Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeComputational reproducibility of Jupyter notebooks from biomedical publications
Jupyter notebooks facilitate the bundling of executable code with its documentation and output in one interactive environment, and they represent a popular mechanism to document and share computational workflows. The reproducibility of computational aspects of research is a key component of scientific reproducibility but has not yet been assessed at scale for Jupyter notebooks associated with biomedical publications. We address computational reproducibility at two levels: First, using fully automated workflows, we analyzed the computational reproducibility of Jupyter notebooks related to publications indexed in PubMed Central. We identified such notebooks by mining the articles full text, locating them on GitHub and re-running them in an environment as close to the original as possible. We documented reproduction success and exceptions and explored relationships between notebook reproducibility and variables related to the notebooks or publications. Second, this study represents a reproducibility attempt in and of itself, using essentially the same methodology twice on PubMed Central over two years. Out of 27271 notebooks from 2660 GitHub repositories associated with 3467 articles, 22578 notebooks were written in Python, including 15817 that had their dependencies declared in standard requirement files and that we attempted to re-run automatically. For 10388 of these, all declared dependencies could be installed successfully, and we re-ran them to assess reproducibility. Of these, 1203 notebooks ran through without any errors, including 879 that produced results identical to those reported in the original notebook and 324 for which our results differed from the originally reported ones. Running the other notebooks resulted in exceptions. We zoom in on common problems, highlight trends and discuss potential improvements to Jupyter-related workflows associated with biomedical publications.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
SuperNOVA: Design Strategies and Opportunities for Interactive Visualization in Computational Notebooks
Computational notebooks such as Jupyter Notebook have become data scientists' de facto programming environments. Many visualization researchers and practitioners have developed interactive visualization tools that support notebooks. However, little is known about the appropriate design of visual analytics (VA) tools in notebooks. To bridge this critical research gap, we investigate the design strategies in this space by analyzing 159 notebook VA tools and their users' feedback. Our analysis encompasses 62 systems from academic papers and 103 systems sourced from a pool of 55k notebooks containing interactive visualizations that we obtain via scraping 8.6 million notebooks on GitHub. We also examine findings from 15 user studies and user feedback in 379 GitHub issues. Through this work, we identify unique design opportunities and considerations for future notebook VA tools, such as using and manipulating multimodal data in notebooks as well as balancing the degree of visualization-notebook integration. Finally, we develop SuperNOVA, an open-source interactive tool to help researchers explore existing notebook VA tools and search for related work.
GUS-Net: Social Bias Classification in Text with Generalizations, Unfairness, and Stereotypes
The detection of bias in natural language processing (NLP) is a critical challenge, particularly with the increasing use of large language models (LLMs) in various domains. This paper introduces GUS-Net, an innovative approach to bias detection that focuses on three key types of biases: (G)eneralizations, (U)nfairness, and (S)tereotypes. GUS-Net leverages generative AI and automated agents to create a comprehensive synthetic dataset, enabling robust multi-label token classification. Our methodology enhances traditional bias detection methods by incorporating the contextual encodings of pre-trained models, resulting in improved accuracy and depth in identifying biased entities. Through extensive experiments, we demonstrate that GUS-Net outperforms state-of-the-art techniques, achieving superior performance in terms of accuracy, F1-score, and Hamming Loss. The findings highlight GUS-Net's effectiveness in capturing a wide range of biases across diverse contexts, making it a valuable tool for social bias detection in text. This study contributes to the ongoing efforts in NLP to address implicit bias, providing a pathway for future research and applications in various fields. The Jupyter notebooks used to create the dataset and model are available at: https://github.com/Ethical-Spectacle/fair-ly/tree/main/resources. Warning: This paper contains examples of harmful language, and reader discretion is recommended.
