new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

Mar 13

COCO is "ALL'' You Need for Visual Instruction Fine-tuning

Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence. Visual instruction fine-tuning (IFT) is a vital process for aligning MLLMs' output with user's intentions. High-quality and diversified instruction following data is the key to this fine-tuning process. Recent studies propose to construct visual IFT datasets through a multifaceted approach: transforming existing datasets with rule-based templates, employing GPT-4 for rewriting annotations, and utilizing GPT-4V for visual dataset pseudo-labeling. LLaVA-1.5 adopted similar approach and construct LLaVA-mix-665k, which is one of the simplest, most widely used, yet most effective IFT datasets today. Notably, when properly fine-tuned with this dataset, MLLMs can achieve state-of-the-art performance on several benchmarks. However, we noticed that models trained with this dataset often struggle to follow user instructions properly in multi-round dialog. In addition, tradition caption and VQA evaluation benchmarks, with their closed-form evaluation structure, are not fully equipped to assess the capabilities of modern open-ended generative MLLMs. This problem is not unique to the LLaVA-mix-665k dataset, but may be a potential issue in all IFT datasets constructed from image captioning or VQA sources, though the extent of this issue may vary. We argue that datasets with diverse and high-quality detailed instruction following annotations are essential and adequate for MLLMs IFT. In this work, we establish a new IFT dataset, with images sourced from the COCO dataset along with more diverse instructions. Our experiments show that when fine-tuned with out proposed dataset, MLLMs achieve better performance on open-ended evaluation benchmarks in both single-round and multi-round dialog setting.

MG-LLaVA: Towards Multi-Granularity Visual Instruction Tuning

Multi-modal large language models (MLLMs) have made significant strides in various visual understanding tasks. However, the majority of these models are constrained to process low-resolution images, which limits their effectiveness in perception tasks that necessitate detailed visual information. In our study, we present MG-LLaVA, an innovative MLLM that enhances the model's visual processing capabilities by incorporating a multi-granularity vision flow, which includes low-resolution, high-resolution, and object-centric features. We propose the integration of an additional high-resolution visual encoder to capture fine-grained details, which are then fused with base visual features through a Conv-Gate fusion network. To further refine the model's object recognition abilities, we incorporate object-level features derived from bounding boxes identified by offline detectors. Being trained solely on publicly available multimodal data through instruction tuning, MG-LLaVA demonstrates exceptional perception skills. We instantiate MG-LLaVA with a wide variety of language encoders, ranging from 3.8B to 34B, to evaluate the model's performance comprehensively. Extensive evaluations across multiple benchmarks demonstrate that MG-LLaVA outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code will be available at https://github.com/PhoenixZ810/MG-LLaVA.

Dynamic-LLaVA: Efficient Multimodal Large Language Models via Dynamic Vision-language Context Sparsification

Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision understanding, reasoning, and interaction. However, the inference computation and memory increase progressively with the generation of output tokens during decoding, directly affecting the efficacy of MLLMs. Existing methods attempt to reduce the vision context redundancy to achieve efficient MLLMs. Unfortunately, the efficiency benefits of the vision context reduction in the prefill stage gradually diminish during the decoding stage. To address this problem, we proposed a dynamic vision-language context sparsification framework Dynamic-LLaVA, which dynamically reduces the redundancy of vision context in the prefill stage and decreases the memory and computation overhead of the generated language context during decoding. Dynamic-LLaVA designs a tailored sparsification inference scheme for different inference modes, i.e., prefill, decoding with and without KV cache, to achieve efficient inference of MLLMs. In practice, Dynamic-LLaVA can reduce computation consumption by sim75\% in the prefill stage. Meanwhile, throughout the entire generation process of MLLMs, Dynamic-LLaVA reduces the sim50\% computation consumption under decoding without KV cache, while saving sim50\% GPU memory overhead when decoding with KV cache, due to the vision-language context sparsification. Extensive experiments also demonstrate that Dynamic-LLaVA achieves efficient inference for MLLMs with negligible understanding and generation ability degradation or even performance gains compared to the full-context inference baselines. Code is available at https://github.com/Osilly/dynamic_llava .

LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation

We introduce LLaVA-MoD, a novel framework designed to enable the efficient training of small-scale Multimodal Language Models (s-MLLM) by distilling knowledge from large-scale MLLM (l-MLLM). Our approach tackles two fundamental challenges in MLLM distillation. First, we optimize the network structure of s-MLLM by integrating a sparse Mixture of Experts (MoE) architecture into the language model, striking a balance between computational efficiency and model expressiveness. Second, we propose a progressive knowledge transfer strategy to ensure comprehensive knowledge migration. This strategy begins with mimic distillation, where we minimize the Kullback-Leibler (KL) divergence between output distributions to enable the student model to emulate the teacher network's understanding. Following this, we introduce preference distillation via Direct Preference Optimization (DPO), where the key lies in treating l-MLLM as the reference model. During this phase, the s-MLLM's ability to discriminate between superior and inferior examples is significantly enhanced beyond l-MLLM, leading to a better student that surpasses its teacher, particularly in hallucination benchmarks. Extensive experiments demonstrate that LLaVA-MoD outperforms existing models across various multimodal benchmarks while maintaining a minimal number of activated parameters and low computational costs. Remarkably, LLaVA-MoD, with only 2B activated parameters, surpasses Qwen-VL-Chat-7B by an average of 8.8% across benchmarks, using merely 0.3% of the training data and 23% trainable parameters. These results underscore LLaVA-MoD's ability to effectively distill comprehensive knowledge from its teacher model, paving the way for the development of more efficient MLLMs. The code will be available on: https://github.com/shufangxun/LLaVA-MoD.

LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token

The advent of real-time large multimodal models (LMMs) like GPT-4o has sparked considerable interest in efficient LMMs. LMM frameworks typically encode visual inputs into vision tokens (continuous representations) and integrate them and textual instructions into the context of large language models (LLMs), where large-scale parameters and numerous context tokens (predominantly vision tokens) result in substantial computational overhead. Previous efforts towards efficient LMMs always focus on replacing the LLM backbone with smaller models, while neglecting the crucial issue of token quantity. In this paper, we introduce LLaVA-Mini, an efficient LMM with minimal vision tokens. To achieve a high compression ratio of vision tokens while preserving visual information, we first analyze how LMMs understand vision tokens and find that most vision tokens only play a crucial role in the early layers of LLM backbone, where they mainly fuse visual information into text tokens. Building on this finding, LLaVA-Mini introduces modality pre-fusion to fuse visual information into text tokens in advance, thereby facilitating the extreme compression of vision tokens fed to LLM backbone into one token. LLaVA-Mini is a unified large multimodal model that can support the understanding of images, high-resolution images, and videos in an efficient manner. Experiments across 11 image-based and 7 video-based benchmarks demonstrate that LLaVA-Mini outperforms LLaVA-v1.5 with just 1 vision token instead of 576. Efficiency analyses reveal that LLaVA-Mini can reduce FLOPs by 77%, deliver low-latency responses within 40 milliseconds, and process over 10,000 frames of video on the GPU hardware with 24GB of memory.

Exploring Multimodal Large Language Models for Radiology Report Error-checking

This paper proposes one of the first clinical applications of multimodal large language models (LLMs) as an assistant for radiologists to check errors in their reports. We created an evaluation dataset from two real-world radiology datasets (MIMIC-CXR and IU-Xray), with 1,000 subsampled reports each. A subset of original reports was modified to contain synthetic errors by introducing various type of mistakes. The evaluation contained two difficulty levels: SIMPLE for binary error-checking and COMPLEX for identifying error types. LLaVA (Large Language and Visual Assistant) variant models, including our instruction-tuned model, were used for the evaluation. Additionally, a domain expert evaluation was conducted on a small test set. At the SIMPLE level, the LLaVA v1.5 model outperformed other publicly available models. Instruction tuning significantly enhanced performance by 47.4% and 25.4% on MIMIC-CXR and IU-Xray data, respectively. The model also surpassed the domain experts accuracy in the MIMIC-CXR dataset by 1.67%. Notably, among the subsets (N=21) of the test set where a clinician did not achieve the correct conclusion, the LLaVA ensemble mode correctly identified 71.4% of these cases. This study marks a promising step toward utilizing multi-modal LLMs to enhance diagnostic accuracy in radiology. The ensemble model demonstrated comparable performance to clinicians, even capturing errors overlooked by humans. Nevertheless, future work is needed to improve the model ability to identify the types of inconsistency.