takanezawa commited on
Commit
c0a3a1a
·
1 Parent(s): b025097

Refactor handler.py to use relative path for model initialization

Browse files
Files changed (2) hide show
  1. __pycache__/handler.cpython-311.pyc +0 -0
  2. handler.py +6 -11
__pycache__/handler.cpython-311.pyc CHANGED
Binary files a/__pycache__/handler.cpython-311.pyc and b/__pycache__/handler.cpython-311.pyc differ
 
handler.py CHANGED
@@ -5,10 +5,10 @@ from FlagEmbedding import BGEM3FlagModel
5
 
6
 
7
  class EndpointHandler():
8
- def __init__(self, path="./"):
9
  # load the optimized model
10
  # モデルの準備
11
- self.model = BGEM3FlagModel("./", use_fp16=False)
12
 
13
 
14
  def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
@@ -24,14 +24,9 @@ class EndpointHandler():
24
  inputs = data.pop("inputs", data)
25
  parameters = data.pop("parameters", None)
26
 
27
- sparse_embs = []
28
-
29
- # result = self.model.encode(inputs, return_dense=False, return_sparse=True)
30
- # sparse_vectors = result["lexical_weights"]
31
- # for sparse_vector in sparse_vectors:
32
- # sparse_values = [value for value in sparse_vector.values()]
33
- # sparse_dimensions = [int(key) for key in sparse_vector.keys()]
34
- # sparse_embs.append((sparse_values, sparse_dimensions))
35
 
36
  # pass inputs with all kwargs in data
37
  # if parameters is not None:
@@ -41,6 +36,6 @@ class EndpointHandler():
41
  # postprocess the prediction
42
  return [
43
  [
44
- {"label": 0, "score": 0.5}
45
  ]
46
  ]
 
5
 
6
 
7
  class EndpointHandler():
8
+ def __init__(self, path="."):
9
  # load the optimized model
10
  # モデルの準備
11
+ self.model = BGEM3FlagModel(path, use_fp16=False)
12
 
13
 
14
  def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
 
24
  inputs = data.pop("inputs", data)
25
  parameters = data.pop("parameters", None)
26
 
27
+ result = self.model.encode(inputs, return_dense=False, return_sparse=True)
28
+ sparse_vectors = result["lexical_weights"]
29
+ # defaultdict(<class 'int'>, {'6': 0.09558245, '192661': 0.33248675})}
 
 
 
 
 
30
 
31
  # pass inputs with all kwargs in data
32
  # if parameters is not None:
 
36
  # postprocess the prediction
37
  return [
38
  [
39
+ { "outputs": sparse_vectors}
40
  ]
41
  ]