Neural Circuit Diagrams: Robust Diagrams for the Communication, Implementation, and Analysis of Deep Learning Architectures
Diagrams matter. Unfortunately, the deep learning community has no standard method for diagramming architectures. The current combination of linear algebra notation and ad-hoc diagrams fails to offer the necessary precision to understand architectures in all their detail. However, this detail is critical for faithful implementation, mathematical analysis, further innovation, and ethical assurances. I present neural circuit diagrams, a graphical language tailored to the needs of communicating deep learning architectures. Neural circuit diagrams naturally keep track of the changing arrangement of data, precisely show how operations are broadcast over axes, and display the critical parallel behavior of linear operations. A lingering issue with existing diagramming methods is the inability to simultaneously express the detail of axes and the free arrangement of data, which neural circuit diagrams solve. Their compositional structure is analogous to code, creating a close correspondence between diagrams and implementation. In this work, I introduce neural circuit diagrams for an audience of machine learning researchers. After introducing neural circuit diagrams, I cover a host of architectures to show their utility and breed familiarity. This includes the transformer architecture, convolution (and its difficult-to-explain extensions), residual networks, the U-Net, and the vision transformer. I include a Jupyter notebook that provides evidence for the close correspondence between diagrams and code. Finally, I examine backpropagation using neural circuit diagrams. I show their utility in providing mathematical insight and analyzing algorithms' time and space complexities.
GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training Data Exploration
Noticing the urgent need to provide tools for fast and user-friendly qualitative analysis of large-scale textual corpora of the modern NLP, we propose to turn to the mature and well-tested methods from the domain of Information Retrieval (IR) - a research field with a long history of tackling TB-scale document collections. We discuss how Pyserini - a widely used toolkit for reproducible IR research can be integrated with the Hugging Face ecosystem of open-source AI libraries and artifacts. We leverage the existing functionalities of both platforms while proposing novel features further facilitating their integration. Our goal is to give NLP researchers tools that will allow them to develop retrieval-based instrumentation for their data analytics needs with ease and agility. We include a Jupyter Notebook-based walk through the core interoperability features, available on GitHub at https://github.com/huggingface/gaia. We then demonstrate how the ideas we present can be operationalized to create a powerful tool for qualitative data analysis in NLP. We present GAIA Search - a search engine built following previously laid out principles, giving access to four popular large-scale text collections. GAIA serves a dual purpose of illustrating the potential of methodologies we discuss but also as a standalone qualitative analysis tool that can be leveraged by NLP researchers aiming to understand datasets prior to using them in training. GAIA is hosted live on Hugging Face Spaces - https://huggingface.co/spaces/spacerini/gaia.
Towards Automatic Translation of Machine Learning Visual Insights to Analytical Assertions
We present our vision for developing an automated tool capable of translating visual properties observed in Machine Learning (ML) visualisations into Python assertions. The tool aims to streamline the process of manually verifying these visualisations in the ML development cycle, which is critical as real-world data and assumptions often change post-deployment. In a prior study, we mined 54,070 Jupyter notebooks from Github and created a catalogue of 269 semantically related visualisation-assertion (VA) pairs. Building on this catalogue, we propose to build a taxonomy that organises the VA pairs based on ML verification tasks. The input feature space comprises of a rich source of information mined from the Jupyter notebooks -- visualisations, Python source code, and associated markdown text. The effectiveness of various AI models, including traditional NLP4Code models and modern Large Language Models, will be compared using established machine translation metrics and evaluated through a qualitative study with human participants. The paper also plans to address the challenge of extending the existing VA pair dataset with additional pairs from Kaggle and to compare the tool's effectiveness with commercial generative AI models like ChatGPT. This research not only contributes to the field of ML system validation but also explores novel ways to leverage AI for automating and enhancing software engineering practices in ML.
Surface-based parcellation and vertex-wise analysis of ultra high-resolution ex vivo 7 tesla MRI in Alzheimer's disease and related dementias
Magnetic resonance imaging (MRI) is the standard modality to understand human brain structure and function in vivo (antemortem). Decades of research in human neuroimaging has led to the widespread development of methods and tools to provide automated volume-based segmentations and surface-based parcellations which help localize brain functions to specialized anatomical regions. Recently ex vivo (postmortem) imaging of the brain has opened-up avenues to study brain structure at sub-millimeter ultra high-resolution revealing details not possible to observe with in vivo MRI. Unfortunately, there has been limited methodological development in ex vivo MRI primarily due to lack of datasets and limited centers with such imaging resources. Therefore, in this work, we present one-of-its-kind dataset of 82 ex vivo T2w whole brain hemispheres MRI at 0.3 mm isotropic resolution spanning Alzheimer's disease and related dementias. We adapted and developed a fast and easy-to-use automated surface-based pipeline to parcellate, for the first time, ultra high-resolution ex vivo brain tissue at the native subject space resolution using the Desikan-Killiany-Tourville (DKT) brain atlas. This allows us to perform vertex-wise analysis in the template space and thereby link morphometry measures with pathology measurements derived from histology. We will open-source our dataset docker container, Jupyter notebooks for ready-to-use out-of-the-box set of tools and command line options to advance ex vivo MRI clinical brain imaging research on the project webpage.
