1 Simulation-based Inference for Exoplanet Atmospheric Retrieval: Insights from winning the Ariel Data Challenge 2023 using Normalizing Flows Advancements in space telescopes have opened new avenues for gathering vast amounts of data on exoplanet atmosphere spectra. However, accurately extracting chemical and physical properties from these spectra poses significant challenges due to the non-linear nature of the underlying physics. This paper presents novel machine learning models developed by the AstroAI team for the Ariel Data Challenge 2023, where one of the models secured the top position among 293 competitors. Leveraging Normalizing Flows, our models predict the posterior probability distribution of atmospheric parameters under different atmospheric assumptions. Moreover, we introduce an alternative model that exhibits higher performance potential than the winning model, despite scoring lower in the challenge. These findings highlight the need to reevaluate the evaluation metric and prompt further exploration of more efficient and accurate approaches for exoplanet atmosphere spectra analysis. Finally, we present recommendations to enhance the challenge and models, providing valuable insights for future applications on real observational data. These advancements pave the way for more effective and timely analysis of exoplanet atmospheric properties, advancing our understanding of these distant worlds. 12 authors · Sep 17, 2023
- Tides on Lava Worlds: Application to Close-in Exoplanets and the Early Earth-Moon System Understanding the physics of planetary magma oceans has been the subject of growing efforts, in light of the increasing abundance of Solar system samples and extrasolar surveys. A rocky planet harboring such an ocean is likely to interact tidally with its host star, planetary companions, or satellites. To date, however, models of the tidal response and heat generation of magma oceans have been restricted to the framework of weakly viscous solids, ignoring the dynamical fluid behavior of the ocean beyond a critical melt fraction. Here we provide a handy analytical model that accommodates this phase transition, allowing for a physical estimation of the tidal response of lava worlds. We apply the model in two settings: The tidal history of the early Earth-Moon system in the aftermath of the giant impact; and the tidal interplay between short-period exoplanets and their host stars. For the former, we show that the fluid behavior of the Earth's molten surface drives efficient early Lunar recession to {sim} 25 Earth radii within 10^4{-} 10^5 years, in contrast with earlier predictions. For close-in exoplanets, we report on how their molten surfaces significantly change their spin-orbit dynamics, allowing them to evade spin-orbit resonances and accelerating their track towards tidal synchronization from a Gyr to Myr timescale. Moreover, we re-evaluate the energy budgets of detected close-in exoplanets, highlighting how the surface thermodynamics of these planets are likely controlled by enhanced, fluid-driven tidal heating, rather than vigorous insolation, and how this regime change substantially alters predictions for their surface temperatures. 5 authors · Dec 10, 2024
- Mass-Radius Relationships for Solid Exoplanets We use new interior models of cold planets to investigate the mass-radius relationships of solid exoplanets, considering planets made primarily of iron, silicates, water, and carbon compounds. We find that the mass-radius relationships for cold terrestrial-mass planets of all compositions we considered follow a generic functional form that is not a simple power law: log_{10} R_s = k_1 + 1/3 log_{10}(M_s) - k_2 M_s^{k_3} for up to M_p approx 20 M_{oplus}, where M_s and R_s are scaled mass and radius values. This functional form arises because the common building blocks of solid planets all have equations of state that are well approximated by a modified polytrope of the form rho = rho_0 + c P^n. We find that highly detailed planet interior models, including temperature structure and phase changes, are not necessary to derive solid exoplanet bulk composition from mass and radius measurements. For solid exoplanets with no substantial atmosphere we have also found that: with 5% fractional uncertainty in planet mass and radius it is possible to distinguish among planets composed predominantly of iron or silicates or water ice but not more detailed compositions; with sim~5% uncertainty water ice planets with gtrsim 25% water by mass may be identified; the minimum plausible planet size for a given mass is that of a pure iron planet; and carbon planet mass-radius relationships overlap with those of silicate and water planets due to similar zero-pressure densities and equations of state. We propose a definition of "super Earths'' based on the clear distinction in radii between planets with significant gas envelopes and those without. 4 authors · Jul 19, 2007
- Extension of the creep tide theory to exoplanet systems with high stellar obliquity. The dynamic tide of CoRoT-3b This paper extends the creep tide theory to exoplanetary systems with significant obliquities. The extended theory allows us to obtain the stellar and planetary hydrodynamic equilibrium tides and the evolution of the rotational state of the bodies. The dynamic ellipsoidal figure of equilibrium of the body is calculated taking into account that its reaction to external forces is delayed by its viscosity. The derived equations are used to determine the motion of the tidal bulge of the planetary companion CoRoT-3b (a brown dwarf) and its host star. We show how the tides deform the figure of the companion and how its tidal bulge moves close to the substellar meridian from one hemisphere to another. The stellar lag is mostly positive and is braking the star's rotation. 3 authors · Mar 3
- Lessons Learned from the 1st ARIEL Machine Learning Challenge: Correcting Transiting Exoplanet Light Curves for Stellar Spots The last decade has witnessed a rapid growth of the field of exoplanet discovery and characterisation. However, several big challenges remain, many of which could be addressed using machine learning methodology. For instance, the most prolific method for detecting exoplanets and inferring several of their characteristics, transit photometry, is very sensitive to the presence of stellar spots. The current practice in the literature is to identify the effects of spots visually and correct for them manually or discard the affected data. This paper explores a first step towards fully automating the efficient and precise derivation of transit depths from transit light curves in the presence of stellar spots. The methods and results we present were obtained in the context of the 1st Machine Learning Challenge organized for the European Space Agency's upcoming Ariel mission. We first present the problem, the simulated Ariel-like data and outline the Challenge while identifying best practices for organizing similar challenges in the future. Finally, we present the solutions obtained by the top-5 winning teams, provide their code and discuss their implications. Successful solutions either construct highly non-linear (w.r.t. the raw data) models with minimal preprocessing -deep neural networks and ensemble methods- or amount to obtaining meaningful statistics from the light curves, constructing linear models on which yields comparably good predictive performance. 23 authors · Oct 29, 2020
- Science with an ngVLA: Resolving the Radio Complexity of EXor and FUor-type Systems with the ngVLA Episodic accretion may be a common occurrence in the evolution of young pre-main sequence stars and has important implications for our understanding of star and planet formation. Many fundamental aspects of what drives the accretion physics, however, are still unknown. The ngVLA will be a key tool in understanding the nature of these events. The high spatial resolution, broad spectral coverage, and unprecedented sensitivity will allow for the detailed analysis of outburst systems. The proposed frequency range of the ngVLA allows for observations of the gas, dust, and non-thermal emission from the star and disk. 20 authors · Oct 15, 2018