style features, we propose Simple Covariance Transformation (SCT) to effectively align second-order statistics of the content feature with the style feature. Experiments demonstrate the effectiveness of the resulting model for versatile style transfer, when armed with CCPL.
HyperGAN-CLIP: A Unified Framework for Domain Adaptation, Image Synthesis and Manipulation
Generative Adversarial Networks (GANs), particularly StyleGAN and its variants, have demonstrated remarkable capabilities in generating highly realistic images. Despite their success, adapting these models to diverse tasks such as domain adaptation, reference-guided synthesis, and text-guided manipulation with limited training data remains challenging. Towards this end, in this study, we present a novel framework that significantly extends the capabilities of a pre-trained StyleGAN by integrating CLIP space via hypernetworks. This integration allows dynamic adaptation of StyleGAN to new domains defined by reference images or textual descriptions. Additionally, we introduce a CLIP-guided discriminator that enhances the alignment between generated images and target domains, ensuring superior image quality. Our approach demonstrates unprecedented flexibility, enabling text-guided image manipulation without the need for text-specific training data and facilitating seamless style transfer. Comprehensive qualitative and quantitative evaluations confirm the robustness and superior performance of our framework compared to existing methods.
NeRF Analogies: Example-Based Visual Attribute Transfer for NeRFs
A Neural Radiance Field (NeRF) encodes the specific relation of 3D geometry and appearance of a scene. We here ask the question whether we can transfer the appearance from a source NeRF onto a target 3D geometry in a semantically meaningful way, such that the resulting new NeRF retains the target geometry but has an appearance that is an analogy to the source NeRF. To this end, we generalize classic image analogies from 2D images to NeRFs. We leverage correspondence transfer along semantic affinity that is driven by semantic features from large, pre-trained 2D image models to achieve multi-view consistent appearance transfer. Our method allows exploring the mix-and-match product space of 3D geometry and appearance. We show that our method outperforms traditional stylization-based methods and that a large majority of users prefer our method over several typical baselines.
Text-to-Image Synthesis for Any Artistic Styles: Advancements in Personalized Artistic Image Generation via Subdivision and Dual Binding
Recent advancements in text-to-image models, such as Stable Diffusion, have demonstrated their ability to synthesize visual images through natural language prompts. One approach of personalizing text-to-image models, exemplified by DreamBooth, fine-tunes the pre-trained model by binding unique text identifiers with a few images of a specific subject. Although existing fine-tuning methods have demonstrated competence in rendering images according to the styles of famous painters, it is still challenging to learn to produce images encapsulating distinct art styles due to abstract and broad visual perceptions of stylistic attributes such as lines, shapes, textures, and colors. In this paper, we introduce a new method, Single-StyleForge, for personalization. It fine-tunes pre-trained text-to-image diffusion models to generate diverse images in specified styles from text prompts. By using around 15-20 images of the target style, the approach establishes a foundational binding of a unique token identifier with a broad range of the target style. It also utilizes auxiliary images to strengthen this binding, resulting in offering specific guidance on representing elements such as persons in a target style-consistent manner. In addition, we present ways to improve the quality of style and text-image alignment through a method called Multi-StyleForge, which inherits the strategy used in StyleForge and learns tokens in multiple. Experimental evaluation conducted on six distinct artistic styles demonstrates substantial improvements in both the quality of generated images and the perceptual fidelity metrics, such as FID, KID, and CLIP scores.
Inversion-Based Style Transfer with Diffusion Models
The artistic style within a painting is the means of expression, which includes not only the painting material, colors, and brushstrokes, but also the high-level attributes including semantic elements, object shapes, etc. Previous arbitrary example-guided artistic image generation methods often fail to control shape changes or convey elements. The pre-trained text-to-image synthesis diffusion probabilistic models have achieved remarkable quality, but it often requires extensive textual descriptions to accurately portray attributes of a particular painting. We believe that the uniqueness of an artwork lies precisely in the fact that it cannot be adequately explained with normal language. Our key idea is to learn artistic style directly from a single painting and then guide the synthesis without providing complex textual descriptions. Specifically, we assume style as a learnable textual description of a painting. We propose an inversion-based style transfer method (InST), which can efficiently and accurately learn the key information of an image, thus capturing and transferring the artistic style of a painting. We demonstrate the quality and efficiency of our method on numerous paintings of various artists and styles. Code and models are available at https://github.com/zyxElsa/InST.
Style3D: Attention-guided Multi-view Style Transfer for 3D Object Generation
We present Style3D, a novel approach for generating stylized 3D objects from a content image and a style image. Unlike most previous methods that require case- or style-specific training, Style3D supports instant 3D object stylization. Our key insight is that 3D object stylization can be decomposed into two interconnected processes: multi-view dual-feature alignment and sparse-view spatial reconstruction. We introduce MultiFusion Attention, an attention-guided technique to achieve multi-view stylization from the content-style pair. Specifically, the query features from the content image preserve geometric consistency across multiple views, while the key and value features from the style image are used to guide the stylistic transfer. This dual-feature alignment ensures that spatial coherence and stylistic fidelity are maintained across multi-view images. Finally, a large 3D reconstruction model is introduced to generate coherent stylized 3D objects. By establishing an interplay between structural and stylistic features across multiple views, our approach enables a holistic 3D stylization process. Extensive experiments demonstrate that Style3D offers a more flexible and scalable solution for generating style-consistent 3D assets, surpassing existing methods in both computational efficiency and visual quality.
StyleGAN of All Trades: Image Manipulation with Only Pretrained StyleGAN
Recently, StyleGAN has enabled various image manipulation and editing tasks thanks to the high-quality generation and the disentangled latent space. However, additional architectures or task-specific training paradigms are usually required for different tasks. In this work, we take a deeper look at the spatial properties of StyleGAN. We show that with a pretrained StyleGAN along with some operations, without any additional architecture, we can perform comparably to the state-of-the-art methods on various tasks, including image blending, panorama generation, generation from a single image, controllable and local multimodal image to image translation, and attributes transfer. The proposed method is simple, effective, efficient, and applicable to any existing pretrained StyleGAN model.
Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack
Training text-to-image models with web scale image-text pairs enables the generation of a wide range of visual concepts from text. However, these pre-trained models often face challenges when it comes to generating highly aesthetic images. This creates the need for aesthetic alignment post pre-training. In this paper, we propose quality-tuning to effectively guide a pre-trained model to exclusively generate highly visually appealing images, while maintaining generality across visual concepts. Our key insight is that supervised fine-tuning with a set of surprisingly small but extremely visually appealing images can significantly improve the generation quality. We pre-train a latent diffusion model on 1.1 billion image-text pairs and fine-tune it with only a few thousand carefully selected high-quality images. The resulting model, Emu, achieves a win rate of 82.9% compared with its pre-trained only counterpart. Compared to the state-of-the-art SDXLv1.0, Emu is preferred 68.4% and 71.3% of the time on visual appeal on the standard PartiPrompts and our Open User Input benchmark based on the real-world usage of text-to-image models. In addition, we show that quality-tuning is a generic approach that is also effective for other architectures, including pixel diffusion and masked generative transformer models.
Object-level Visual Prompts for Compositional Image Generation
We introduce a method for composing object-level visual prompts within a text-to-image diffusion model. Our approach addresses the task of generating semantically coherent compositions across diverse scenes and styles, similar to the versatility and expressiveness offered by text prompts. A key challenge in this task is to preserve the identity of the objects depicted in the input visual prompts, while also generating diverse compositions across different images. To address this challenge, we introduce a new KV-mixed cross-attention mechanism, in which keys and values are learned from distinct visual representations. The keys are derived from an encoder with a small bottleneck for layout control, whereas the values come from a larger bottleneck encoder that captures fine-grained appearance details. By mixing keys and values from these complementary sources, our model preserves the identity of the visual prompts while supporting flexible variations in object arrangement, pose, and composition. During inference, we further propose object-level compositional guidance to improve the method's identity preservation and layout correctness. Results show that our technique produces diverse scene compositions that preserve the unique characteristics of each visual prompt, expanding the creative potential of text-to-image generation.
Neural Photometry-guided Visual Attribute Transfer
We present a deep learning-based method for propagating spatially-varying visual material attributes (e.g. texture maps or image stylizations) to larger samples of the same or similar materials. For training, we leverage images of the material taken under multiple illuminations and a dedicated data augmentation policy, making the transfer robust to novel illumination conditions and affine deformations. Our model relies on a supervised image-to-image translation framework and is agnostic to the transferred domain; we showcase a semantic segmentation, a normal map, and a stylization. Following an image analogies approach, the method only requires the training data to contain the same visual structures as the input guidance. Our approach works at interactive rates, making it suitable for material edit applications. We thoroughly evaluate our learning methodology in a controlled setup providing quantitative measures of performance. Last, we demonstrate that training the model on a single material is enough to generalize to materials of the same type without the need for massive datasets.
Self-Contained Stylization via Steganography for Reverse and Serial Style Transfer
Style transfer has been widely applied to give real-world images a new artistic look. However, given a stylized image, the attempts to use typical style transfer methods for de-stylization or transferring it again into another style usually lead to artifacts or undesired results. We realize that these issues are originated from the content inconsistency between the original image and its stylized output. Therefore, in this paper we advance to keep the content information of the input image during the process of style transfer by the power of steganography, with two approaches proposed: a two-stage model and an end-to-end model. We conduct extensive experiments to successfully verify the capacity of our models, in which both of them are able to not only generate stylized images of quality comparable with the ones produced by typical style transfer methods, but also effectively eliminate the artifacts introduced in reconstructing original input from a stylized image as well as performing multiple times of style transfer in series.
StyleAdapter: A Single-Pass LoRA-Free Model for Stylized Image Generation
This paper presents a LoRA-free method for stylized image generation that takes a text prompt and style reference images as inputs and produces an output image in a single pass. Unlike existing methods that rely on training a separate LoRA for each style, our method can adapt to various styles with a unified model. However, this poses two challenges: 1) the prompt loses controllability over the generated content, and 2) the output image inherits both the semantic and style features of the style reference image, compromising its content fidelity. To address these challenges, we introduce StyleAdapter, a model that comprises two components: a two-path cross-attention module (TPCA) and three decoupling strategies. These components enable our model to process the prompt and style reference features separately and reduce the strong coupling between the semantic and style information in the style references. StyleAdapter can generate high-quality images that match the content of the prompts and adopt the style of the references (even for unseen styles) in a single pass, which is more flexible and efficient than previous methods. Experiments have been conducted to demonstrate the superiority of our method over previous works.
StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery
Inspired by the ability of StyleGAN to generate highly realistic images in a variety of domains, much recent work has focused on understanding how to use the latent spaces of StyleGAN to manipulate generated and real images. However, discovering semantically meaningful latent manipulations typically involves painstaking human examination of the many degrees of freedom, or an annotated collection of images for each desired manipulation. In this work, we explore leveraging the power of recently introduced Contrastive Language-Image Pre-training (CLIP) models in order to develop a text-based interface for StyleGAN image manipulation that does not require such manual effort. We first introduce an optimization scheme that utilizes a CLIP-based loss to modify an input latent vector in response to a user-provided text prompt. Next, we describe a latent mapper that infers a text-guided latent manipulation step for a given input image, allowing faster and more stable text-based manipulation. Finally, we present a method for mapping a text prompts to input-agnostic directions in StyleGAN's style space, enabling interactive text-driven image manipulation. Extensive results and comparisons demonstrate the effectiveness of our approaches.
MM-TTS: Multi-modal Prompt based Style Transfer for Expressive Text-to-Speech Synthesis
The style transfer task in Text-to-Speech refers to the process of transferring style information into text content to generate corresponding speech with a specific style. However, most existing style transfer approaches are either based on fixed emotional labels or reference speech clips, which cannot achieve flexible style transfer. Recently, some methods have adopted text descriptions to guide style transfer. In this paper, we propose a more flexible multi-modal and style controllable TTS framework named MM-TTS. It can utilize any modality as the prompt in unified multi-modal prompt space, including reference speech, emotional facial images, and text descriptions, to control the style of the generated speech in a system. The challenges of modeling such a multi-modal style controllable TTS mainly lie in two aspects:1)aligning the multi-modal information into a unified style space to enable the input of arbitrary modality as the style prompt in a single system, and 2)efficiently transferring the unified style representation into the given text content, thereby empowering the ability to generate prompt style-related voice. To address these problems, we propose an aligned multi-modal prompt encoder that embeds different modalities into a unified style space, supporting style transfer for different modalities. Additionally, we present a new adaptive style transfer method named Style Adaptive Convolutions to achieve a better style representation. Furthermore, we design a Rectified Flow based Refiner to solve the problem of over-smoothing Mel-spectrogram and generate audio of higher fidelity. Since there is no public dataset for multi-modal TTS, we construct a dataset named MEAD-TTS, which is related to the field of expressive talking head. Our experiments on the MEAD-TTS dataset and out-of-domain datasets demonstrate that MM-TTS can achieve satisfactory results based on multi-modal prompts.
Aligning Text-to-Image Models using Human Feedback
Deep generative models have shown impressive results in text-to-image synthesis. However, current text-to-image models often generate images that are inadequately aligned with text prompts. We propose a fine-tuning method for aligning such models using human feedback, comprising three stages. First, we collect human feedback assessing model output alignment from a set of diverse text prompts. We then use the human-labeled image-text dataset to train a reward function that predicts human feedback. Lastly, the text-to-image model is fine-tuned by maximizing reward-weighted likelihood to improve image-text alignment. Our method generates objects with specified colors, counts and backgrounds more accurately than the pre-trained model. We also analyze several design choices and find that careful investigations on such design choices are important in balancing the alignment-fidelity tradeoffs. Our results demonstrate the potential for learning from human feedback to significantly improve text-to-image models.
StyleMaster: Stylize Your Video with Artistic Generation and Translation
Style control has been popular in video generation models. Existing methods often generate videos far from the given style, cause content leakage, and struggle to transfer one video to the desired style. Our first observation is that the style extraction stage matters, whereas existing methods emphasize global style but ignore local textures. In order to bring texture features while preventing content leakage, we filter content-related patches while retaining style ones based on prompt-patch similarity; for global style extraction, we generate a paired style dataset through model illusion to facilitate contrastive learning, which greatly enhances the absolute style consistency. Moreover, to fill in the image-to-video gap, we train a lightweight motion adapter on still videos, which implicitly enhances stylization extent, and enables our image-trained model to be seamlessly applied to videos. Benefited from these efforts, our approach, StyleMaster, not only achieves significant improvement in both style resemblance and temporal coherence, but also can easily generalize to video style transfer with a gray tile ControlNet. Extensive experiments and visualizations demonstrate that StyleMaster significantly outperforms competitors, effectively generating high-quality stylized videos that align with textual content and closely resemble the style of reference images. Our project page is at https://zixuan-ye.github.io/stylemaster
ToonAging: Face Re-Aging upon Artistic Portrait Style Transfer
Face re-aging is a prominent field in computer vision and graphics, with significant applications in photorealistic domains such as movies, advertising, and live streaming. Recently, the need to apply face re-aging to non-photorealistic images, like comics, illustrations, and animations, has emerged as an extension in various entertainment sectors. However, the absence of a network capable of seamlessly editing the apparent age on NPR images means that these tasks have been confined to a naive approach, applying each task sequentially. This often results in unpleasant artifacts and a loss of facial attributes due to domain discrepancies. In this paper, we introduce a novel one-stage method for face re-aging combined with portrait style transfer, executed in a single generative step. We leverage existing face re-aging and style transfer networks, both trained within the same PR domain. Our method uniquely fuses distinct latent vectors, each responsible for managing aging-related attributes and NPR appearance. Adopting an exemplar-based approach, our method offers greater flexibility than domain-level fine-tuning approaches, which typically require separate training or fine-tuning for each domain. This effectively addresses the limitation of requiring paired datasets for re-aging and domain-level, data-driven approaches for stylization. Our experiments show that our model can effortlessly generate re-aged images while simultaneously transferring the style of examples, maintaining both natural appearance and controllability.
StyleSplat: 3D Object Style Transfer with Gaussian Splatting
Recent advancements in radiance fields have opened new avenues for creating high-quality 3D assets and scenes. Style transfer can enhance these 3D assets with diverse artistic styles, transforming creative expression. However, existing techniques are often slow or unable to localize style transfer to specific objects. We introduce StyleSplat, a lightweight method for stylizing 3D objects in scenes represented by 3D Gaussians from reference style images. Our approach first learns a photorealistic representation of the scene using 3D Gaussian splatting while jointly segmenting individual 3D objects. We then use a nearest-neighbor feature matching loss to finetune the Gaussians of the selected objects, aligning their spherical harmonic coefficients with the style image to ensure consistency and visual appeal. StyleSplat allows for quick, customizable style transfer and localized stylization of multiple objects within a scene, each with a different style. We demonstrate its effectiveness across various 3D scenes and styles, showcasing enhanced control and customization in 3D creation.
Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics
Traditionally, style has been primarily considered in terms of artistic elements such as colors, brushstrokes, and lighting. However, identical semantic subjects, like people, boats, and houses, can vary significantly across different artistic traditions, indicating that style also encompasses the underlying semantics. Therefore, in this study, we propose a zero-shot scheme for image variation with coordinated semantics. Specifically, our scheme transforms the image-to-image problem into an image-to-text-to-image problem. The image-to-text operation employs vision-language models e.g., BLIP) to generate text describing the content of the input image, including the objects and their positions. Subsequently, the input style keyword is elaborated into a detailed description of this style and then merged with the content text using the reasoning capabilities of ChatGPT. Finally, the text-to-image operation utilizes a Diffusion model to generate images based on the text prompt. To enable the Diffusion model to accommodate more styles, we propose a fine-tuning strategy that injects text and style constraints into cross-attention. This ensures that the output image exhibits similar semantics in the desired style. To validate the performance of the proposed scheme, we constructed a benchmark comprising images of various styles and scenes and introduced two novel metrics. Despite its simplicity, our scheme yields highly plausible results in a zero-shot manner, particularly for generating stylized images with high-fidelity semantics.
Cross Attention Based Style Distribution for Controllable Person Image Synthesis
Controllable person image synthesis task enables a wide range of applications through explicit control over body pose and appearance. In this paper, we propose a cross attention based style distribution module that computes between the source semantic styles and target pose for pose transfer. The module intentionally selects the style represented by each semantic and distributes them according to the target pose. The attention matrix in cross attention expresses the dynamic similarities between the target pose and the source styles for all semantics. Therefore, it can be utilized to route the color and texture from the source image, and is further constrained by the target parsing map to achieve a clearer objective. At the same time, to encode the source appearance accurately, the self attention among different semantic styles is also added. The effectiveness of our model is validated quantitatively and qualitatively on pose transfer and virtual try-on tasks.
Concept Sliders: LoRA Adaptors for Precise Control in Diffusion Models
We present a method to create interpretable concept sliders that enable precise control over attributes in image generations from diffusion models. Our approach identifies a low-rank parameter direction corresponding to one concept while minimizing interference with other attributes. A slider is created using a small set of prompts or sample images; thus slider directions can be created for either textual or visual concepts. Concept Sliders are plug-and-play: they can be composed efficiently and continuously modulated, enabling precise control over image generation. In quantitative experiments comparing to previous editing techniques, our sliders exhibit stronger targeted edits with lower interference. We showcase sliders for weather, age, styles, and expressions, as well as slider compositions. We show how sliders can transfer latents from StyleGAN for intuitive editing of visual concepts for which textual description is difficult. We also find that our method can help address persistent quality issues in Stable Diffusion XL including repair of object deformations and fixing distorted hands. Our code, data, and trained sliders are available at https://sliders.baulab.info/
StyleDiffusion: Prompt-Embedding Inversion for Text-Based Editing
A significant research effort is focused on exploiting the amazing capacities of pretrained diffusion models for the editing of images. They either finetune the model, or invert the image in the latent space of the pretrained model. However, they suffer from two problems: (1) Unsatisfying results for selected regions, and unexpected changes in nonselected regions. (2) They require careful text prompt editing where the prompt should include all visual objects in the input image. To address this, we propose two improvements: (1) Only optimizing the input of the value linear network in the cross-attention layers, is sufficiently powerful to reconstruct a real image. (2) We propose attention regularization to preserve the object-like attention maps after editing, enabling us to obtain accurate style editing without invoking significant structural changes. We further improve the editing technique which is used for the unconditional branch of classifier-free guidance, as well as the conditional one as used by P2P. Extensive experimental prompt-editing results on a variety of images, demonstrate qualitatively and quantitatively that our method has superior editing capabilities than existing and concurrent works.
Controllable Person Image Synthesis with Spatially-Adaptive Warped Normalization
Controllable person image generation aims to produce realistic human images with desirable attributes such as a given pose, cloth textures, or hairstyles. However, the large spatial misalignment between source and target images makes the standard image-to-image translation architectures unsuitable for this task. Most state-of-the-art methods focus on alignment for global pose-transfer tasks. However, they fail to deal with region-specific texture-transfer tasks, especially for person images with complex textures. To solve this problem, we propose a novel Spatially-Adaptive Warped Normalization (SAWN) which integrates a learned flow-field to warp modulation parameters. It allows us to efficiently align person spatially-adaptive styles with pose features. Moreover, we propose a novel Self-Training Part Replacement (STPR) strategy to refine the model for the texture-transfer task, which improves the quality of the generated clothes and the preservation ability of non-target regions. Our experimental results on the widely used DeepFashion dataset demonstrate a significant improvement of the proposed method over the state-of-the-art methods on pose-transfer and texture-transfer tasks. The code is available at https://github.com/zhangqianhui/Sawn.
Style-Friendly SNR Sampler for Style-Driven Generation
Recent large-scale diffusion models generate high-quality images but struggle to learn new, personalized artistic styles, which limits the creation of unique style templates. Fine-tuning with reference images is the most promising approach, but it often blindly utilizes objectives and noise level distributions used for pre-training, leading to suboptimal style alignment. We propose the Style-friendly SNR sampler, which aggressively shifts the signal-to-noise ratio (SNR) distribution toward higher noise levels during fine-tuning to focus on noise levels where stylistic features emerge. This enables models to better capture unique styles and generate images with higher style alignment. Our method allows diffusion models to learn and share new "style templates", enhancing personalized content creation. We demonstrate the ability to generate styles such as personal watercolor paintings, minimal flat cartoons, 3D renderings, multi-panel images, and memes with text, thereby broadening the scope of style-driven generation.
Visual Style Prompting with Swapping Self-Attention
In the evolving domain of text-to-image generation, diffusion models have emerged as powerful tools in content creation. Despite their remarkable capability, existing models still face challenges in achieving controlled generation with a consistent style, requiring costly fine-tuning or often inadequately transferring the visual elements due to content leakage. To address these challenges, we propose a novel approach, \ours, to produce a diverse range of images while maintaining specific style elements and nuances. During the denoising process, we keep the query from original features while swapping the key and value with those from reference features in the late self-attention layers. This approach allows for the visual style prompting without any fine-tuning, ensuring that generated images maintain a faithful style. Through extensive evaluation across various styles and text prompts, our method demonstrates superiority over existing approaches, best reflecting the style of the references and ensuring that resulting images match the text prompts most accurately. Our project page is available https://curryjung.github.io/VisualStylePrompt/.
Controllable Person Image Synthesis with Attribute-Decomposed GAN
This paper introduces the Attribute-Decomposed GAN, a novel generative model for controllable person image synthesis, which can produce realistic person images with desired human attributes (e.g., pose, head, upper clothes and pants) provided in various source inputs. The core idea of the proposed model is to embed human attributes into the latent space as independent codes and thus achieve flexible and continuous control of attributes via mixing and interpolation operations in explicit style representations. Specifically, a new architecture consisting of two encoding pathways with style block connections is proposed to decompose the original hard mapping into multiple more accessible subtasks. In source pathway, we further extract component layouts with an off-the-shelf human parser and feed them into a shared global texture encoder for decomposed latent codes. This strategy allows for the synthesis of more realistic output images and automatic separation of un-annotated attributes. Experimental results demonstrate the proposed method's superiority over the state of the art in pose transfer and its effectiveness in the brand-new task of component attribute transfer.
GANs N' Roses: Stable, Controllable, Diverse Image to Image Translation (works for videos too!)
We show how to learn a map that takes a content code, derived from a face image, and a randomly chosen style code to an anime image. We derive an adversarial loss from our simple and effective definitions of style and content. This adversarial loss guarantees the map is diverse -- a very wide range of anime can be produced from a single content code. Under plausible assumptions, the map is not just diverse, but also correctly represents the probability of an anime, conditioned on an input face. In contrast, current multimodal generation procedures cannot capture the complex styles that appear in anime. Extensive quantitative experiments support the idea the map is correct. Extensive qualitative results show that the method can generate a much more diverse range of styles than SOTA comparisons. Finally, we show that our formalization of content and style allows us to perform video to video translation without ever training on videos.
DreamStyler: Paint by Style Inversion with Text-to-Image Diffusion Models
Recent progresses in large-scale text-to-image models have yielded remarkable accomplishments, finding various applications in art domain. However, expressing unique characteristics of an artwork (e.g. brushwork, colortone, or composition) with text prompts alone may encounter limitations due to the inherent constraints of verbal description. To this end, we introduce DreamStyler, a novel framework designed for artistic image synthesis, proficient in both text-to-image synthesis and style transfer. DreamStyler optimizes a multi-stage textual embedding with a context-aware text prompt, resulting in prominent image quality. In addition, with content and style guidance, DreamStyler exhibits flexibility to accommodate a range of style references. Experimental results demonstrate its superior performance across multiple scenarios, suggesting its promising potential in artistic product creation.
Style Your Hair: Latent Optimization for Pose-Invariant Hairstyle Transfer via Local-Style-Aware Hair Alignment
Editing hairstyle is unique and challenging due to the complexity and delicacy of hairstyle. Although recent approaches significantly improved the hair details, these models often produce undesirable outputs when a pose of a source image is considerably different from that of a target hair image, limiting their real-world applications. HairFIT, a pose-invariant hairstyle transfer model, alleviates this limitation yet still shows unsatisfactory quality in preserving delicate hair textures. To solve these limitations, we propose a high-performing pose-invariant hairstyle transfer model equipped with latent optimization and a newly presented local-style-matching loss. In the StyleGAN2 latent space, we first explore a pose-aligned latent code of a target hair with the detailed textures preserved based on local style matching. Then, our model inpaints the occlusions of the source considering the aligned target hair and blends both images to produce a final output. The experimental results demonstrate that our model has strengths in transferring a hairstyle under larger pose differences and preserving local hairstyle textures.
Artist: Aesthetically Controllable Text-Driven Stylization without Training
Diffusion models entangle content and style generation during the denoising process, leading to undesired content modification when directly applied to stylization tasks. Existing methods struggle to effectively control the diffusion model to meet the aesthetic-level requirements for stylization. In this paper, we introduce Artist, a training-free approach that aesthetically controls the content and style generation of a pretrained diffusion model for text-driven stylization. Our key insight is to disentangle the denoising of content and style into separate diffusion processes while sharing information between them. We propose simple yet effective content and style control methods that suppress style-irrelevant content generation, resulting in harmonious stylization results. Extensive experiments demonstrate that our method excels at achieving aesthetic-level stylization requirements, preserving intricate details in the content image and aligning well with the style prompt. Furthermore, we showcase the highly controllability of the stylization strength from various perspectives. Code will be released, project home page: https://DiffusionArtist.github.io
ControlStyle: Text-Driven Stylized Image Generation Using Diffusion Priors
Recently, the multimedia community has witnessed the rise of diffusion models trained on large-scale multi-modal data for visual content creation, particularly in the field of text-to-image generation. In this paper, we propose a new task for ``stylizing'' text-to-image models, namely text-driven stylized image generation, that further enhances editability in content creation. Given input text prompt and style image, this task aims to produce stylized images which are both semantically relevant to input text prompt and meanwhile aligned with the style image in style. To achieve this, we present a new diffusion model (ControlStyle) via upgrading a pre-trained text-to-image model with a trainable modulation network enabling more conditions of text prompts and style images. Moreover, diffusion style and content regularizations are simultaneously introduced to facilitate the learning of this modulation network with these diffusion priors, pursuing high-quality stylized text-to-image generation. Extensive experiments demonstrate the effectiveness of our ControlStyle in producing more visually pleasing and artistic results, surpassing a simple combination of text-to-image model and conventional style transfer techniques.
DS-Fusion: Artistic Typography via Discriminated and Stylized Diffusion
We introduce a novel method to automatically generate an artistic typography by stylizing one or more letter fonts to visually convey the semantics of an input word, while ensuring that the output remains readable. To address an assortment of challenges with our task at hand including conflicting goals (artistic stylization vs. legibility), lack of ground truth, and immense search space, our approach utilizes large language models to bridge texts and visual images for stylization and build an unsupervised generative model with a diffusion model backbone. Specifically, we employ the denoising generator in Latent Diffusion Model (LDM), with the key addition of a CNN-based discriminator to adapt the input style onto the input text. The discriminator uses rasterized images of a given letter/word font as real samples and output of the denoising generator as fake samples. Our model is coined DS-Fusion for discriminated and stylized diffusion. We showcase the quality and versatility of our method through numerous examples, qualitative and quantitative evaluation, as well as ablation studies. User studies comparing to strong baselines including CLIPDraw and DALL-E 2, as well as artist-crafted typographies, demonstrate strong performance of DS-Fusion.
StyleMC: Multi-Channel Based Fast Text-Guided Image Generation and Manipulation
Discovering meaningful directions in the latent space of GANs to manipulate semantic attributes typically requires large amounts of labeled data. Recent work aims to overcome this limitation by leveraging the power of Contrastive Language-Image Pre-training (CLIP), a joint text-image model. While promising, these methods require several hours of preprocessing or training to achieve the desired manipulations. In this paper, we present StyleMC, a fast and efficient method for text-driven image generation and manipulation. StyleMC uses a CLIP-based loss and an identity loss to manipulate images via a single text prompt without significantly affecting other attributes. Unlike prior work, StyleMC requires only a few seconds of training per text prompt to find stable global directions, does not require prompt engineering and can be used with any pre-trained StyleGAN2 model. We demonstrate the effectiveness of our method and compare it to state-of-the-art methods. Our code can be found at http://catlab-team.github.io/stylemc.
PromptStyler: Prompt-driven Style Generation for Source-free Domain Generalization
In a joint vision-language space, a text feature (e.g., from "a photo of a dog") could effectively represent its relevant image features (e.g., from dog photos). Inspired by this, we propose PromptStyler which simulates various distribution shifts in the joint space by synthesizing diverse styles via prompts without using any images to deal with source-free domain generalization. Our method learns to generate a variety of style features (from "a S* style of a") via learnable style word vectors for pseudo-words S*. To ensure that learned styles do not distort content information, we force style-content features (from "a S* style of a [class]") to be located nearby their corresponding content features (from "[class]") in the joint vision-language space. After learning style word vectors, we train a linear classifier using synthesized style-content features. PromptStyler achieves the state of the art on PACS, VLCS, OfficeHome and DomainNet, although it does not require any images and takes just ~30 minutes for training using a single GPU.