JuICe: A Large Scale Distantly Supervised Dataset for Open Domain Context-based Code Generation
Interactive programming with interleaved code snippet cells and natural language markdown is recently gaining popularity in the form of Jupyter notebooks, which accelerate prototyping and collaboration. To study code generation conditioned on a long context history, we present JuICe, a corpus of 1.5 million examples with a curated test set of 3.7K instances based on online programming assignments. Compared with existing contextual code generation datasets, JuICe provides refined human-curated data, open-domain code, and an order of magnitude more training data. Using JuICe, we train models for two tasks: (1) generation of the API call sequence in a code cell, and (2) full code cell generation, both conditioned on the NL-Code history up to a particular code cell. Experiments using current baseline code generation models show that both context and distant supervision aid in generation, and that the dataset is challenging for current systems.
Building Efficient Universal Classifiers with Natural Language Inference
Generative Large Language Models (LLMs) have become the mainstream choice for fewshot and zeroshot learning thanks to the universality of text generation. Many users, however, do not need the broad capabilities of generative LLMs when they only want to automate a classification task. Smaller BERT-like models can also learn universal tasks, which allow them to do any text classification task without requiring fine-tuning (zeroshot classification) or to learn new tasks with only a few examples (fewshot), while being significantly more efficient than generative LLMs. This paper (1) explains how Natural Language Inference (NLI) can be used as a universal classification task that follows similar principles as instruction fine-tuning of generative LLMs, (2) provides a step-by-step guide with reusable Jupyter notebooks for building a universal classifier, and (3) shares the resulting universal classifier that is trained on 33 datasets with 389 diverse classes. Parts of the code we share has been used to train our older zeroshot classifiers that have been downloaded more than 55 million times via the Hugging Face Hub as of December 2023. Our new classifier improves zeroshot performance by 9.4%.
StickyLand: Breaking the Linear Presentation of Computational Notebooks
How can we better organize code in computational notebooks? Notebooks have become a popular tool among data scientists, as they seamlessly weave text and code together, supporting users to rapidly iterate and document code experiments. However, it is often challenging to organize code in notebooks, partially because there is a mismatch between the linear presentation of code and the non-linear process of exploratory data analysis. We present StickyLand, a notebook extension for empowering users to freely organize their code in non-linear ways. With sticky cells that are always shown on the screen, users can quickly access their notes, instantly observe experiment results, and easily build interactive dashboards that support complex visual analytics. Case studies highlight how our tool can enhance notebook users's productivity and identify opportunities for future notebook designs. StickyLand is available at https://github.com/xiaohk/stickyland.
BigDL 2.0: Seamless Scaling of AI Pipelines from Laptops to Distributed Cluster
Most AI projects start with a Python notebook running on a single laptop; however, one usually needs to go through a mountain of pains to scale it to handle larger dataset (for both experimentation and production deployment). These usually entail many manual and error-prone steps for the data scientists to fully take advantage of the available hardware resources (e.g., SIMD instructions, multi-processing, quantization, memory allocation optimization, data partitioning, distributed computing, etc.). To address this challenge, we have open sourced BigDL 2.0 at https://github.com/intel-analytics/BigDL/ under Apache 2.0 license (combining the original BigDL and Analytics Zoo projects); using BigDL 2.0, users can simply build conventional Python notebooks on their laptops (with possible AutoML support), which can then be transparently accelerated on a single node (with up-to 9.6x speedup in our experiments), and seamlessly scaled out to a large cluster (across several hundreds servers in real-world use cases). BigDL 2.0 has already been adopted by many real-world users (such as Mastercard, Burger King, Inspur, etc.) in production.
NOVA: A Practical Method for Creating Notebook-Ready Visual Analytics
How can we develop visual analytics (VA) tools that can be easily adopted? Visualization researchers have developed a large number of web-based VA tools to help data scientists in a wide range of tasks. However, adopting these standalone systems can be challenging, as they require data scientists to create new workflows to streamline the VA processes. Recent surveys suggest computational notebooks have been dominating data scientists' analytical workflows, as these notebooks seamlessly combine text, code, and visualization, allowing users to rapidly iterate code experiments. To help visualization researchers develop VA tools that can be easily integrated into existing data science workflows, we present NOVA, a simple and flexible method to adapt web-based VA systems for notebooks. We provide detailed examples of using this method with diverse web development technologies and different types of computational notebooks. Deployed application examples highlight that NOVA is easy to adopt, and data scientists appreciate in-notebook VA. NOVA is available at https://github.com/poloclub/nova.
Drawing Pandas: A Benchmark for LLMs in Generating Plotting Code
This paper introduces the human-curated PandasPlotBench dataset, designed to evaluate language models' effectiveness as assistants in visual data exploration. Our benchmark focuses on generating code for visualizing tabular data - such as a Pandas DataFrame - based on natural language instructions, complementing current evaluation tools and expanding their scope. The dataset includes 175 unique tasks. Our experiments assess several leading Large Language Models (LLMs) across three visualization libraries: Matplotlib, Seaborn, and Plotly. We show that the shortening of tasks has a minimal effect on plotting capabilities, allowing for the user interface that accommodates concise user input without sacrificing functionality or accuracy. Another of our findings reveals that while LLMs perform well with popular libraries like Matplotlib and Seaborn, challenges persist with Plotly, highlighting areas for improvement. We hope that the modular design of our benchmark will broaden the current studies on generating visualizations. Our benchmark is available online: https://huggingface.co/datasets/JetBrains-Research/plot_bench. The code for running the benchmark is also available: https://github.com/JetBrains-Research/PandasPlotBench.
DroneVis: Versatile Computer Vision Library for Drones
This paper introduces DroneVis, a novel library designed to automate computer vision algorithms on Parrot drones. DroneVis offers a versatile set of features and provides a diverse range of computer vision tasks along with a variety of models to choose from. Implemented in Python, the library adheres to high-quality code standards, facilitating effortless customization and feature expansion according to user requirements. In addition, comprehensive documentation is provided, encompassing usage guidelines and illustrative use cases. Our documentation, code, and examples are available in https://github.com/ahmedheakl/drone-vis.
PyCIL: A Python Toolbox for Class-Incremental Learning
Traditional machine learning systems are deployed under the closed-world setting, which requires the entire training data before the offline training process. However, real-world applications often face the incoming new classes, and a model should incorporate them continually. The learning paradigm is called Class-Incremental Learning (CIL). We propose a Python toolbox that implements several key algorithms for class-incremental learning to ease the burden of researchers in the machine learning community. The toolbox contains implementations of a number of founding works of CIL such as EWC and iCaRL, but also provides current state-of-the-art algorithms that can be used for conducting novel fundamental research. This toolbox, named PyCIL for Python Class-Incremental Learning, is available at https://github.com/G-U-N/PyCIL
ScholaWrite: A Dataset of End-to-End Scholarly Writing Process
Writing is a cognitively demanding task involving continuous decision-making, heavy use of working memory, and frequent switching between multiple activities. Scholarly writing is particularly complex as it requires authors to coordinate many pieces of multiform knowledge. To fully understand writers' cognitive thought process, one should fully decode the end-to-end writing data (from individual ideas to final manuscript) and understand their complex cognitive mechanisms in scholarly writing. We introduce ScholaWrite dataset, the first-of-its-kind keystroke logs of an end-to-end scholarly writing process for complete manuscripts, with thorough annotations of cognitive writing intentions behind each keystroke. Our dataset includes LaTeX-based keystroke data from five preprints with nearly 62K total text changes and annotations across 4 months of paper writing. ScholaWrite shows promising usability and applications (e.g., iterative self-writing) for the future development of AI writing assistants for academic research, which necessitate complex methods beyond LLM prompting. Our experiments clearly demonstrated the importance of collection of end-to-end writing data, rather than the final manuscript, for the development of future writing assistants to support the cognitive thinking process of scientists. Our de-identified dataset, demo, and code repository are available on our project page.
