|
import math |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from dataclasses import dataclass |
|
|
|
@dataclass |
|
class GPTConfig: |
|
block_size: int = 1024 |
|
vocab_size: int = 50257 |
|
n_layer: int = 12 |
|
n_head: int = 12 |
|
n_embd: int = 768 |
|
dropout: float = 0.1 |
|
bias: bool = True |
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, ndim, bias): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(ndim)) |
|
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None |
|
|
|
def forward(self, x): |
|
return F.layer_norm(x, self.weight.shape, self.weight, self.bias, 1e-5) |
|
|
|
class CausalSelfAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) |
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) |
|
self.attn_dropout = nn.Dropout(config.dropout) |
|
self.resid_dropout = nn.Dropout(config.dropout) |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.dropout = config.dropout |
|
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) |
|
.view(1, 1, config.block_size, config.block_size)) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
|
|
|
|
q, k, v = self.c_attn(x).split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) |
|
att = F.softmax(att, dim=-1) |
|
att = self.attn_dropout(att) |
|
y = att @ v |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
y = self.resid_dropout(self.c_proj(y)) |
|
return y |
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) |
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) |
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
def forward(self, x): |
|
x = F.gelu(self.c_fc(x)) |
|
x = self.dropout(self.c_proj(x)) |
|
return x |
|
|
|
class Block(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
class GPT(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.vocab_size is not None |
|
assert config.block_size is not None |
|
self.config = config |
|
|
|
|
|
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(config.vocab_size, config.n_embd), |
|
wpe = nn.Embedding(config.block_size, config.n_embd), |
|
drop = nn.Dropout(config.dropout), |
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f = LayerNorm(config.n_embd, bias=config.bias), |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
for pn, p in self.named_parameters(): |
|
if pn.endswith('c_proj.weight'): |
|
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) |
|
|
|
|
|
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) |
|
|
|
def get_num_params(self, non_embedding=True): |
|
""" |
|
Return the number of parameters in the model. |
|
For non-embedding count (default), the position embeddings get subtracted. |
|
""" |
|
n_params = sum(p.numel() for p in self.parameters()) |
|
if non_embedding: |
|
n_params -= self.transformer.wpe.weight.numel() |
|
return n_params |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def gradient_checkpointing_enable(self): |
|
""" |
|
Enable gradient checkpointing for memory efficiency |
|
""" |
|
self.gradient_checkpointing = True |
|
|
|
def gradient_checkpointing_disable(self): |
|
""" |
|
Disable gradient checkpointing |
|
""" |
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, idx, targets=None): |
|
device = idx.device |
|
b, t = idx.size() |
|
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" |
|
pos = torch.arange(0, t, dtype=torch.long, device=device) |
|
|
|
|
|
tok_emb = self.transformer.wte(idx) |
|
pos_emb = self.transformer.wpe(pos) |
|
x = self.transformer.drop(tok_emb + pos_emb) |
|
|
|
|
|
if hasattr(self, 'gradient_checkpointing') and self.gradient_checkpointing: |
|
for block in self.transformer.h: |
|
x = torch.utils.checkpoint.checkpoint(block, x) |
|
else: |
|
for block in self.transformer.h: |
|
x = block(x) |
|
|
|
x = self.transformer.ln_f(x) |
|
|
|
if targets is not None: |
|
logits = self.lm_head(x) |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
else: |
|
logits = self.lm_head(x[:, [-1], :]) |
|
loss = None |
|
|
|
return logits, loss |
|
|
|
def crop_block_size(self, block_size): |
|
|
|
|
|
|
|
assert block_size <= self.config.block_size |
|
self.config.block_size = block_size |
|
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size]) |
|
for block in self.transformer.h: |
|
if hasattr(block.attn, 'bias'): |
|
block.attn.bias = block.attn.bias[:,:,:block_size,:block_size] |
|
|
|
@classmethod |
|
def from_pretrained(cls, model_type): |
|
""" |
|
Initialize a pretrained GPT model by copying over the weights |
|
from a huggingface/transformers checkpoint. |
|
""" |
|
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} |
|
from transformers import GPT2LMHeadModel |
|
|
|
|
|
config = GPTConfig() |
|
config.block_size = 1024 |
|
|
|
|
|
if model_type == 'gpt2': |
|
config.n_layer = 12; config.n_head = 12; config.n_embd = 768 |
|
elif model_type == 'gpt2-medium': |
|
config.n_layer = 24; config.n_head = 16; config.n_embd = 1024 |
|
elif model_type == 'gpt2-large': |
|
config.n_layer = 36; config.n_head = 20; config.n_embd = 1280 |
|
elif model_type == 'gpt2-xl': |
|
config.n_layer = 48; config.n_head = 25; config.n_embd = 1600 |
|
|
|
|
|
model = GPT(config) |
|
sd = model.state_dict() |
|
|
|
|
|
model_hf = GPT2LMHeadModel.from_pretrained(model_type) |
|
sd_hf = model_hf.state_dict() |
|
|
|
|
|
keys = [k for k in sd_hf if not k.endswith('attn.masked_bias')] |
|
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] |
|
|
|
for k in keys: |
|
if any(k.endswith(w) for w in transposed): |
|
|
|
assert sd_hf[k].shape[::-1] == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k].t()) |
|
else: |
|
|
|
assert sd_hf[k].shape == sd[k].shape |
|
with torch.no_grad(): |
|
sd[k].copy_(sd_hf[k]) |
|
|
|
return model |
|
|
|
def to(self, device): |
|
"""Override to method to also update device attribute""" |
|
self.device = device |
|
return super().to(device) |