AlteredAvatar: Stylizing Dynamic 3D Avatars with Fast Style Adaptation
This paper presents a method that can quickly adapt dynamic 3D avatars to arbitrary text descriptions of novel styles. Among existing approaches for avatar stylization, direct optimization methods can produce excellent results for arbitrary styles but they are unpleasantly slow. Furthermore, they require redoing the optimization process from scratch for every new input. Fast approximation methods using feed-forward networks trained on a large dataset of style images can generate results for new inputs quickly, but tend not to generalize well to novel styles and fall short in quality. We therefore investigate a new approach, AlteredAvatar, that combines those two approaches using the meta-learning framework. In the inner loop, the model learns to optimize to match a single target style well; while in the outer loop, the model learns to stylize efficiently across many styles. After training, AlteredAvatar learns an initialization that can quickly adapt within a small number of update steps to a novel style, which can be given using texts, a reference image, or a combination of both. We show that AlteredAvatar can achieve a good balance between speed, flexibility and quality, while maintaining consistency across a wide range of novel views and facial expressions.
InstaStyle: Inversion Noise of a Stylized Image is Secretly a Style Adviser
Stylized text-to-image generation focuses on creating images from textual descriptions while adhering to a style specified by a few reference images. However, subtle style variations within different reference images can hinder the model from accurately learning the target style. In this paper, we propose InstaStyle, a novel approach that excels in generating high-fidelity stylized images with only a single reference image. Our approach is based on the finding that the inversion noise from a stylized reference image inherently carries the style signal, as evidenced by their non-zero signal-to-noise ratio. We employ DDIM inversion to extract this noise from the reference image and leverage a diffusion model to generate new stylized images from the ``style" noise. Additionally, the inherent ambiguity and bias of textual prompts impede the precise conveying of style. To address this, we introduce a learnable style token via prompt refinement, which enhances the accuracy of the style description for the reference image. Qualitative and quantitative experimental results demonstrate that InstaStyle achieves superior performance compared to current benchmarks. Furthermore, our approach also showcases its capability in the creative task of style combination with mixed inversion noise.
Style Vectors for Steering Generative Large Language Model
This research explores strategies for steering the output of large language models (LLMs) towards specific styles, such as sentiment, emotion, or writing style, by adding style vectors to the activations of hidden layers during text generation. We show that style vectors can be simply computed from recorded layer activations for input texts in a specific style in contrast to more complex training-based approaches. Through a series of experiments, we demonstrate the effectiveness of activation engineering using such style vectors to influence the style of generated text in a nuanced and parameterisable way, distinguishing it from prompt engineering. The presented research constitutes a significant step towards developing more adaptive and effective AI-empowered interactive systems.
Using Style Ambiguity Loss to Improve Aesthetics of Diffusion Models
Teaching text-to-image models to be creative involves using style ambiguity loss. In this work, we explore using the style ambiguity training objective, used to approximate creativity, on a diffusion model. We then experiment with forms of style ambiguity loss that do not require training a classifier or a labeled dataset, and find that the models trained with style ambiguity loss can generate better images than the baseline diffusion models and GANs. Code is available at https://github.com/jamesBaker361/clipcreate.
Simple Disentanglement of Style and Content in Visual Representations
Learning visual representations with interpretable features, i.e., disentangled representations, remains a challenging problem. Existing methods demonstrate some success but are hard to apply to large-scale vision datasets like ImageNet. In this work, we propose a simple post-processing framework to disentangle content and style in learned representations from pre-trained vision models. We model the pre-trained features probabilistically as linearly entangled combinations of the latent content and style factors and develop a simple disentanglement algorithm based on the probabilistic model. We show that the method provably disentangles content and style features and verify its efficacy empirically. Our post-processed features yield significant domain generalization performance improvements when the distribution shift occurs due to style changes or style-related spurious correlations.
StyleDistance: Stronger Content-Independent Style Embeddings with Synthetic Parallel Examples
Style representations aim to embed texts with similar writing styles closely and texts with different styles far apart, regardless of content. However, the contrastive triplets often used for training these representations may vary in both style and content, leading to potential content leakage in the representations. We introduce StyleDistance, a novel approach to training stronger content-independent style embeddings. We use a large language model to create a synthetic dataset of near-exact paraphrases with controlled style variations, and produce positive and negative examples across 40 distinct style features for precise contrastive learning. We assess the quality of our synthetic data and embeddings through human and automatic evaluations. StyleDistance enhances the content-independence of style embeddings, which generalize to real-world benchmarks and outperform leading style representations in downstream applications. Our model can be found at https://huggingface.co/StyleDistance/styledistance .
SubZero: Composing Subject, Style, and Action via Zero-Shot Personalization
Diffusion models are increasingly popular for generative tasks, including personalized composition of subjects and styles. While diffusion models can generate user-specified subjects performing text-guided actions in custom styles, they require fine-tuning and are not feasible for personalization on mobile devices. Hence, tuning-free personalization methods such as IP-Adapters have progressively gained traction. However, for the composition of subjects and styles, these works are less flexible due to their reliance on ControlNet, or show content and style leakage artifacts. To tackle these, we present SubZero, a novel framework to generate any subject in any style, performing any action without the need for fine-tuning. We propose a novel set of constraints to enhance subject and style similarity, while reducing leakage. Additionally, we propose an orthogonalized temporal aggregation scheme in the cross-attention blocks of denoising model, effectively conditioning on a text prompt along with single subject and style images. We also propose a novel method to train customized content and style projectors to reduce content and style leakage. Through extensive experiments, we show that our proposed approach, while suitable for running on-edge, shows significant improvements over state-of-the-art works performing subject, style and action composition.
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators
Can a generative model be trained to produce images from a specific domain, guided by a text prompt only, without seeing any image? In other words: can an image generator be trained "blindly"? Leveraging the semantic power of large scale Contrastive-Language-Image-Pre-training (CLIP) models, we present a text-driven method that allows shifting a generative model to new domains, without having to collect even a single image. We show that through natural language prompts and a few minutes of training, our method can adapt a generator across a multitude of domains characterized by diverse styles and shapes. Notably, many of these modifications would be difficult or outright impossible to reach with existing methods. We conduct an extensive set of experiments and comparisons across a wide range of domains. These demonstrate the effectiveness of our approach and show that our shifted models maintain the latent-space properties that make generative models appealing for downstream tasks.
Ada-adapter:Fast Few-shot Style Personlization of Diffusion Model with Pre-trained Image Encoder
Fine-tuning advanced diffusion models for high-quality image stylization usually requires large training datasets and substantial computational resources, hindering their practical applicability. We propose Ada-Adapter, a novel framework for few-shot style personalization of diffusion models. Ada-Adapter leverages off-the-shelf diffusion models and pre-trained image feature encoders to learn a compact style representation from a limited set of source images. Our method enables efficient zero-shot style transfer utilizing a single reference image. Furthermore, with a small number of source images (three to five are sufficient) and a few minutes of fine-tuning, our method can capture intricate style details and conceptual characteristics, generating high-fidelity stylized images that align well with the provided text prompts. We demonstrate the effectiveness of our approach on various artistic styles, including flat art, 3D rendering, and logo design. Our experimental results show that Ada-Adapter outperforms existing zero-shot and few-shot stylization methods in terms of output quality, diversity, and training efficiency.
