Upload train_get2_8_init.py
Browse files- train_get2_8_init.py +292 -0
train_get2_8_init.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
import wandb
|
8 |
+
import gradio as gr
|
9 |
+
from tqdm import tqdm
|
10 |
+
import tiktoken
|
11 |
+
from transformer import GPT, GPTConfig # Import from transformer.py instead
|
12 |
+
from torch.cuda.amp import autocast, GradScaler
|
13 |
+
|
14 |
+
# DataLoader class for handling input.txt
|
15 |
+
class DataLoaderLite:
|
16 |
+
def __init__(self, B, T, config):
|
17 |
+
self.B = B
|
18 |
+
self.T = T
|
19 |
+
self.config = config
|
20 |
+
|
21 |
+
# Load and tokenize input.txt
|
22 |
+
with open('input.txt', 'r', encoding='utf-8') as f:
|
23 |
+
text = f.read()
|
24 |
+
|
25 |
+
enc = tiktoken.get_encoding('gpt2')
|
26 |
+
self.tokens = torch.tensor(enc.encode(text), dtype=torch.long)
|
27 |
+
|
28 |
+
# Create dataset chunks for faster loading
|
29 |
+
self.data = []
|
30 |
+
for i in range(0, len(self.tokens) - T, B * T):
|
31 |
+
chunk = self.tokens[i:i + B * T + 1]
|
32 |
+
if len(chunk) == B * T + 1:
|
33 |
+
self.data.append(chunk)
|
34 |
+
|
35 |
+
print(f'Loaded {len(self.tokens)} tokens')
|
36 |
+
print(f'Created {len(self.data)} batches')
|
37 |
+
|
38 |
+
self.current_idx = 0
|
39 |
+
|
40 |
+
def next_batch(self):
|
41 |
+
chunk = self.data[self.current_idx]
|
42 |
+
x = chunk[:-1].view(self.B, self.T)
|
43 |
+
y = chunk[1:].view(self.B, self.T)
|
44 |
+
|
45 |
+
self.current_idx = (self.current_idx + 1) % len(self.data)
|
46 |
+
|
47 |
+
if self.config.pin_memory:
|
48 |
+
x = x.pin_memory()
|
49 |
+
y = y.pin_memory()
|
50 |
+
|
51 |
+
return x, y
|
52 |
+
|
53 |
+
class TrainingConfig:
|
54 |
+
def __init__(self):
|
55 |
+
# Smaller model architecture (~30M params)
|
56 |
+
self.n_layer = 4 # Further reduced
|
57 |
+
self.n_head = 8
|
58 |
+
self.n_embd = 384 # Further reduced
|
59 |
+
self.block_size = 256
|
60 |
+
self.dropout = 0.2 # Increased dropout for better regularization
|
61 |
+
|
62 |
+
# Optimized training hyperparameters for faster convergence
|
63 |
+
self.learning_rate = 1e-4 # Reduced learning rate for stability
|
64 |
+
self.max_iters = 50000 # Increased max iterations
|
65 |
+
self.batch_size = 4 # Reduced batch size
|
66 |
+
self.grad_clip = 0.5 # Reduced gradient clipping
|
67 |
+
self.weight_decay = 0.1
|
68 |
+
self.betas = (0.9, 0.95)
|
69 |
+
self.warmup_iters = 2000
|
70 |
+
self.lr_decay_iters = 40000 # Increased decay iterations
|
71 |
+
self.min_lr = 1e-5
|
72 |
+
self.eval_interval = 100 # More frequent evaluation
|
73 |
+
self.eval_iters = 20
|
74 |
+
|
75 |
+
# Performance optimization flags
|
76 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
77 |
+
self.gradient_checkpointing = True
|
78 |
+
self.mixed_precision = True
|
79 |
+
self.gradient_accumulation_steps = 8 # Increased for effective batch size
|
80 |
+
self.num_workers = 4
|
81 |
+
self.pin_memory = True
|
82 |
+
|
83 |
+
# Check if Triton is available before enabling compile
|
84 |
+
try:
|
85 |
+
import triton
|
86 |
+
self.compile_model = True
|
87 |
+
except ImportError:
|
88 |
+
print("Triton not available, disabling model compilation")
|
89 |
+
self.compile_model = False
|
90 |
+
|
91 |
+
class TrainingLogger:
|
92 |
+
def __init__(self, log_file='training_log.txt'):
|
93 |
+
self.log_file = log_file
|
94 |
+
self.start_time = time.time()
|
95 |
+
# Initialize log file
|
96 |
+
with open(self.log_file, 'w') as f:
|
97 |
+
f.write("Training Log\n")
|
98 |
+
f.write("=" * 50 + "\n")
|
99 |
+
f.write(f"Training started at: {time.strftime('%Y-%m-%d %H:%M:%S')}\n\n")
|
100 |
+
f.write("Iteration | Train Loss | Val Loss | Learning Rate | Tokens/sec\n")
|
101 |
+
f.write("-" * 65 + "\n")
|
102 |
+
|
103 |
+
