New Insights into Supradense Matter from Dissecting Scaled Stellar Structure Equations
Abstract
The strong-field gravity in General Relativity (GR) realized in neutron stars (NSs) renders the Equation of State (EOS) P(varepsilon) of supradense neutron star (NS) matter to be essentially nonlinear and refines the upper bound for phiequiv P/varepsilon to be much smaller than the Special Relativity (SR) requirement with linear EOSs, where P and varepsilon are respectively the pressure and energy density of the system considered. Specifically, a tight bound philesssim0.374 is obtained by anatomizing perturbatively the intrinsic structures of the scaled Tolman--Oppenheimer--Volkoff (TOV) equations without using any input nuclear EOS. New insights gained from this novel analysis provide EOS-model independent constraints on properties (e.g., density profiles of the sound speed squared s^2=d P/dvarepsilon and trace anomaly Delta=1/3-phi) of cold supradense matter in NS cores. Using the gravity-matter duality in theories describing NSs, we investigate the impact of gravity on supradense matter EOS in NSs. In particular, we show that the NS mass M_{NS}, radius R and its compactness xiequiv M_{NS}/R scale with certain combinations of its central pressure and energy density (encapsulating its central EOS). Thus, observational data on these properties of NSs can straightforwardly constrain NS central EOSs without relying on any specific nuclear EOS-model.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper