--- language: - multilingual - kbd pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity library_name: sentence-transformers license: apache-2.0 base_model: - sentence-transformers/LaBSE --- # LaBSE This is a port of the [LaBSE](https://tfhub.dev/google/LaBSE/1) model to PyTorch. It can be used to map 109 languages to a shared vector space. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sklearn.metrics.pairwise import cosine_similarity from sentence_transformers import SentenceTransformer model = SentenceTransformer('panagoa/LaBSE-kbd-v0.1') rus_text = "Не беспокойся." kbd_text = "Умыгузавэ." embeddings = model.encode([rus_text, kbd_text]) similarity = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0] print(f"Similarity: {similarity:.4f}") Similarity: 0.9194 ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/LaBSE) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) (3): Normalize() ) ``` ## Citing & Authors Have a look at [LaBSE](https://tfhub.dev/google/LaBSE/1) for the respective publication that describes LaBSE.