Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDNA-GPT: Divergent N-Gram Analysis for Training-Free Detection of GPT-Generated Text
Large language models (LLMs) have notably enhanced the fluency and diversity of machine-generated text. However, this progress also presents a significant challenge in detecting the origin of a given text, and current research on detection methods lags behind the rapid evolution of LLMs. Conventional training-based methods have limitations in flexibility, particularly when adapting to new domains, and they often lack explanatory power. To address this gap, we propose a novel training-free detection strategy called Divergent N-Gram Analysis (DNA-GPT). Given a text, we first truncate it in the middle and then use only the preceding portion as input to the LLMs to regenerate the new remaining parts. By analyzing the differences between the original and new remaining parts through N-gram analysis in black-box or probability divergence in white-box, we can clearly illustrate significant discrepancies between machine-generated and human-written text. We conducted extensive experiments on the most advanced LLMs from OpenAI, including text-davinci-003, GPT-3.5-turbo, and GPT-4, as well as open-source models such as GPT-NeoX-20B and LLaMa-13B. Results show that our zero-shot approach exhibits state-of-the-art performance in distinguishing between human and GPT-generated text on four English and one German dataset, outperforming OpenAI's own classifier, which is trained on millions of text. Additionally, our methods provide reasonable explanations and evidence to support our claim, which is a unique feature of explainable detection. Our method is also robust under the revised text attack and can additionally solve model sourcing. Codes are available at https://github.com/Xianjun-Yang/DNA-GPT.
Goat: Fine-tuned LLaMA Outperforms GPT-4 on Arithmetic Tasks
We introduce Goat, a fine-tuned LLaMA model that significantly outperforms GPT-4 on a range of arithmetic tasks. Fine-tuned on a synthetically generated dataset, Goat achieves state-of-the-art performance on BIG-bench arithmetic sub-task. In particular, the zero-shot Goat-7B matches or even surpasses the accuracy achieved by the few-shot PaLM-540B. Surprisingly, Goat can achieve near-perfect accuracy on large-number addition and subtraction through supervised fine-tuning only, which is almost impossible with previous pretrained language models, such as Bloom, OPT, GPT-NeoX, etc. We attribute Goat's exceptional performance to LLaMA's consistent tokenization of numbers. To tackle more challenging tasks like large-number multiplication and division, we propose an approach that classifies tasks based on their learnability, and subsequently decomposes unlearnable tasks, such as multi-digit multiplication and division, into a series of learnable tasks by leveraging basic arithmetic principles. We thoroughly examine the performance of our model, offering a comprehensive evaluation of the effectiveness of our proposed decomposition steps. Additionally, Goat-7B can be easily trained using LoRA on a 24GB VRAM GPU, facilitating reproducibility for other researchers. We release our model, dataset, and the Python script for dataset generation.
How well can machine-generated texts be identified and can language models be trained to avoid identification?
With the rise of generative pre-trained transformer models such as GPT-3, GPT-NeoX, or OPT, distinguishing human-generated texts from machine-generated ones has become important. We refined five separate language models to generate synthetic tweets, uncovering that shallow learning classification algorithms, like Naive Bayes, achieve detection accuracy between 0.6 and 0.8. Shallow learning classifiers differ from human-based detection, especially when using higher temperature values during text generation, resulting in a lower detection rate. Humans prioritize linguistic acceptability, which tends to be higher at lower temperature values. In contrast, transformer-based classifiers have an accuracy of 0.9 and above. We found that using a reinforcement learning approach to refine our generative models can successfully evade BERT-based classifiers with a detection accuracy of 0.15 or less.
Comparative Study of Large Language Model Architectures on Frontier
Large language models (LLMs) have garnered significant attention in both the AI community and beyond. Among these, the Generative Pre-trained Transformer (GPT) has emerged as the dominant architecture, spawning numerous variants. However, these variants have undergone pre-training under diverse conditions, including variations in input data, data preprocessing, and training methodologies, resulting in a lack of controlled comparative studies. Here we meticulously examine two prominent open-sourced GPT architectures, GPT-NeoX and LLaMA, leveraging the computational power of Frontier, the world's first Exascale supercomputer. Employing the same materials science text corpus and a comprehensive end-to-end pipeline, we conduct a comparative analysis of their training and downstream performance. Our efforts culminate in achieving state-of-the-art performance on a challenging materials science benchmark. Furthermore, we investigate the computation and energy efficiency, and propose a computationally efficient method for architecture design. To our knowledge, these pre-trained models represent the largest available for materials science. Our findings provide practical guidance for building LLMs on HPC platforms.
H$_2$O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models
Large Language Models (LLMs), despite their recent impressive accomplishments, are notably cost-prohibitive to deploy, particularly for applications involving long-content generation, such as dialogue systems and story writing. Often, a large amount of transient state information, referred to as the KV cache, is stored in GPU memory in addition to model parameters, scaling linearly with the sequence length and batch size. In this paper, we introduce a novel approach for implementing the KV cache which significantly reduces its memory footprint. Our approach is based on the noteworthy observation that a small portion of tokens contributes most of the value when computing attention scores. We call these tokens Heavy Hitters (H_2). Through a comprehensive investigation, we find that (i) the emergence of H_2 is natural and strongly correlates with the frequent co-occurrence of tokens in the text, and (ii) removing them results in significant performance degradation. Based on these insights, we propose Heavy Hitter Oracle (H_2O), a KV cache eviction policy that dynamically retains a balance of recent and H_2 tokens. We formulate the KV cache eviction as a dynamic submodular problem and prove (under mild assumptions) a theoretical guarantee for our novel eviction algorithm which could help guide future work. We validate the accuracy of our algorithm with OPT, LLaMA, and GPT-NeoX across a wide range of tasks. Our implementation of H_2O with 20% heavy hitters improves the throughput over three leading inference systems DeepSpeed Zero-Inference, Hugging Face Accelerate, and FlexGen by up to 29times, 29times, and 3times on OPT-6.7B and OPT-30B. With the same batch size, H2O can reduce the latency by up to 1.9times. The code is available at https://github.com/FMInference/H2O.
Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data?
Despite the power of Large Language Models (LLMs) like GPT-4, they still struggle with tasks that require generating complex, structured outputs. In this study, we assess the capability of Current LLMs in generating complex structured data and propose a structure-aware fine-tuning approach as a solution to improve this ability. To perform a comprehensive evaluation, we propose Struc-Bench, include five representative LLMs (i.e., GPT-NeoX 20B, GPT-3.5, GPT-4, and Vicuna) and evaluate them on our carefully constructed datasets spanning raw text, HTML, and LaTeX tables. Based on our analysis of current model performance, we identify specific common formatting errors and areas of potential improvement. To address complex formatting requirements, we utilize FormatCoT (Chain-of-Thought) to generate format instructions from target outputs. Our experiments show that our structure-aware fine-tuning method, when applied to LLaMA-7B, significantly improves adherence to natural language constraints, outperforming other evaluated LLMs. Based on these results, we present an ability map of model capabilities from six dimensions (i.e., coverage, formatting, reasoning, comprehension, pragmatics, and hallucination). This map highlights the weaknesses of LLMs in handling complex structured outputs and suggests promising directions for future work. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench.
CLEX: Continuous Length Extrapolation for Large Language Models
Transformer-based Large Language Models (LLMs) are pioneering advances in many natural language processing tasks, however, their exceptional capabilities are restricted within the preset context window of Transformer. Position Embedding (PE) scaling methods, while effective in extending the context window to a specific length, demonstrate either notable limitations in their extrapolation abilities or sacrificing partial performance within the context window. Length extrapolation methods, although theoretically capable of extending the context window beyond the training sequence length, often underperform in practical long-context applications. To address these challenges, we propose Continuous Length EXtrapolation (CLEX) for LLMs. We generalise the PE scaling approaches to model the continuous dynamics by ordinary differential equations over the length scaling factor, thereby overcoming the constraints of current PE scaling methods designed for specific lengths. Moreover, by extending the dynamics to desired context lengths beyond the training sequence length, CLEX facilitates the length extrapolation with impressive performance in practical tasks. We demonstrate that CLEX can be seamlessly incorporated into LLMs equipped with Rotary Position Embedding, such as LLaMA and GPT-NeoX, with negligible impact on training and inference latency. Experimental results reveal that CLEX can effectively extend the context window to over 4x or almost 8x training length, with no deterioration in performance. Furthermore, when evaluated on the practical LongBench benchmark, our model trained on a 4k length exhibits competitive performance against state-of-the-art open-source models trained on context lengths up to 32k.
Efficient LLM Inference on CPUs
Large language models (LLMs) have demonstrated remarkable performance and tremendous potential across a wide range of tasks. However, deploying these models has been challenging due to the astronomical amount of model parameters, which requires a demand for large memory capacity and high memory bandwidth. In this paper, we propose an effective approach that can make the deployment of LLMs more efficiently. We support an automatic INT4 weight-only quantization flow and design a special LLM runtime with highly-optimized kernels to accelerate the LLM inference on CPUs. We demonstrate the general applicability of our approach on popular LLMs including Llama2, Llama, GPT-NeoX, and showcase the extreme inference efficiency on CPUs. The code is publicly available at: https://github.com/intel/intel-extension-for-transformers.
DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature
The fluency and factual knowledge of large language models (LLMs) heightens the need for corresponding systems to detect whether a piece of text is machine-written. For example, students may use LLMs to complete written assignments, leaving instructors unable to accurately assess student learning. In this paper, we first demonstrate that text sampled from an LLM tends to occupy negative curvature regions of the model's log probability function. Leveraging this observation, we then define a new curvature-based criterion for judging if a passage is generated from a given LLM. This approach, which we call DetectGPT, does not require training a separate classifier, collecting a dataset of real or generated passages, or explicitly watermarking generated text. It uses only log probabilities computed by the model of interest and random perturbations of the passage from another generic pre-trained language model (e.g, T5). We find DetectGPT is more discriminative than existing zero-shot methods for model sample detection, notably improving detection of fake news articles generated by 20B parameter GPT-NeoX from 0.81 AUROC for the strongest zero-shot baseline to 0.95 AUROC for DetectGPT. See https://ericmitchell.ai/detectgpt for code, data, and other project information.
A Systematic Evaluation of Large Language Models of Code
Large language models (LMs) of code have recently shown tremendous promise in completing code and synthesizing code from natural language descriptions. However, the current state-of-the-art code LMs (e.g., Codex (Chen et al., 2021)) are not publicly available, leaving many questions about their model and data design decisions. We aim to fill in some of these blanks through a systematic evaluation of the largest existing models: Codex, GPT-J, GPT-Neo, GPT-NeoX-20B, and CodeParrot, across various programming languages. Although Codex itself is not open-source, we find that existing open-source models do achieve close results in some programming languages, although targeted mainly for natural language modeling. We further identify an important missing piece in the form of a large open-source model trained exclusively on a multi-lingual corpus of code. We release a new model, PolyCoder, with 2.7B parameters based on the GPT-2 architecture, which was trained on 249GB of code across 12 programming languages on a single machine. In the C programming language, PolyCoder outperforms all models including Codex. Our trained models are open-source and publicly available at https://github.com/VHellendoorn/Code-LMs, which enables future research and application in this area.
