Ozone AI commited on
Commit
72076aa
·
verified ·
1 Parent(s): 84b25c1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -0
README.md ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ datasets:
4
+ - lmsys/lmsys-chat-1m
5
+ base_model:
6
+ - Qwen/Qwen2.5-14B-Instruct
7
+ pipeline_tag: text2text-generation
8
+ language:
9
+ - en
10
+ - zh
11
+ ---
12
+
13
+ # 0x Lite
14
+
15
+ ## Overview
16
+ 0x Lite is a state-of-the-art language model developed by Ozone AI, designed to deliver ultra-high-quality text generation capabilities while maintaining a compact and efficient architecture. Built on the latest advancements in natural language processing, 0x Lite is optimized for both speed and accuracy, making it a strong contender in the space of language models. It is particularly well-suited for applications where resource constraints are a concern, offering a lightweight alternative to larger models like GPT while still delivering comparable performance.
17
+
18
+ ## Features
19
+ - **Compact and Efficient**: 0x Lite is designed to be lightweight, making it suitable for deployment on resource-constrained devices.
20
+ - **High-Quality Text Generation**: The model is trained on a diverse dataset to generate coherent, contextually relevant, and human-like text.
21
+ - **Versatile Applications**: Suitable for tasks such as text completion, summarization, translation, and more.
22
+ - **Fast Inference**: Optimized for speed, ensuring quick and efficient responses.
23
+ - **Open-Source and Community-Driven**: Built with transparency and collaboration in mind, 0x Lite is available for the community to use, modify, and improve.
24
+
25
+ ## Use Cases
26
+ - **Text Completion**: Assist users with writing tasks by generating coherent and contextually appropriate text.
27
+ - **Summarization**: Summarize long documents into concise and meaningful summaries.
28
+ - **Chatbots**: Power conversational AI systems with 0x Lite.
29
+ - **Content Creation**: Generate creative content such as stories, poems, or marketing copy.
30
+ - **Education**: Assist students with research, essay writing, and language learning.
31
+
32
+ ## Getting Started
33
+ To get started with 0x Lite, follow these steps:
34
+
35
+ 1. **Install the Model**:
36
+ ```bash
37
+ pip install transformers
38
+ ```
39
+
40
+ 2. **Load the Model**:
41
+ ```python
42
+ from transformers import AutoModelForCausalLM, AutoTokenizer
43
+
44
+ model_name = "ozone-ai/0x-lite"
45
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
46
+ model = AutoModelForCausalLM.from_pretrained(model_name)
47
+ ```
48
+
49
+ 3. **Generate Text**:
50
+ ```python
51
+ input_text = "Once upon a time"
52
+ inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
53
+ outputs = model.generate(**inputs, max_length=50)
54
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
55
+ print(generated_text)
56
+ ```
57
+
58
+ # Chinese
59
+
60
+ # 0x Lite
61
+
62
+ ## 概览
63
+ 0x Lite 是由 Ozone AI 开发的最先进的语言模型,旨在提供超高质量的文本生成能力,同时保持紧凑和高效的架构。基于自然语言处理领域的最新进展,
64
+ 0x Lite 在速度和准确性方面都进行了优化,在语言模型领域中是一个强有力的竞争者。它特别适合资源受限的应用场景,为那些希望获得与 GPT 等大型模
65
+ 型相当性能但又需要轻量级解决方案的用户提供了一个理想选择。
66
+
67
+ ## 特性
68
+ - **紧凑高效**:0x Lite 被设计成轻量化,适用于资源受限设备上的部署。
69
+ - **高质量文本生成**:该模型经过多样化的数据集训练,能够生成连贯、上下文相关且接近人类水平的文本。
70
+ - **多用途应用**:适合完成如文本补全、摘要、翻译等任务。
71
+ - **快速推理**:优化了速度,确保迅速高效的响应。
72
+ - **开源及社区驱动**:秉持透明和协作的理念,0x Lite 向社区开放,供用户使用、修改和完善。
73
+
74
+ ## 应用场景
75
+ - **文本补全**:通过生成连贯且上下文相关的文本帮助用户完成写作任务。
76
+ - **摘要**:将长文档总结为简短而有意义的摘要。
77
+ - **聊天机器人**:利用 0x Lite 动力支持会话式 AI 系统。
78
+ - **内容创作**:生成创意性内容,如故事、诗歌或营销文案。
79
+ - **教育**:协助学生进行研究、写作及语言学习。
80
+
81
+ ## 入门指南
82
+ 要开始使用 0x Lite,请按照以下步骤操作:
83
+
84
+ 1. **安装模型**:
85
+ ```bash
86
+ pip install transformers
87
+ ```
88
+
89
+ 2. **加载模型**:
90
+ ```python
91
+ from transformers import AutoModelForCausalLM, AutoTokenizer
92
+
93
+ model_name = "ozone-ai/0x-lite"
94
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
95
+ model = AutoModelForCausalLM.from_pretrained(model_name)
96
+ ```
97
+
98
+ 3. **生成文本**:
99
+ ```python
100
+ input_text = "从前有一段时间"
101
+ inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
102
+ outputs = model.generate(**inputs, max_length=50)
103
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
104
+ print(generated_text)
105
+ ```
106
+
107
+ ---
108
+
109
+ Translated by 0x-Lite