def log_step(self, iter_num, train_loss, val_loss, lr, tokens_per_sec):
|
104 |
+
log_line = f"{iter_num:>9} | {train_loss:>10.4f} | {val_loss:>8.4f} | {lr:>12.2e} | {tokens_per_sec:>9.2f}"
|
105 |
+
print(log_line)
|
106 |
+
with open(self.log_file, 'a') as f:
|
107 |
+
f.write(log_line + "\n")
|
108 |
+
|
109 |
+
def log_message(self, message):
|
110 |
+
print(message)
|
111 |
+
with open(self.log_file, 'a') as f:
|
112 |
+
f.write("\n" + message + "\n")
|
113 |
+
|
114 |
+
def finish(self):
|
115 |
+
total_time = (time.time() - self.start_time) / 3600 # Convert to hours
|
116 |
+
message = f"\nTraining completed in {total_time:.2f} hours"
|
117 |
+
self.log_message(message)
|
118 |
+
|
119 |
+
def get_lr(it, config):
|
120 |
+
if it < config.warmup_iters:
|
121 |
+
return config.learning_rate * it / config.warmup_iters
|
122 |
+
if it > config.lr_decay_iters:
|
123 |
+
return config.min_lr
|
124 |
+
decay_ratio = (it - config.warmup_iters) / (config.lr_decay_iters - config.warmup_iters)
|
125 |
+
assert 0 <= decay_ratio <= 1
|
126 |
+
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
127 |
+
return config.min_lr + coeff * (config.learning_rate - config.min_lr)
|
128 |
+
|
129 |
+
def evaluate_loss(model, train_loader, config):
|
130 |
+
model.eval()
|
131 |
+
total_loss = 0.0
|
132 |
+
with torch.no_grad():
|
133 |
+
for _ in range(config.eval_iters):
|
134 |
+
x, y = train_loader.next_batch()
|
135 |
+
x, y = x.to(config.device), y.to(config.device)
|
136 |
+
_, loss = model(x, y)
|
137 |
+
total_loss += loss.item()
|
138 |
+
model.train()
|
139 |
+
return total_loss / config.eval_iters
|
140 |
+
|
141 |
+
def train_model():
|
142 |
+
config = TrainingConfig()
|
143 |
+
logger = TrainingLogger()
|
144 |
+
|
145 |
+
# Create and optimize model
|
146 |
+
model_config = GPTConfig(
|
147 |
+
block_size=config.block_size,
|
148 |
+
n_layer=config.n_layer,
|
149 |
+
n_head=config.n_head,
|
150 |
+
n_embd=config.n_embd,
|
151 |
+
dropout=config.dropout
|
152 |
+
)
|
153 |
+
model = GPT(model_config)
|
154 |
+
|
155 |
+
if config.compile_model and hasattr(torch, 'compile'):
|
156 |
+
try:
|
157 |
+
model = torch.compile(model)
|
158 |
+
logger.log_message("Model compilation successful")
|
159 |
+
except Exception as e:
|
160 |
+
logger.log_message(f"Model compilation failed: {e}")
|
161 |
+
logger.log_message("Continuing without compilation")
|
162 |
+
|
163 |
+
if config.gradient_checkpointing:
|
164 |
+
model.gradient_checkpointing_enable()
|
165 |
+
|
166 |
+
model.to(config.device)
|
167 |
+
logger.log_message(f"Number of parameters: {sum(p.numel() for p in model.parameters())/1e6:.2f}M")
|
168 |
+
|
169 |
+
optimizer = torch.optim.AdamW(
|
170 |
+
model.parameters(),
|
171 |
+
lr=config.learning_rate,
|
172 |
+
betas=config.betas,
|
173 |
+
weight_decay=config.weight_decay
|
174 |
+
)
|
175 |
+
|
176 |
+
train_loader = DataLoaderLite(B=config.batch_size, T=config.block_size, config=config)
|
177 |
+
scaler = GradScaler() if config.mixed_precision else None
|
178 |
+
|
179 |
+
best_val_loss = float('inf')
|
180 |
+
no_improvement_count = 0
|
181 |
+
|
182 |
+
for iter in tqdm(range(config.max_iters)):
|
183 |
+
iter_start = time.time()
|
184 |
+
|
185 |
+
# Training step
|
186 |
+
x, y = train_loader.next_batch()
|
187 |
+
x, y = x.to(config.device, non_blocking=True), y.to(config.device, non_blocking=True)
|
188 |
+
|
189 |
+
lr = get_lr(iter, config)
|
190 |
+
for param_group in optimizer.param_groups:
|
191 |
+
param_group['lr'] = lr
|
192 |
+
|
193 |
+
if config.mixed_precision:
|
194 |
+
with autocast():
|
195 |
+
logits, loss = model(x, y)
|
196 |
+
loss = loss / config.gradient_accumulation_steps
|
197 |
+
scaler.scale(loss).backward()
|
198 |
+
|
199 |
+
if (iter + 1) % config.gradient_accumulation_steps == 0:
|
200 |
+
scaler.unscale_(optimizer)
|
201 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
|
202 |
+
scaler.step(optimizer)
|
203 |
+
scaler.update()
|
204 |
+
optimizer.zero_grad(set_to_none=True)
|
205 |
+
else:
|
206 |
+
logits, loss = model(x, y)
|
207 |
+
loss = loss / config.gradient_accumulation_steps
|
208 |
+
loss.backward()
|
209 |
+
|
210 |
+
if (iter + 1) % config.gradient_accumulation_steps == 0:
|
211 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
|
212 |
+
optimizer.step()
|
213 |
+
optimizer.zero_grad(set_to_none=True)
|
214 |
+
|
215 |
+
# Calculate metrics
|
216 |
+
iter_time = time.time() - iter_start
|
217 |
+
tokens_per_sec = config.batch_size * config.block_size / iter_time
|
218 |
+
|
219 |
+
# Evaluation and logging
|
220 |
+
if iter % config.eval_interval == 0:
|
221 |
+
val_loss = evaluate_loss(model, train_loader, config)
|
222 |
+
logger.log_step(iter, loss.item(), val_loss, lr, tokens_per_sec)
|
223 |
+
|
224 |
+
if val_loss < best_val_loss:
|
225 |
+
best_val_loss = val_loss
|
226 |
+
no_improvement_count = 0
|
227 |
+
torch.save({
|
228 |
+
'model_state_dict': model.state_dict(),
|
229 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
230 |
+
'val_loss': val_loss,
|
231 |
+
'iter': iter,
|
232 |
+
'config': model_config
|
233 |
+
}, 'best_model.pt')
|
234 |
+
logger.log_message(f"New best model saved with validation loss: {val_loss:.6f}")
|
235 |
+
else:
|
236 |
+
no_improvement_count += 1
|
237 |
+
|
238 |
+
if val_loss < 0.099999:
|
239 |
+
logger.log_message(f"Target loss achieved at iteration {iter}")
|
240 |
+
logger.log_message(f"Final validation loss: {val_loss:.6f}")
|
241 |
+
break
|
242 |
+
|
243 |
+
if no_improvement_count >= 5:
|
244 |
+
for param_group in optimizer.param_groups:
|
245 |
+
param_group['lr'] *= 0.5
|
246 |
+
no_improvement_count = 0
|
247 |
+
logger.log_message("Reducing learning rate due to no improvement")
|
248 |
+
|
249 |
+
logger.finish()
|
250 |
+
return model
|
251 |
+
|
252 |
+
def generate_text(model, prompt, max_length=100, temperature=0.7):
|
253 |
+
model.eval()
|
254 |
+
device = model.device
|
255 |
+
enc = tiktoken.get_encoding('gpt2')
|
256 |
+
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0).to(device)
|
257 |
+
|
258 |
+
with torch.no_grad():
|
259 |
+
output_sequence = []
|
260 |
+
for _ in range(max_length):
|
261 |
+
outputs = model(input_ids)
|
262 |
+
logits = outputs[0] if isinstance(outputs, tuple) else outputs
|
263 |
+
next_token_logits = logits[:, -1, :]
|
264 |
+
# Apply temperature
|
265 |
+
next_token_logits = next_token_logits / temperature
|
266 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
267 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
268 |
+
output_sequence.append(next_token.item())
|
269 |
+
input_ids = torch.cat([input_ids, next_token], dim=1)
|
270 |
+
|
271 |
+
return enc.decode(output_sequence)
|
272 |
+
|
273 |
+
if __name__ == "__main__":
|
274 |
+
# Train the model
|
275 |
+
model = train_model()
|
276 |
+
|
277 |
+
# Create and launch Gradio interface
|
278 |
+
def predict(prompt, length, temp=0.7):
|
279 |
+
return generate_text(model, prompt, length, temp)
|
280 |
+
|
281 |
+
iface = gr.Interface(
|
282 |
+
fn=predict,
|
283 |
+
inputs=[
|
284 |
+
gr.Textbox(lines=2, label="Enter your prompt"),
|
285 |
+
gr.Slider(minimum=10, maximum=200, value=50, label="Max Length"),
|
286 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, label="Temperature", step=0.1)
|
287 |
+
],
|
288 |
+
outputs=gr.Textbox(lines=5, label="Generated Text"),
|
289 |
+
title="Custom Transformer Text Generator",
|
290 |
+
description="Enter a prompt and adjust parameters to generate text"
|
291 |
+
)
|
292 |
+
iface.launch(share=True)
|