- A New Two-Dimensional Dirac Semimetal Based on the Alkaline Earth Metal, CaP$_3$ Using an evolutionary algorithm in combination with first-principles density functional theory calculations, we identify two-dimensional (2D) CaP_3 monolayer as a new Dirac semimetal due to inversion and nonsymmorphic spatial symmetries of the structure. This new topological material, composed of light elements, exhibits high structural stability (higher than the phase known in the literature), which is confirmed by thermodynamic and kinetic stability analysis. Moreover, it satisfies the electron filling criteria, so that its Dirac state is located near the Fermi level. The existence of the Dirac state predicted by the theoretical symmetry analysis is also confirmed by first-principles electronic band structure calculations. We find that the energy position of the Dirac state can be tuned by strain, while the Dirac state is unstable against an external electric field since it breaks the spatial inversion symmetry. Our findings should be instrumental in the development of 2D Dirac fermions based on light elements for their application in nanoelectronic devices and topological electronics. 5 authors · Mar 2, 2023
- Particle-Hole Symmetry in the Fermion-Chern-Simons and Dirac Descriptions of a Half-Filled Landau Level It is well known that there is a particle-hole symmetry for spin-polarized electrons with two-body interactions in a partially filled Landau level, which becomes exact in the limit where the cyclotron energy is large compared to the interaction strength, so one can ignore mixing between Landau levels. This symmetry is explicit in the description of a half-filled Landau level recently introduced by D. T. Son, using Dirac fermions, but it was thought to be absent in the older fermion-Chern- Simons approach, developed by Halperin, Lee, and Read and subsequent authors. We show here, however, that when properly evaluated, the Halperin, Lee, Read (HLR) theory gives results for long-wavelength low-energy physical properties, including the Hall conductance in the presence of impurities and the positions of minima in the magnetoroton spectra for fractional quantized Hall states close to half-filling, that are identical to predictions of the Dirac formulation. In fact, the HLR theory predicts an emergent particle-hole symmetry near half filling, even when the cyclotron energy is finite. 4 authors · Dec 30, 2016
1 Magnetic correction to the Anomalous Magnetic Moment of Electron We investigate the leading order correction of anomalous magnetic moment (AMM) to the electron in weak magnetic field and find that the magnetic correction is negative and magnetic field dependent, indicating a magnetic catalysis effect for the electron gas. In the laboratory to measure the g-2, the magnitude of the magnetic field B is several T, correspondingly the magnetic correction to the AMM of electron/muon is around 10^{-34}/10^{-42}, therefore the magnetic correction can be safely neglected in current measurement. However, when the magnitude of the magnetic field strength is comparable with the electron mass, the magnetic correction of electron's AMM will become considerable. This general magnetic correction to charged fermion's AMM can be extended to study QCD matter under strong magnetic field. 2 authors · Dec 2, 2021