Emergent and Predictable Memorization in Large Language Models
Memorization, or the tendency of large language models (LLMs) to output entire sequences from their training data verbatim, is a key concern for safely deploying language models. In particular, it is vital to minimize a model's memorization of sensitive datapoints such as those containing personal identifiable information (PII). The prevalence of such undesirable memorization can pose issues for model trainers, and may even require discarding an otherwise functional model. We therefore seek to predict which sequences will be memorized before a large model's full train-time by extrapolating the memorization behavior of lower-compute trial runs. We measure memorization of the Pythia model suite and plot scaling laws for forecasting memorization, allowing us to provide equi-compute recommendations to maximize the reliability (recall) of such predictions. We additionally provide further novel discoveries on the distribution of memorization scores across models and data. We release all code and data necessary to reproduce the results in this paper at https://github.com/EleutherAI/pythia
DS-1000: A Natural and Reliable Benchmark for Data Science Code Generation
We introduce DS-1000, a code generation benchmark with a thousand data science problems spanning seven Python libraries, such as NumPy and Pandas. Compared to prior works, DS-1000 incorporates three core features. First, our problems reflect diverse, realistic, and practical use cases since we collected them from StackOverflow. Second, our automatic evaluation is highly specific (reliable) -- across all Codex-002-predicted solutions that our evaluation accept, only 1.8% of them are incorrect; we achieve this with multi-criteria metrics, checking both functional correctness by running test cases and surface-form constraints by restricting API usages or keywords. Finally, we proactively defend against memorization by slightly modifying our problems to be different from the original StackOverflow source; consequently, models cannot answer them correctly by memorizing the solutions from pre-training. The current best public system (Codex-002) achieves 43.3% accuracy, leaving ample room for improvement. We release our benchmark at https://ds1000-code-gen.github.io.
Handwritten Code Recognition for Pen-and-Paper CS Education
Teaching Computer Science (CS) by having students write programs by hand on paper has key pedagogical advantages: It allows focused learning and requires careful thinking compared to the use of Integrated Development Environments (IDEs) with intelligent support tools or "just trying things out". The familiar environment of pens and paper also lessens the cognitive load of students with no prior experience with computers, for whom the mere basic usage of computers can be intimidating. Finally, this teaching approach opens learning opportunities to students with limited access to computers. However, a key obstacle is the current lack of teaching methods and support software for working with and running handwritten programs. Optical character recognition (OCR) of handwritten code is challenging: Minor OCR errors, perhaps due to varied handwriting styles, easily make code not run, and recognizing indentation is crucial for languages like Python but is difficult to do due to inconsistent horizontal spacing in handwriting. Our approach integrates two innovative methods. The first combines OCR with an indentation recognition module and a language model designed for post-OCR error correction without introducing hallucinations. This method, to our knowledge, surpasses all existing systems in handwritten code recognition. It reduces error from 30\% in the state of the art to 5\% with minimal hallucination of logical fixes to student programs. The second method leverages a multimodal language model to recognize handwritten programs in an end-to-end fashion. We hope this contribution can stimulate further pedagogical research and contribute to the goal of making CS education universally accessible. We release a dataset of handwritten programs and code to support future research at https://github.com/mdoumbouya/codeocr
SummerTime: Text Summarization Toolkit for Non-experts
Recent advances in summarization provide models that can generate summaries of higher quality. Such models now exist for a number of summarization tasks, including query-based summarization, dialogue summarization, and multi-document summarization. While such models and tasks are rapidly growing in the research field, it has also become challenging for non-experts to keep track of them. To make summarization methods more accessible to a wider audience, we develop SummerTime by rethinking the summarization task from the perspective of an NLP non-expert. SummerTime is a complete toolkit for text summarization, including various models, datasets and evaluation metrics, for a full spectrum of summarization-related tasks. SummerTime integrates with libraries designed for NLP researchers, and enables users with easy-to-use APIs. With SummerTime, users can locate pipeline solutions and search for the best model with their own data, and visualize the differences, all with a few lines of code. We also provide explanations for models and evaluation metrics to help users understand the model behaviors and select models that best suit their needs. Our library, along with a notebook demo, is available at https://github.com/Yale-LILY/SummerTime.
