feat: テキストのスパースエンコーディングを追加
Browse files- sample-encoding-sparse.py +25 -0
sample-encoding-sparse.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers import AutoModel, AutoTokenizer
|
4 |
+
|
5 |
+
model_name = "."
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
|
8 |
+
# マージされたモデルのロード
|
9 |
+
merged_model = AutoModel.from_pretrained(model_name)
|
10 |
+
merged_model.load_state_dict(torch.load("merged_pytorch_model.bin"))
|
11 |
+
|
12 |
+
# テキストのエンコード
|
13 |
+
def encode_text(text):
|
14 |
+
inputs = tokenizer(text, return_tensors="pt")
|
15 |
+
outputs = merged_model(**inputs)
|
16 |
+
dense_embeddings = outputs.last_hidden_state
|
17 |
+
|
18 |
+
# Sparseベクトルへの変換
|
19 |
+
sparse_embeddings = merged_model.sparse_linear(dense_embeddings)
|
20 |
+
return dense_embeddings
|
21 |
+
|
22 |
+
# テキストのエンコード例
|
23 |
+
text = "こんにちは"
|
24 |
+
sparse_embeddings = encode_text(text)
|
25 |
+
print(sparse_embeddings)
|