eDiff-I: Text-to-Image Diffusion Models with an Ensemble of Expert Denoisers
Large-scale diffusion-based generative models have led to breakthroughs in text-conditioned high-resolution image synthesis. Starting from random noise, such text-to-image diffusion models gradually synthesize images in an iterative fashion while conditioning on text prompts. We find that their synthesis behavior qualitatively changes throughout this process: Early in sampling, generation strongly relies on the text prompt to generate text-aligned content, while later, the text conditioning is almost entirely ignored. This suggests that sharing model parameters throughout the entire generation process may not be ideal. Therefore, in contrast to existing works, we propose to train an ensemble of text-to-image diffusion models specialized for different synthesis stages. To maintain training efficiency, we initially train a single model, which is then split into specialized models that are trained for the specific stages of the iterative generation process. Our ensemble of diffusion models, called eDiff-I, results in improved text alignment while maintaining the same inference computation cost and preserving high visual quality, outperforming previous large-scale text-to-image diffusion models on the standard benchmark. In addition, we train our model to exploit a variety of embeddings for conditioning, including the T5 text, CLIP text, and CLIP image embeddings. We show that these different embeddings lead to different behaviors. Notably, the CLIP image embedding allows an intuitive way of transferring the style of a reference image to the target text-to-image output. Lastly, we show a technique that enables eDiff-I's "paint-with-words" capability. A user can select the word in the input text and paint it in a canvas to control the output, which is very handy for crafting the desired image in mind. The project page is available at https://deepimagination.cc/eDiff-I/
HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach
Our paper addresses the complex task of transferring a hairstyle from a reference image to an input photo for virtual hair try-on. This task is challenging due to the need to adapt to various photo poses, the sensitivity of hairstyles, and the lack of objective metrics. The current state of the art hairstyle transfer methods use an optimization process for different parts of the approach, making them inexcusably slow. At the same time, faster encoder-based models are of very low quality because they either operate in StyleGAN's W+ space or use other low-dimensional image generators. Additionally, both approaches have a problem with hairstyle transfer when the source pose is very different from the target pose, because they either don't consider the pose at all or deal with it inefficiently. In our paper, we present the HairFast model, which uniquely solves these problems and achieves high resolution, near real-time performance, and superior reconstruction compared to optimization problem-based methods. Our solution includes a new architecture operating in the FS latent space of StyleGAN, an enhanced inpainting approach, and improved encoders for better alignment, color transfer, and a new encoder for post-processing. The effectiveness of our approach is demonstrated on realism metrics after random hairstyle transfer and reconstruction when the original hairstyle is transferred. In the most difficult scenario of transferring both shape and color of a hairstyle from different images, our method performs in less than a second on the Nvidia V100. Our code is available at https://github.com/AIRI-Institute/HairFastGAN.
WISE: Whitebox Image Stylization by Example-based Learning
Image-based artistic rendering can synthesize a variety of expressive styles using algorithmic image filtering. In contrast to deep learning-based methods, these heuristics-based filtering techniques can operate on high-resolution images, are interpretable, and can be parameterized according to various design aspects. However, adapting or extending these techniques to produce new styles is often a tedious and error-prone task that requires expert knowledge. We propose a new paradigm to alleviate this problem: implementing algorithmic image filtering techniques as differentiable operations that can learn parametrizations aligned to certain reference styles. To this end, we present WISE, an example-based image-processing system that can handle a multitude of stylization techniques, such as watercolor, oil or cartoon stylization, within a common framework. By training parameter prediction networks for global and local filter parameterizations, we can simultaneously adapt effects to reference styles and image content, e.g., to enhance facial features. Our method can be optimized in a style-transfer framework or learned in a generative-adversarial setting for image-to-image translation. We demonstrate that jointly training an XDoG filter and a CNN for postprocessing can achieve comparable results to a state-of-the-art GAN-based method.
AUTOVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss
Non-parallel many-to-many voice conversion, as well as zero-shot voice conversion, remain under-explored areas. Deep style transfer algorithms, such as generative adversarial networks (GAN) and conditional variational autoencoder (CVAE), are being applied as new solutions in this field. However, GAN training is sophisticated and difficult, and there is no strong evidence that its generated speech is of good perceptual quality. On the other hand, CVAE training is simple but does not come with the distribution-matching property of a GAN. In this paper, we propose a new style transfer scheme that involves only an autoencoder with a carefully designed bottleneck. We formally show that this scheme can achieve distribution-matching style transfer by training only on a self-reconstruction loss. Based on this scheme, we proposed AUTOVC, which achieves state-of-the-art results in many-to-many voice conversion with non-parallel data, and which is the first to perform zero-shot voice conversion.
An Analysis for Image-to-Image Translation and Style Transfer
With the development of generative technologies in deep learning, a large number of image-to-image translation and style transfer models have emerged at an explosive rate in recent years. These two technologies have made significant progress and can generate realistic images. However, many communities tend to confuse the two, because both generate the desired image based on the input image and both cover the two definitions of content and style. In fact, there are indeed significant differences between the two, and there is currently a lack of clear explanations to distinguish the two technologies, which is not conducive to the advancement of technology. We hope to serve the entire community by introducing the differences and connections between image-to-image translation and style transfer. The entire discussion process involves the concepts, forms, training modes, evaluation processes, and visualization results of the two technologies. Finally, we conclude that image-to-image translation divides images by domain, and the types of images in the domain are limited, and the scope involved is small, but the conversion ability is strong and can achieve strong semantic changes. Style transfer divides image types by single image, and the scope involved is large, but the transfer ability is limited, and it transfers more texture and color of the image.
Scenimefy: Learning to Craft Anime Scene via Semi-Supervised Image-to-Image Translation
Automatic high-quality rendering of anime scenes from complex real-world images is of significant practical value. The challenges of this task lie in the complexity of the scenes, the unique features of anime style, and the lack of high-quality datasets to bridge the domain gap. Despite promising attempts, previous efforts are still incompetent in achieving satisfactory results with consistent semantic preservation, evident stylization, and fine details. In this study, we propose Scenimefy, a novel semi-supervised image-to-image translation framework that addresses these challenges. Our approach guides the learning with structure-consistent pseudo paired data, simplifying the pure unsupervised setting. The pseudo data are derived uniquely from a semantic-constrained StyleGAN leveraging rich model priors like CLIP. We further apply segmentation-guided data selection to obtain high-quality pseudo supervision. A patch-wise contrastive style loss is introduced to improve stylization and fine details. Besides, we contribute a high-resolution anime scene dataset to facilitate future research. Our extensive experiments demonstrate the superiority of our method over state-of-the-art baselines in terms of both perceptual quality and quantitative performance.
StyleGaussian: Instant 3D Style Transfer with Gaussian Splatting
We introduce StyleGaussian, a novel 3D style transfer technique that allows instant transfer of any image's style to a 3D scene at 10 frames per second (fps). Leveraging 3D Gaussian Splatting (3DGS), StyleGaussian achieves style transfer without compromising its real-time rendering ability and multi-view consistency. It achieves instant style transfer with three steps: embedding, transfer, and decoding. Initially, 2D VGG scene features are embedded into reconstructed 3D Gaussians. Next, the embedded features are transformed according to a reference style image. Finally, the transformed features are decoded into the stylized RGB. StyleGaussian has two novel designs. The first is an efficient feature rendering strategy that first renders low-dimensional features and then maps them into high-dimensional features while embedding VGG features. It cuts the memory consumption significantly and enables 3DGS to render the high-dimensional memory-intensive features. The second is a K-nearest-neighbor-based 3D CNN. Working as the decoder for the stylized features, it eliminates the 2D CNN operations that compromise strict multi-view consistency. Extensive experiments show that StyleGaussian achieves instant 3D stylization with superior stylization quality while preserving real-time rendering and strict multi-view consistency. Project page: https://kunhao-liu.github.io/StyleGaussian/
Are Large Language Models Actually Good at Text Style Transfer?
We analyze the performance of large language models (LLMs) on Text Style Transfer (TST), specifically focusing on sentiment transfer and text detoxification across three languages: English, Hindi, and Bengali. Text Style Transfer involves modifying the linguistic style of a text while preserving its core content. We evaluate the capabilities of pre-trained LLMs using zero-shot and few-shot prompting as well as parameter-efficient finetuning on publicly available datasets. Our evaluation using automatic metrics, GPT-4 and human evaluations reveals that while some prompted LLMs perform well in English, their performance in on other languages (Hindi, Bengali) remains average. However, finetuning significantly improves results compared to zero-shot and few-shot prompting, making them comparable to previous state-of-the-art. This underscores the necessity of dedicated datasets and specialized models for effective TST.