PyBench: Evaluating LLM Agent on various real-world coding tasks
The LLM Agent, equipped with a code interpreter, is capable of automatically solving real-world coding tasks, such as data analysis and image editing. However, existing benchmarks primarily focus on either simplistic tasks, such as completing a few lines of code, or on extremely complex and specific tasks at the repository level, neither of which are representative of various daily coding tasks. To address this gap, we introduce PyBench, a benchmark encompassing five main categories of real-world tasks, covering more than 10 types of files. Given a high-level user query and related files, the LLM Agent needs to reason and execute Python code via a code interpreter for a few turns before making a formal response to fulfill the user's requirements. Successfully addressing tasks in PyBench demands a robust understanding of various Python packages, superior reasoning capabilities, and the ability to incorporate feedback from executed code. Our evaluations indicate that current open-source LLMs are struggling with these tasks. Hence, we conduct analysis and experiments on four kinds of datasets proving that comprehensive abilities are needed for PyBench. Our fine-tuned 8B size model: PyLlama3 achieves an exciting performance on PyBench which surpasses many 33B and 70B size models. Our Benchmark, Training Dataset, and Model are available at: https://github.com/Mercury7353/PyBench{https://github.com/Mercury7353/PyBench}
Overcoming linguistic barriers in code assistants: creating a QLoRA adapter to improve support for Russian-language code writing instructions
In this paper, an approach to training and evaluating an adapter model for the popular language model "zephyr-7b-beta" is described. The adapter was developed to improve the performance of the base model in tasks related to programming and understanding the Russian language. Considering the high quality of the original model in tasks in the English language, the goal of the research was to expand its linguistic and technical spectrum. The proposed adapter was trained using a large and diverse dataset, including question-answer pairs related to programming, as well code-related texts in Russian language. The applied training methodology ensures an improvement in the model's quality of answers in understanding and generating Python code based on Russian instructions. We evaluated the performance of the base model with the installed adapter using various metrics, comparing it to the base model as well as other state-of-the-art models in this field. The obtained results showed significant improvement, both in tasks related to writing Python code and in processing the Russian language, confirming the effectiveness of the proposed adapter.
SciPIP: An LLM-based Scientific Paper Idea Proposer
The exponential growth of knowledge and the increasing complexity of interdisciplinary research pose significant challenges for researchers, including information overload and difficulties in exploring novel ideas. The advancements in large language models (LLMs), such as GPT-4, have shown great potential in enhancing idea proposals, but how to effectively utilize large models for reasonable idea proposal has not been thoroughly explored. This paper proposes a scientific paper idea proposer (SciPIP). Based on a user-provided research background, SciPIP retrieves helpful papers from a literature database while leveraging the capabilities of LLMs to generate more novel and feasible ideas. To this end, 1) we construct a literature retrieval database, extracting lots of papers' multi-dimension information for fast access. Then, a literature retrieval method based on semantics, entity, and citation co-occurrences is proposed to search relevant literature from multiple aspects based on the user-provided background. 2) After literature retrieval, we introduce dual-path idea proposal strategies, where one path infers solutions from the retrieved literature and the other path generates original ideas through model brainstorming. We then combine the two to achieve a good balance between feasibility and originality. Through extensive experiments on the natural language processing (NLP) field, we demonstrate that SciPIP can retrieve citations similar to those of existing top conference papers and generate many ideas consistent with them. Additionally, we evaluate the originality of other ideas generated by SciPIP using large language models, further validating the effectiveness of our proposed method. The code and the database are released at https://github.com/cheerss/SciPIP.