Mass-Editing Memory in a Transformer
Recent work has shown exciting promise in updating large language models with new memories, so as to replace obsolete information or add specialized knowledge. However, this line of work is predominantly limited to updating single associations. We develop MEMIT, a method for directly updating a language model with many memories, demonstrating experimentally that it can scale up to thousands of associations for GPT-J (6B) and GPT-NeoX (20B), exceeding prior work by orders of magnitude. Our code and data are at https://memit.baulab.info.
FOLIO: Natural Language Reasoning with First-Order Logic
We present FOLIO, a human-annotated, open-domain, and logically complex and diverse dataset for reasoning in natural language (NL), equipped with first order logic (FOL) annotations. FOLIO consists of 1,435 examples (unique conclusions), each paired with one of 487 sets of premises which serve as rules to be used to deductively reason for the validity of each conclusion. The logical correctness of premises and conclusions is ensured by their parallel FOL annotations, which are automatically verified by our FOL inference engine. In addition to the main NL reasoning task, NL-FOL pairs in FOLIO automatically constitute a new NL-FOL translation dataset using FOL as the logical form. Our experiments on FOLIO systematically evaluate the FOL reasoning ability of supervised fine-tuning on medium-sized language models (BERT, RoBERTa) and few-shot prompting on large language models (GPT-NeoX, OPT, GPT-3, Codex). For NL-FOL translation, we experiment with GPT-3 and Codex. Our results show that one of the most capable Large Language Model (LLM) publicly available, GPT-3 davinci, achieves only slightly better than random results with few-shot prompting on a subset of FOLIO, and the model is especially bad at predicting the correct truth values for False and Unknown conclusions. Our dataset and code are available at https://github.com/Yale-LILY/FOLIO.
Extending LLMs' Context Window with 100 Samples
Large Language Models (LLMs) are known to have limited extrapolation ability beyond their pre-trained context window, constraining their application in downstream tasks with lengthy inputs. Recent studies have sought to extend LLMs' context window by modifying rotary position embedding (RoPE), a popular position encoding method adopted by well-known LLMs such as LLaMA, PaLM, and GPT-NeoX. However, prior works like Position Interpolation (PI) and YaRN are resource-intensive and lack comparative experiments to assess their applicability. In this work, we identify the inherent need for LLMs' attention entropy (i.e. the information entropy of attention scores) to maintain stability and introduce a novel extension to RoPE which combines adjusting RoPE's base frequency and scaling the attention logits to help LLMs efficiently adapt to a larger context window. We validate the superiority of our method in both fine-tuning performance and robustness across different context window sizes on various context-demanding tasks. Notably, our method extends the context window of LLaMA-2-7B-Chat to 16,384 with only 100 samples and 6 training steps, showcasing extraordinary efficiency. Finally, we also explore how data compositions and training curricula affect context window extension for specific downstream tasks, suggesting fine-tuning LLMs with lengthy conversations as a good starting point. We release our code and SFT data at https://github.com/GAIR-NLP/Entropy-ABF.
The case for 4-bit precision: k-bit Inference Scaling Laws
Quantization methods reduce the number of bits required to represent each parameter in a model, trading accuracy for smaller memory footprints and inference latencies. However, the final model size depends on both the number of parameters of the original model and the rate of compression. For example, a 30B 8-bit model and a 60B 4-bit model have the same number of bits but may have very different zero-shot accuracies. In this work, we study this trade-off by developing inference scaling laws of zero-shot performance in Large Language Models (LLMs) to determine the bit-precision and model size that maximizes zero-shot performance. We run more than 35,000 experiments with 16-bit inputs and k-bit parameters to examine which zero-shot quantization methods improve scaling for 3 to 8-bit precision at scales of 19M to 176B parameters across the LLM families BLOOM, OPT, NeoX/Pythia, and GPT-2. We find that it is challenging to improve the bit-level scaling trade-off, with the only improvements being the use of a small block size -- splitting the parameters into small independently quantized blocks -- and the quantization data type being used (e.g., Int vs Float). Overall, our findings show that {4-bit} precision is almost universally optimal for total model bits and zero-shot accuracy.