Distilling Text Style Transfer With Self-Explanation From LLMs
Text Style Transfer (TST) seeks to alter the style of text while retaining its core content. Given the constraints of limited parallel datasets for TST, we propose CoTeX, a framework that leverages large language models (LLMs) alongside chain-of-thought (CoT) prompting to facilitate TST. CoTeX distills the complex rewriting and reasoning capabilities of LLMs into more streamlined models capable of working with both non-parallel and parallel data. Through experimentation across four TST datasets, CoTeX is shown to surpass traditional supervised fine-tuning and knowledge distillation methods, particularly in low-resource settings. We conduct a comprehensive evaluation, comparing CoTeX against current unsupervised, supervised, in-context learning (ICL) techniques, and instruction-tuned LLMs. Furthermore, CoTeX distinguishes itself by offering transparent explanations for its style transfer process.
Style-Extracting Diffusion Models for Semi-Supervised Histopathology Segmentation
Deep learning-based image generation has seen significant advancements with diffusion models, notably improving the quality of generated images. Despite these developments, generating images with unseen characteristics beneficial for downstream tasks has received limited attention. To bridge this gap, we propose Style-Extracting Diffusion Models, featuring two conditioning mechanisms. Specifically, we utilize 1) a style conditioning mechanism which allows to inject style information of previously unseen images during image generation and 2) a content conditioning which can be targeted to a downstream task, e.g., layout for segmentation. We introduce a trainable style encoder to extract style information from images, and an aggregation block that merges style information from multiple style inputs. This architecture enables the generation of images with unseen styles in a zero-shot manner, by leveraging styles from unseen images, resulting in more diverse generations. In this work, we use the image layout as target condition and first show the capability of our method on a natural image dataset as a proof-of-concept. We further demonstrate its versatility in histopathology, where we combine prior knowledge about tissue composition and unannotated data to create diverse synthetic images with known layouts. This allows us to generate additional synthetic data to train a segmentation network in a semi-supervised fashion. We verify the added value of the generated images by showing improved segmentation results and lower performance variability between patients when synthetic images are included during segmentation training. Our code will be made publicly available at [LINK].
K-LoRA: Unlocking Training-Free Fusion of Any Subject and Style LoRAs
Recent studies have explored combining different LoRAs to jointly generate learned style and content. However, existing methods either fail to effectively preserve both the original subject and style simultaneously or require additional training. In this paper, we argue that the intrinsic properties of LoRA can effectively guide diffusion models in merging learned subject and style. Building on this insight, we propose K-LoRA, a simple yet effective training-free LoRA fusion approach. In each attention layer, K-LoRA compares the Top-K elements in each LoRA to be fused, determining which LoRA to select for optimal fusion. This selection mechanism ensures that the most representative features of both subject and style are retained during the fusion process, effectively balancing their contributions. Experimental results demonstrate that the proposed method effectively integrates the subject and style information learned by the original LoRAs, outperforming state-of-the-art training-based approaches in both qualitative and quantitative results.
DEADiff: An Efficient Stylization Diffusion Model with Disentangled Representations
The diffusion-based text-to-image model harbors immense potential in transferring reference style. However, current encoder-based approaches significantly impair the text controllability of text-to-image models while transferring styles. In this paper, we introduce DEADiff to address this issue using the following two strategies: 1) a mechanism to decouple the style and semantics of reference images. The decoupled feature representations are first extracted by Q-Formers which are instructed by different text descriptions. Then they are injected into mutually exclusive subsets of cross-attention layers for better disentanglement. 2) A non-reconstructive learning method. The Q-Formers are trained using paired images rather than the identical target, in which the reference image and the ground-truth image are with the same style or semantics. We show that DEADiff attains the best visual stylization results and optimal balance between the text controllability inherent in the text-to-image model and style similarity to the reference image, as demonstrated both quantitatively and qualitatively. Our project page is https://tianhao-qi.github.io/DEADiff/.
IMPUS: Image Morphing with Perceptually-Uniform Sampling Using Diffusion Models
We present a diffusion-based image morphing approach with perceptually-uniform sampling (IMPUS) that produces smooth, direct and realistic interpolations given an image pair. The embeddings of two images may lie on distinct conditioned distributions of a latent diffusion model, especially when they have significant semantic difference. To bridge this gap, we interpolate in the locally linear and continuous text embedding space and Gaussian latent space. We first optimize the endpoint text embeddings and then map the images to the latent space using a probability flow ODE. Unlike existing work that takes an indirect morphing path, we show that the model adaptation yields a direct path and suppresses ghosting artifacts in the interpolated images. To achieve this, we propose a heuristic bottleneck constraint based on a novel relative perceptual path diversity score that automatically controls the bottleneck size and balances the diversity along the path with its directness. We also propose a perceptually-uniform sampling technique that enables visually smooth changes between the interpolated images. Extensive experiments validate that our IMPUS can achieve smooth, direct, and realistic image morphing and is adaptable to several other generative tasks.
StyleSSP: Sampling StartPoint Enhancement for Training-free Diffusion-based Method for Style Transfer
Training-free diffusion-based methods have achieved remarkable success in style transfer, eliminating the need for extensive training or fine-tuning. However, due to the lack of targeted training for style information extraction and constraints on the content image layout, training-free methods often suffer from layout changes of original content and content leakage from style images. Through a series of experiments, we discovered that an effective startpoint in the sampling stage significantly enhances the style transfer process. Based on this discovery, we propose StyleSSP, which focuses on obtaining a better startpoint to address layout changes of original content and content leakage from style image. StyleSSP comprises two key components: (1) Frequency Manipulation: To improve content preservation, we reduce the low-frequency components of the DDIM latent, allowing the sampling stage to pay more attention to the layout of content images; and (2) Negative Guidance via Inversion: To mitigate the content leakage from style image, we employ negative guidance in the inversion stage to ensure that the startpoint of the sampling stage is distanced from the content of style image. Experiments show that StyleSSP surpasses previous training-free style transfer baselines, particularly in preserving original content and minimizing the content leakage from style image.
On the Surprising Effectiveness of Attention Transfer for Vision Transformers
Conventional wisdom suggests that pre-training Vision Transformers (ViT) improves downstream performance by learning useful representations. Is this actually true? We investigate this question and find that the features and representations learned during pre-training are not essential. Surprisingly, using only the attention patterns from pre-training (i.e., guiding how information flows between tokens) is sufficient for models to learn high quality features from scratch and achieve comparable downstream performance. We show this by introducing a simple method called attention transfer, where only the attention patterns from a pre-trained teacher ViT are transferred to a student, either by copying or distilling the attention maps. Since attention transfer lets the student learn its own features, ensembling it with a fine-tuned teacher also further improves accuracy on ImageNet. We systematically study various aspects of our findings on the sufficiency of attention maps, including distribution shift settings where they underperform fine-tuning. We hope our exploration provides a better understanding of what pre-training accomplishes and leads to a useful alternative to the standard practice of fine-tuning
ProSpect: Prompt Spectrum for Attribute-Aware Personalization of Diffusion Models
Personalizing generative models offers a way to guide image generation with user-provided references. Current personalization methods can invert an object or concept into the textual conditioning space and compose new natural sentences for text-to-image diffusion models. However, representing and editing specific visual attributes such as material, style, and layout remains a challenge, leading to a lack of disentanglement and editability. To address this problem, we propose a novel approach that leverages the step-by-step generation process of diffusion models, which generate images from low to high frequency information, providing a new perspective on representing, generating, and editing images. We develop the Prompt Spectrum Space P*, an expanded textual conditioning space, and a new image representation method called \sysname. ProSpect represents an image as a collection of inverted textual token embeddings encoded from per-stage prompts, where each prompt corresponds to a specific generation stage (i.e., a group of consecutive steps) of the diffusion model. Experimental results demonstrate that P* and ProSpect offer better disentanglement and controllability compared to existing methods. We apply ProSpect in various personalized attribute-aware image generation applications, such as image-guided or text-driven manipulations of materials, style, and layout, achieving previously unattainable results from a single image input without fine-tuning the diffusion models. Our source code is available athttps://github.com/zyxElsa/ProSpect.
BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation
Generative Adversarial Networks (GANs) have made a dramatic leap in high-fidelity image synthesis and stylized face generation. Recently, a layer-swapping mechanism has been developed to improve the stylization performance. However, this method is incapable of fitting arbitrary styles in a single model and requires hundreds of style-consistent training images for each style. To address the above issues, we propose BlendGAN for arbitrary stylized face generation by leveraging a flexible blending strategy and a generic artistic dataset. Specifically, we first train a self-supervised style encoder on the generic artistic dataset to extract the representations of arbitrary styles. In addition, a weighted blending module (WBM) is proposed to blend face and style representations implicitly and control the arbitrary stylization effect. By doing so, BlendGAN can gracefully fit arbitrary styles in a unified model while avoiding case-by-case preparation of style-consistent training images. To this end, we also present a novel large-scale artistic face dataset AAHQ. Extensive experiments demonstrate that BlendGAN outperforms state-of-the-art methods in terms of visual quality and style diversity for both latent-guided and reference-guided stylized face synthesis.
FreeTuner: Any Subject in Any Style with Training-free Diffusion
With the advance of diffusion models, various personalized image generation methods have been proposed. However, almost all existing work only focuses on either subject-driven or style-driven personalization. Meanwhile, state-of-the-art methods face several challenges in realizing compositional personalization, i.e., composing different subject and style concepts, such as concept disentanglement, unified reconstruction paradigm, and insufficient training data. To address these issues, we introduce FreeTuner, a flexible and training-free method for compositional personalization that can generate any user-provided subject in any user-provided style (see Figure 1). Our approach employs a disentanglement strategy that separates the generation process into two stages to effectively mitigate concept entanglement. FreeTuner leverages the intermediate features within the diffusion model for subject concept representation and introduces style guidance to align the synthesized images with the style concept, ensuring the preservation of both the subject's structure and the style's aesthetic features. Extensive experiments have demonstrated the generation ability of FreeTuner across various personalization settings.
Rosetta Neurons: Mining the Common Units in a Model Zoo
Do different neural networks, trained for various vision tasks, share some common representations? In this paper, we demonstrate the existence of common features we call "Rosetta Neurons" across a range of models with different architectures, different tasks (generative and discriminative), and different types of supervision (class-supervised, text-supervised, self-supervised). We present an algorithm for mining a dictionary of Rosetta Neurons across several popular vision models: Class Supervised-ResNet50, DINO-ResNet50, DINO-ViT, MAE, CLIP-ResNet50, BigGAN, StyleGAN-2, StyleGAN-XL. Our findings suggest that certain visual concepts and structures are inherently embedded in the natural world and can be learned by different models regardless of the specific task or architecture, and without the use of semantic labels. We can visualize shared concepts directly due to generative models included in our analysis. The Rosetta Neurons facilitate model-to-model translation enabling various inversion-based manipulations, including cross-class alignments, shifting, zooming, and more, without the need for specialized training.
Break-for-Make: Modular Low-Rank Adaptations for Composable Content-Style Customization
Personalized generation paradigms empower designers to customize visual intellectual properties with the help of textual descriptions by tuning or adapting pre-trained text-to-image models on a few images. Recent works explore approaches for concurrently customizing both content and detailed visual style appearance. However, these existing approaches often generate images where the content and style are entangled. In this study, we reconsider the customization of content and style concepts from the perspective of parameter space construction. Unlike existing methods that utilize a shared parameter space for content and style, we propose a learning framework that separates the parameter space to facilitate individual learning of content and style, thereby enabling disentangled content and style. To achieve this goal, we introduce "partly learnable projection" (PLP) matrices to separate the original adapters into divided sub-parameter spaces. We propose "break-for-make" customization learning pipeline based on PLP, which is simple yet effective. We break the original adapters into "up projection" and "down projection", train content and style PLPs individually with the guidance of corresponding textual prompts in the separate adapters, and maintain generalization by employing a multi-correspondence projection learning strategy. Based on the adapters broken apart for separate training content and style, we then make the entity parameter space by reconstructing the content and style PLPs matrices, followed by fine-tuning the combined adapter to generate the target object with the desired appearance. Experiments on various styles, including textures, materials, and artistic style, show that our method outperforms state-of-the-art single/multiple concept learning pipelines in terms of content-style-prompt alignment.
JoJoGAN: One Shot Face Stylization
A style mapper applies some fixed style to its input images (so, for example, taking faces to cartoons). This paper describes a simple procedure -- JoJoGAN -- to learn a style mapper from a single example of the style. JoJoGAN uses a GAN inversion procedure and StyleGAN's style-mixing property to produce a substantial paired dataset from a single example style. The paired dataset is then used to fine-tune a StyleGAN. An image can then be style mapped by GAN-inversion followed by the fine-tuned StyleGAN. JoJoGAN needs just one reference and as little as 30 seconds of training time. JoJoGAN can use extreme style references (say, animal faces) successfully. Furthermore, one can control what aspects of the style are used and how much of the style is applied. Qualitative and quantitative evaluation show that JoJoGAN produces high quality high resolution images that vastly outperform the current state-of-the-art.
CTRLorALTer: Conditional LoRAdapter for Efficient 0-Shot Control & Altering of T2I Models
Text-to-image generative models have become a prominent and powerful tool that excels at generating high-resolution realistic images. However, guiding the generative process of these models to consider detailed forms of conditioning reflecting style and/or structure information remains an open problem. In this paper, we present LoRAdapter, an approach that unifies both style and structure conditioning under the same formulation using a novel conditional LoRA block that enables zero-shot control. LoRAdapter is an efficient, powerful, and architecture-agnostic approach to condition text-to-image diffusion models, which enables fine-grained control conditioning during generation and outperforms recent state-of-the-art approaches
Consistent Style Transfer
Recently, attentional arbitrary style transfer methods have been proposed to achieve fine-grained results, which manipulates the point-wise similarity between content and style features for stylization. However, the attention mechanism based on feature points ignores the feature multi-manifold distribution, where each feature manifold corresponds to a semantic region in the image. Consequently, a uniform content semantic region is rendered by highly different patterns from various style semantic regions, producing inconsistent stylization results with visual artifacts. We proposed the progressive attentional manifold alignment (PAMA) to alleviate this problem, which repeatedly applies attention operations and space-aware interpolations. The attention operation rearranges style features dynamically according to the spatial distribution of content features. This makes the content and style manifolds correspond on the feature map. Then the space-aware interpolation adaptively interpolates between the corresponding content and style manifolds to increase their similarity. By gradually aligning the content manifolds to style manifolds, the proposed PAMA achieves state-of-the-art performance while avoiding the inconsistency of semantic regions. Codes are available at https://github.com/computer-vision2022/PAMA.
ICLEF: In-Context Learning with Expert Feedback for Explainable Style Transfer
While state-of-the-art language models excel at the style transfer task, current work does not address explainability of style transfer systems. Explanations could be generated using large language models such as GPT-3.5 and GPT-4, but the use of such complex systems is inefficient when smaller, widely distributed, and transparent alternatives are available. We propose a framework to augment and improve a formality style transfer dataset with explanations via model distillation from ChatGPT. To further refine the generated explanations, we propose a novel way to incorporate scarce expert human feedback using in-context learning (ICLEF: In-Context Learning from Expert Feedback) by prompting ChatGPT to act as a critic to its own outputs. We use the resulting dataset of 9,960 explainable formality style transfer instances (e-GYAFC) to show that current openly distributed instruction-tuned models (and, in some settings, ChatGPT) perform poorly on the task, and that fine-tuning on our high-quality dataset leads to significant improvements as shown by automatic evaluation. In human evaluation, we show that models much smaller than ChatGPT fine-tuned on our data align better with expert preferences. Finally, we discuss two potential applications of models fine-tuned on the explainable style transfer task: interpretable authorship verification and interpretable adversarial attacks on AI-generated text detectors.