- MOTI$\mathcal{VE}$: A Drug-Target Interaction Graph For Inductive Link Prediction Drug-target interaction (DTI) prediction is crucial for identifying new therapeutics and detecting mechanisms of action. While structure-based methods accurately model physical interactions between a drug and its protein target, cell-based assays such as Cell Painting can better capture complex DTI interactions. This paper introduces MOTIVE, a Morphological cOmpound Target Interaction Graph dataset that comprises Cell Painting features for 11,000 genes and 3,600 compounds along with their relationships extracted from seven publicly available databases. We provide random, cold-source (new drugs), and cold-target (new genes) data splits to enable rigorous evaluation under realistic use cases. Our benchmark results show that graph neural networks that use Cell Painting features consistently outperform those that learn from graph structure alone, feature-based models, and topological heuristics. MOTIVE accelerates both graph ML research and drug discovery by promoting the development of more reliable DTI prediction models. MOTIVE resources are available at https://github.com/carpenter-singh-lab/motive. 4 authors · Jun 12, 2024
- Gated Multimodal Units for Information Fusion This paper presents a novel model for multimodal learning based on gated neural networks. The Gated Multimodal Unit (GMU) model is intended to be used as an internal unit in a neural network architecture whose purpose is to find an intermediate representation based on a combination of data from different modalities. The GMU learns to decide how modalities influence the activation of the unit using multiplicative gates. It was evaluated on a multilabel scenario for genre classification of movies using the plot and the poster. The GMU improved the macro f-score performance of single-modality approaches and outperformed other fusion strategies, including mixture of experts models. Along with this work, the MM-IMDb dataset is released which, to the best of our knowledge, is the largest publicly available multimodal dataset for genre prediction on movies. 4 authors · Feb 7, 2017