QKV Projections Require a Fraction of Their Memory
Abstract
A novel tensor compression technique, Point-Approximate Matrix Multiplication (PAMM), significantly reduces memory consumption in the Q, K, and V projections of attention layers in LLMs without compromising performance.
The Multi-Head Attention mechanism is central to LLM operation, and multiple works target its compute and memory efficiency during training. While most works focus on approximating the scaled dot product, the memory consumption of the linear projections that compute the Q, K, and V tensors from the input x is often overlooked. To address this, we propose Point-Approximate Matrix Multiplication (PAMM), a novel tensor compression technique that reduces memory consumption of the Q,K,V projections in attention layers by a factor of up to times 512, effectively erasing their memory footprint, while achieving similar or better final perplexity. PAMM is fully composable with efficient attention techniques such as FlashAttention, making it a practical and complementary method for memory-efficient LLM training.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper