Commit
·
4af82f4
1
Parent(s):
a03b9b6
スパースベクトル化に対応する
Browse files- .gitignore +1 -0
- handler.py +20 -12
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
test*
|
handler.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
-
from optimum.onnxruntime import ORTModelForSequenceClassification
|
3 |
-
from transformers import pipeline, AutoTokenizer
|
|
|
4 |
|
5 |
|
6 |
class EndpointHandler():
|
7 |
-
def __init__(self, path="./
|
8 |
# load the optimized model
|
9 |
-
|
10 |
-
|
11 |
-
# create inference pipeline
|
12 |
-
self.pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
13 |
|
14 |
|
15 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
@@ -24,11 +23,20 @@ class EndpointHandler():
|
|
24 |
"""
|
25 |
inputs = data.pop("inputs", data)
|
26 |
parameters = data.pop("parameters", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# pass inputs with all kwargs in data
|
29 |
-
if parameters is not None:
|
30 |
-
|
31 |
-
else:
|
32 |
-
|
33 |
# postprocess the prediction
|
34 |
-
return
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
+
# from optimum.onnxruntime import ORTModelForSequenceClassification
|
3 |
+
# from transformers import pipeline, AutoTokenizer
|
4 |
+
from FlagEmbedding import BGEM3FlagModel
|
5 |
|
6 |
|
7 |
class EndpointHandler():
|
8 |
+
def __init__(self, path="./"):
|
9 |
# load the optimized model
|
10 |
+
# モデルの準備
|
11 |
+
model = BGEM3FlagModel("./", use_fp16=False)
|
|
|
|
|
12 |
|
13 |
|
14 |
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
|
|
23 |
"""
|
24 |
inputs = data.pop("inputs", data)
|
25 |
parameters = data.pop("parameters", None)
|
26 |
+
|
27 |
+
sparse_embs = []
|
28 |
+
|
29 |
+
result = self.model.encode(inputs, return_dense=False, return_sparse=True)
|
30 |
+
sparse_vectors = result["lexical_weights"]
|
31 |
+
for sparse_vector in sparse_vectors:
|
32 |
+
sparse_values = [value for value in sparse_vector.values()]
|
33 |
+
sparse_dimensions = [int(key) for key in sparse_vector.keys()]
|
34 |
+
sparse_embs.append((sparse_values, sparse_dimensions))
|
35 |
|
36 |
# pass inputs with all kwargs in data
|
37 |
+
# if parameters is not None:
|
38 |
+
# prediction = self.pipeline(inputs, **parameters)
|
39 |
+
# else:
|
40 |
+
# prediction = self.pipeline(inputs)
|
41 |
# postprocess the prediction
|
42 |
+
return sparse_vectors
|